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Predicting biosynthetic gene clusters (BGCs) is critically important for discovery of antibiotics and other natural products.

While BGC prediction from complete genomes is a well-studied problem, predicting BGCs in fragmented genomic assem-

blies remains challenging. The existing BGC prediction tools often assume that each BGC is encoded within a single contig in

the genome assembly, a condition that is violated for most sequenced microbial genomes where BGCs are often scattered

through several contigs, making it difficult to reconstruct them. The situation is evenmore severe in shotgunmetagenomics,

where the contigs are often short, and the existing tools fail to predict a large fraction of long BGCs. While it is difficult to

assemble BGCs in a single contig, the structure of the genome assembly graph often provides clues on how to combine mul-

tiple contigs into segments encoding long BGCs. We describe biosyntheticSPAdes, a tool for predicting BGCs in assembly

graphs and demonstrate that it greatly improves the reconstruction of BGCs from genomic and metagenomics data sets.

[Supplemental material is available for this article.]

Although there exist many tools for assembling microbial
genomes or metagenomes (Simpson et al. 2009; Li et al. 2015;
Nurk et al. 2017), they all have limitations with respect to assem-
bling contigs that contain long genes encoding proteins with re-
petitive domains. Since long genes are often scattered between
multiple contigs in fragmented assemblies, the existing gene pre-
diction tools (Besemer and Borodovsky 2005; Delcher et al. 2007;
Hyatt et al. 2010; Pati et al. 2010) cannot predict them. The chal-
lenge of assembling long genes in a single contig is illustrated by
genes encoding Nonribosomal Peptides Synthetases (NRPSs),
Polyketide Synthases (PKSs), and other genes that are parts of biosyn-
thetic gene clusters (BGCs) encoding the production of antibiotics
and other natural products. BGCs usually includemultiple consec-
utive genes that participate in a single metabolic pathway respon-
sible for synthesizing a natural product. NRPS BGCs encode
Nonribosomal Peptides (NRPs) built from amino acids, and PKS
BGCs encode polyketides (PSs) built from keto groups. Mixed
NRPS/PKS BGCs contain both NRPS-specific and PKS-specific do-
mains, and their natural products represent fusions of peptides
and polyketides (Cane and Walsh 1999). Klassen and Currie
(2012) showed that long and repetitiveNRPSs and PKSs are respon-
sible for a large fraction of fragmentation in microbial assemblies.

This paper focuses on NRPSs because NRPs represent an im-
portant class of natural product drugs (Newman and Cragg
2016) that is most amenable to downstream peptidogenomics
analysis as compared to other classes of natural products (Kersten

et al. 2011; Medema et al. 2014a; Mohimani et al. 2014b). NRPS
BGCs constitute 34% of all BGCs in publicly available genomes,
as found in the antiSMASH database (https://antismash-db
.secondarymetabolites.org/#!/stats). SinceNRPSs are very common
(albeit elusive) in diverse bacterial data sets (Mukherjee et al.
2017) and since the downstream peptidogenomics analysis of
NRPs is greatly impaired by fragmented assemblies, most exam-
ples in this paper refer to NRPs. In addition to NRPS BGCs,
biosynteticSPAdes is also applicable to PKS BGCs and mixed
NRPS-PKSBGCs (NRPS, PKS, andmixedNRPS-PKSBGCs constitute
the majority of BGCs in the MIBiG database). Klassen and Currie
(2012) have shown that fragmented ORFs in genome assemblies
are highly enriched in NRPSs and PKSs, which thus constitute a
prominent source of breakpoints in (meta)genome assemblies.
The fact that the vast majority of genomes contain either an
NRPS or a PKS or a mixed NRPS-PKS BGC (for some species, over
30% of the genome is allocated to these BGCs) and direct interest
to a large research community is a good reason to provide a special-
ized assembler for these BGCs.

NRPSs are large modular protein complexes containing mul-
tiple highly similaradenylation domains (A-domains) responsible for
recruiting amino acids that form NRPs according to the substrate
specificity of each A-domain (Stachelhaus et al. 1999). NRPSs are
often accompanied byother adjacently located genes that together
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form NRP BGCs and contribute to NRP synthesis, transport, and
regulation. NRP BGCs are typically long, with an average length
of ∼60 kb and some exceeding 100 kb in length. Assembling
NRP BGCs into single contigs is a crucial step in natural product
discovery by genome mining (Weber et al. 2015) and peptidoge-
nomics (Mohimani et al. 2014a, 2017; Mohimani and Pevzner
2016; Gurevich et al. 2018).

The recent Genomic Encyclopedia of Bacteria and Archaea
(GEBA) study of over 1000 bacterial genomes revealed over
23,000 BGCs (Mukherjee et al. 2017). An average GEBA genome
devotes nearly 10% of its genome to BGCs (some genomes devote
>30%). However, the vast majority of predicted BGC products re-
main unknown, in part due to difficulties in predicting long
BGCs (Hadjithomas et al. 2015).

The recently proposed genome mining and peptidogenomic
approaches elucidate the amino acid sequences of NRPs bymatch-
ing tandemmass spectra against predicted NRP synthetases in the
assembled genomes (Medema et al. 2014b;Mohimani et al. 2014a,
2017). The success of these approaches depends on accurate pre-
diction of genes encoding NRP synthetases followed by ma-
chine-learning algorithms to predict their substrate specificities
and matching mass spectral data sets against the predicted NRP
amino acid sequences. This is a challenging task requiring the re-
covery of the complete NRPS genes and the corresponding NRP
BGCs in a single contig.

This challenge is further amplified in metagenomics assem-
blies, because NRP synthetases from different species within a mi-
crobial community often share similar domains. This makes it
difficult to assemble them in a single contig in caseswhenmultiple
domains are collapsed into a single edge in the assembly graph
(Coates et al. 2014). Therefore, while metagenomes represent a
goldmine for antibiotics discovery, a limitednumber of antibiotics
have been discovered frommetagenomics data sets so far (Freeman
et al. 2012; Donia et al. 2014; Donia and Fischbach 2015).

Despite the fact that it is difficult to reconstruct long
NRPS BGCs from individual contigs, the structure of the assembly
graphoften provides clues on how to combine various contigs into
intact BGCs.We describe the biosyntheticSPAdes tool for assembl-
ing NRPS BGCs in assembly graphs constructed by SPAdes
(Bankevich et al. 2012) and metaSPAdes (Nurk et al. 2017) assem-
blers. Below, we show how biosyntheticSPAdes contributes to the
discovery of NRPS BGCs in various genomes and metagenomes.

Results

The challenge of assembling BGCs

Contrary to the standard practice in existing gene prediction
tools that attempt to reconstruct genes from individual contigs/
scaffolds, biosyntheticSPAdes analyzes the assembly graph to
join fragments of long BGCs (scattered over multiple contigs)
into a single contig. Below, we describe the biosyntheticSPAdes
algorithm and illustrate how it works using the genome of
Streptomyces coelicolor A3(2) (referred to as S. coelicolor for brevity),
a well-studied antibiotics-producing bacterium, which encodes
four NRP BGCs (Bentley et al. 2002), including calcium-dependent
antibiotic (CALC).

We illustrate the challenge of assembling long repetitive
genes using a subgraph of the S. coelicolor assembly graph encoding
the CALC BGC (Fig. 1). To generate this graph, we simulated error-
free short paired-end reads (Huang et al. 2012) from the S. coelicolor
genome using the ART read simulator (Huang et al. 2012). The

reads from the resulting data set with coverage 180× (referred to
as the STREP data set and containing paired reads of length 150
bp with a mean insert size of 300 bp) were assembled using the
SPAdes assembler (Bankevich et al. 2012). The assembly graph con-
structed from these simulated reads contains 626 vertices and 697
edges (484 of them are longer than 1000 bp). The total edge length
in the assembly graph is 8,598,860 with N50=41 kb. SPAdes uses
paired reads to resolve repeats in the genome and combines some
edges in the assembly graphs into contigs/scaffolds using
exSPAnder (Prjibelski et al. 2014). exSPAnder constructed 145 scaf-
folds longer than 1000 bp with N50=135 kb after the repeat reso-
lution step.

AntiSMASH (Weber et al. 2015) is a popular genome mining
tool for detecting and annotating BGCs. AntiSMASH revealed
29 BGCs in the S. coelicolor genome, including four NRP BGCs.
The CALC BGC with eleven A-domains traverses 25 edges in the
assembly graph. exSPAnder (Prjibelski et al. 2014) combined
some of these edges into single contigs, but even after applying
exSPAnder, CALC was split into seven scaffolds (Fig. 1). This illus-
trates the challenge of reconstructing long genes even for isolated
bacteria, let alonemetagenomes. Note that 11 A-domains in CALC
are represented by only nine A-domains in Figure 1 because three
out of 11 A-domains got collapsed into a single edge in the assem-
bly graph.

The CALC BGC illustrates just one example of the difficulties
with assembling long and repetitive genes in genomic andmetage-
nomic data sets. Supplemental Table S1 illustrates that 285 out of
7910 genes (≈ 3%) in the S. coelicolor genome are split overmultiple
edges in the assembly graph. The fraction of split genes further
increases when we consider long genes: 11 out of the 100 long-
est genes (length>3200 bp) traverse multiple edges and 17 out
of these 100 longest genes correspond to BGCs (Supplemental
Table S2). While the repeat resolution step in SPAdes (Prjibelski
et al. 2014) captures some of the split genes in a single contig/
scaffold,many long genes remain split even after repeat resolution,
and three of them correspond to BGC genes (Supplemental
Table S3). The fraction of such split genes further increases in
metagenomics assemblies.

BiosyntheticSPAdes outline

The biosyntheticSPAdes pipeline includes six steps (Fig. 2) that are
described in the Methods section:

• assembling genomic/metagenomic reads with SPAdes/
metaSPAdes;

• identifying domain-edges in the assembly graph;
• extracting BGC subgraphs from the assembly graph;
• restoring collapsed domains in the assembly graph;
• constructing the scaffolding graph; and
• constructing putative BGCs by solving the Rural Postman
Problem in the scaffolding graph.

Benchmarking design

To benchmark biosyntheticSPAdes, we compared its output (a sin-
gle or multiple contigs) against the reference genome(s). Since the
downstream applications, such as NRPquest (Mohimani et al.
2014a), do not require a single contig output and work equally
well when a small set of output contigs contain a correct one, we
classify the biosyntheticSPAdes output as correct if at least one of
the reported contigs is contained in one of the reference genomes
(with percent identity exceeding 95%).
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In the case when the reference genomes are not available, we
checkwhether a BGC subgraph contains a rural postman path. If it
is the case, it is likely that one of the reported contigs is contained
in an unknown reference genome.

Data sets

We analyzed the following data sets assembled using SPAdes or
metaSPAdes with k-mer sizes varying from 21 to 55 nucleotides
during the iterative assembly.

Pseudomonas data sets (PSEUDO). The PSEUDO data set
(accession number ERR1890333) contains ≈4.5 million paired

reads from the isolate of Pseudomonas protegens (fluorescens) Pf-5
(read length 100 bp, amean insert size 440 bp, and a standard devi-
ation of the insert size 140 bp). The genome sequencewas finished
using a combination of primer walking, generation and sequenc-
ing of transposon-tagged libraries, and multiplex PCR (Paulsen
et al. 2005).

Cyanobacteria data set (CYANO). The CYANO data set con-
tains genomic reads from cultured marine bacteria Moorea produ-
cens JHB (referred to as JHB below) described in Kleigrewe et al.
(2015). The sample is contaminated with heterotrophic bacteria
and thus represents a low-complexitymetagenome. The JHB strain
encodes various NRPs, PKs, and mixed NRP-PKs, including

Figure 1. Subgraph of the assembly graph of S. coelicolor corresponding to the CALCNRP BGC. (Top) Edges of the assembly graph traversed by the CALC
BGC. Nodes of the assembly graph are shown as white circles. After applying exSPAnder, the CALC BGC remains scattered over 10 scaffolds. Three of them
are shown as red, blue, and green paths through the assembly graph; the remaining seven consist of a single edge each (shown in black and marked with
letters a through g). The positions of eleven A-domains (with their indices) along the CALC BGC are shown by violet boxes. Edges with low and high cov-
erage by reads are shown as thin and thick edges, respectively. The edge harboring three A-domains 4, 5, and 7 has approximately triple coverage by reads
as compared to other domain-harboring edges. The 11 A-domains in CALC are split over three NRP synthetases with 6, 3, and 2 A-domains, respectively.
(Middle) A simplified representation of the graphwith all short edges (shorter than 300 bp) contracted into single vertices. The two contracted subgraphs of
the assembly graph (formed by short edges) are represented by yellow vertices. The brown dashed path illustrates how the CALC NRP synthetase traverses
the contracted assembly graph. (Bottom) The bubble restoration procedure described below transforms the collapsed edge harboring three A-domains
(A-domains 4, 5, and 7) into three edges, each of them harboring a single A-domain. Applying exSPAnder to the modified assembly graph results in seven
scaffolds that differ from scaffolds before bubble restoration (shown as red, blue, green, and orange paths as well as three black edges). Gray squares show
the starting and ending positions of the CALC BGC.
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hectochlorin (Marquez et al. 2002) and jamaicamides (Edwards et al.
2004). The JHB data set contains ≈6 million paired reads (length
150 bp, a mean insert size 292 bp, and a standard deviation of
the insert size 74 bp).

MIBiG data sets (MIBIG). The Minimum Information about a
Biosynthetic Gene Cluster (MIBiG) database contains information
about BGCs and their products (Medema et al. 2015). Each entry in
the MIBiG database contains the nucleotide sequence of a BGC,
the natural product type (NRPs, PKs, and other types), and its
annotation. In order to benchmark biosyntheticSPAdes on a
wide range of BGCs, we extracted all MIBiG entries describing
NRPSs and PKSs with complete BGC sequences (665 entries) and
used the ART read simulator (Huang et al. 2012) to simulate
reads from BGC sequences with the default MiSeq parameters.
Admittedly, generating reads from BGCs results in a simpler prob-
lem than simulating reads from the entire genome. However, since
entire genomes are not available for many MIBiG entries, we sim-
ulated reads from BGCs only. We define the complexity of a BGC as
the total number of A-domains and AT-domains in this BGC. Note
that this is a very naive definition of complexity (e.g., trans-AT

PKSs have few AT domains). Out of 665
BGCs in the MIBiG data set, 139 have
complexity 10 and larger.

HMP data sets (HMP). The HMP data
set consists of 20 metagenomic sub-data
sets from seven parts of the human
body that included keratinized gingiva,
buccal mucosa, stool, gingival plaque,
supragingival plaque, tongue dorsum,
and throat (Supplemental Table S4).
The description of these data sets is given
in The Human Microbiome Project
Consortium (2012).

Analyzing the PSEUDO data set

AntiSMASH (Weber et al. 2015) identi-
fied 12 BGCs in the Pseudomonas prote-
gens Pf-5 genome, including seven NRP
and PK BGCs. SPAdes assembled each of
them into a single contig with the excep-
tion of the pyoverdine NRP BGC (with
eight A-domains), which was assembled
into four contigs that revealed only seven
A-domains (Fig. 3, top left). In contrast,
the domain restoration procedure in
biosyntheticSPAdes succeeded in recon-
structing two A-domains that were col-
lapsed on a single edge by SPAdes (Fig.
3, top right). The resulting scaffolding
graph contains a single rural postman
route that revealed the correct arrange-
ment of A-domains (Fig. 3, bottom).
The reconstructed pyoverdine NRP BGC
aligns to the Pseudomonas protegens Pf-5
genome with 99.9% identity.

Analyzing the CYANO data set

Kleigrewe et al. (2015) assembled the
CYANO data set using SPAdes.
metaSPAdes assembled the CYANO data
set into the assembly graph with 217,826

vertices and 116,066 edges (8454 of them are longer than 1 kb).
metaSPAdes assembled the jamaicamide BGC with complexity 9
into a single contig but failed to assemble the hectochlorin BGC
with complexity 5 into a single contig.

biosyntheticSPAdes extracted 781 BGC subgraphs, including
12 nontrivial BGC subgraphs with complexities 21, 20, 11, 9, 6, 6,
5, 5, 5, 5, 4, and 4. The hectochlorin BGC contains 22 domains
(four A-domains, one AT-domain, four C-domains, one KS-
domain, three KR domains, and several others; one of them was
also identified by HMMER as an A-domain). biosyntheticSPAdes
assembled the hectochlorin BGCs into a single contig (Fig. 4)
that aligns with the Moorea producens JHB genome with 99.9%
identity. The jamaicamide BGC contains 42 domains (three A-do-
mains, six AT-domains, four KR-domains, seven KS-domains, two
C-domains, one TE-domain, and several others). The jamaicamide
scaffolding graph contains a single solid edge (usually, this means
that the entire BGC was recovered after the repeat resolution step
with exSPAnder).

Besides reconstructing the hectochlorin and the jamaicamide
BGCs, biosyntheticSPAdes recovered sequences for five more

Figure 2. The biosyntheticSPAdes pipeline. Six steps of the biosyntheticSPAdes pipeline: (1) assembl-
ing genomic/metagenomic reads with SPAdes/metaSPAdes; (2) searching for edges harboring biosyn-
thetic domains in the assembly graph; (3) extracting biosynthetic gene cluster subgraphs from the
assembly graph; (4) restoring the collapsed domains in the BGC-subgraphs; (5) constructing the scaf-
folding graph; and (6) generating putative BGC by solving the Rural Postman Problem in the scaffolding
graph.
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putative NRP BGCs that were missed in previous studies (see
Supplemental Information, Appendix: “Putative NRP BGCs in
the CYANO data set”; Supplemental Figs. S3, S4).

Analyzing the MIBiG data sets

For each of 665 MIBiG data sets corresponding to a single known
NRP or PK, we launched biosyntheticSPAdes on the SPAdes assem-
bly graph. We also compared them with the other popular assem-
blers: MEGAHIT v.1.1.3 (Li et al. 2015) and ABySS assembler
v.2.1.0 (Simpson et al. 2009). For each assembler and each
MIBiG data set, the assembly was classified as successful if it met
the following criteria: (1) One of the contigs in the assembly covers

more than 95% of the BGC and has at least 95% identity with the
BGC being assembled; and (2) this contig has no misassemblies as
identified by QUAST (Gurevich et al. 2013). biosyntheticSPAdes
failed to successfully assemble only 11% of BGCs versus 22% for
SPAdes, 35% for MEGAHIT, and 34% for ABySS (Table 1). For
139 out of 665 BGCs with complexity >10, biosyntheticSPAdes
failed to successfully assemble 22% of BGCs versus 58% for
SPAdes, 79% for MEGAHIT, and 83% for ABySS.

Analyzing the HMP data sets

To reconstruct BGCs in the human microbiome, we assembled
each HMP data set with biosyntheticSPAdes. We define the bio-

synthetic capacity of an assembly as the
number of A and AT domains identified
in this corresponding assembly. The bio-
synthetic capacity of the HMP data sets
varies from 60 to over 400 across various
human body sites (see Supplemental
Information, Appendix: “Biosynthetic
capacity of the HMP data sets”;
Supplemental Table S4), suggesting that
many HMP samples may encode over a
dozen of NRP and PK BGCs. However,
the amount of high-complexity BGC sub-
graphs suggests that sequencing depth in
some data sets from the HMP project
may be insufficient to capture the diver-
sity of BGCs.

Below, we focus on analyzing
the supragingival plaque metagenome
(data set SRS013723) with large biosyn-
thetic capacity. The assembly graph of

Figure 3. Subgraph of the assembly graph of Pseudomonas protegens Pf-5 corresponding to the pyoverdine NRP BGC. (Top left) The pyoverdine BGC is
scattered over four scaffolds in the SPAdes assembly. Two scaffolds traversing single edges are shown by black color, and two scaffolds traversing multiple
edges are shown by red and green colors. The repeat edges traversed by both red and green scaffolds are shown by brown color. Edges with low and high
depth of coverage by reads are shown as thin and thick edges, respectively. Some A-domains span multiple edges (starting and ending positions of such
domains are shown with dashed lines). (Top right) The domain restoration procedure restored two A-domains (5 and 6) in the assembly (SPAdes collapsed
these domains into a single edge). Four scaffolds in the assembly graph are shown by red, green, blue, and black colors. (Bottom) The scaffolding graph of
the pyoverdine BGC with a single rural postman route (dashed edges in this route are shown in blue).

Figure 4. biosyntheticSPAdes assembly of the hectochlorin BGCs (the CYANOdata set). (Top) The sub-
graph of the assembly graph corresponding to the hectochlorin BGC. metaSPAdes assembly results in
four scaffolds shown by a red path, a green path, and two black edges. The repeat edges traversed by
both red and green scaffolds are shown by the brown color. The domain restoration procedure had
no effect on this graph. (Bottom) The scaffolding graph of the hectochlorin BGC has only one rural post-
man route that revealed the correct domain order.
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this data set contains 1540 BGC subgraphs, including seven non-
trivial BGC subgraphs. We analyzed one of the complex BGC sub-
graphs, with six predicted A-domains, five C-domains, and two
TE-domains, that was assembled into six contigs. Figure 5 shows
the BGC subgraph and two rural postman routes in the scaffolding
graphgeneratedbybiosyntheticSPAdes.AnucleotideBLASTsearch
of two predicted BGCs against the nt/rt database revealed only the
short regions of similarity (<200 bp) with various Pseudomonas
species, suggesting that Figure 5 represents a still unknown
BGC. See Supplemental Information, Appendices: “Biosynthetic
capacity of the HMP data sets,” “Putative NRP BGCs in supragingi-
val plaque data sets,” Supplemental Figure S5, and Supplemental
Table S5 for detailed analysis of the supragingival plaque data sets.

Discussion

While the human microbiome encodes natural products with
great biomedical potential, little is known about these abundant
small molecules, despite the fact that the human host is chronical-
ly exposed to them (Donia et al. 2014). One of the bottlenecks in
discovering natural products from human and other metage-
nomes is deriving full-length BGCs from short metagenomics
reads (Donia and Fischbach 2015). This bottleneck negatively af-
fects various genomemining efforts. Indeed, although the discov-
ery of coelichelin (Challis and Ravel 2000) was one of the first
successes of genomemining that was followed by the characteriza-
tion of many NRPs from sequenced genomes, genome mining in
fragmented assemblies remains challenging.

The discovery of the bioactive peptides teixobactin (Wilson
et al. 2014) and polytheonamides (Freeman et al. 2012) marks a
new era of natural product discovery from uncultivated bacteria.
However, while variousmetagenomes serve as a rich source of nat-
ural products (Cragg and Newman 2013; Katz et al. 2016), recon-
structing complex BGCs from metagenomic assemblies is nearly
impossible with short-read sequencing technologies. Since gene
prediction of BGCs scattered betweenmultiple contigs is challeng-
ing, the full-length BGC reconstruction is usually difficult without
additional biological experiments and extensive manual analysis
(Kleigrewe et al. 2015).

biosyntheticSPAdes is a step toward enabling high-through-
put natural product discovery by coupling metagenomics and
mass spectrometry projects using tools such as NRPquest
(Mohimani et al. 2014a). It represents the first automated pipeline
for BGC reconstruction from genomic and metagenomic se-
quencing data sets that takes advantage of the assembly graph
rather than individual contigs. While we demonstrated that
biosyntheticSPAdes is able to recover long BGCs, it can also be ex-

tended to other types of long and highly repetitive genes, such as
16S rRNA genes or insecticide toxins (Palma et al. 2014). Although
biosyntheticSPAdes currently has the predefined options only for
the most important classes of BGCs (NRPS, PKSs, and their fu-
sions), we plan to create presets for other BGCs so that it can be ex-
tended for other BGCswith different domain compositions. A user
can replace the default HMM-profiles with any profiles of interest,
such as TPR-proteins, mucus-binding proteins, etc. However, we
currently do not have plans to develop a version of SPAdes for ge-
neric operon prediction since it is not clear how to account for a
wide diversity of genes within operons in general.

We emphasize that, similarly to all gene prediction tools, a
putative BGC predicted by biosyntheticSPAdes may be incorrect
and should be used with caution. In particular, the homology-
based mode of biosyntheticSPAdes is most useful when one or
more closely related reference genomes are available that have
well-annotated BGCs. In the case whenmultiple feasible paths ex-
ist in the assembly graph, we recommend to experimentally verify
biosyntheticSPAdes predictions, e.g., using targeted PCR amplifi-
cation or matching against mass spectrometry data. Also, peptido-
genomics tools (Mohimani et al. 2014a) can be applied to all
feasible paths in the assembly graph rather than to a single high-
est-scoring path.

Third generation sequencing technologies have greatly im-
proved isolate bacterial sequencing, thus turning BGC assembly
into a relatively simple task. However, they have not yet had a large
impact onmetagenomic sequencing due to the relatively high cost
of long-read technologies and difficulties in assembly (no special-
ized long-read metagenomic assembler has been released yet).
Since most new natural products are analyzed through metage-
nomics (ormini-metagenomics) rather than isolate data sets, short
reads remain the workhorse of genome mining for natural
products.

Some researchers use hybrid approaches for metagenomics
assemblies by combining short and long reads (Frank et al. 2016;
Tsai et al. 2016). biosyntheticSPAdes is implemented in a manner
that allows one to use new sequencing technologies as long as
they are supported by the SPAdes pipeline. Since both SPAdes
and metaSPAdes support hybrid data sets (Illumina+Pacific
Bioscience/Oxford Nanopores), biosyntheticSPAdes can also
assemble BGCs in hybrid data sets.

Methods

Below,we describe the six steps of the biosyntheticSPAdes pipeline
(Fig. 2) and illustrate them using reconstruction of the CALC BGC
(Fig. 1).

Table 1. Results of SPAdes, biosyntheticSPAdes, MEGAHIT, and ABySS assemblies on 665 MIBiG data sets

Assembler
Failed to assemble

All BGCs
BGCs with complexity

1–3
BGCs with complexity

4–6
BGCs with complexity

7–9
BGCs with complexity

≥10

SPAdes 149 (22%) 6 (2%) 23 (18%) 39 (37%) 81 (58%)
SPAdes + domain

restoration
121 (18%) 9 (3%) 24 (19%) 30 (28%) 58 (41%)

biosyntheticSPAdes 69 (11%) 7 (2%) 16 (13%) 16 (16%) 30 (22%)
MEGAHIT 235 (35%) 28 (10%) 34 (27%) 60 (58%) 111 (79%)
ABySS 227 (34%) 15 (5%) 35 (27%) 58 (56%) 117 (83%)
Total 665 293 128 104 140
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Step 1: assembling genomic/metagenomic reads with

SPAdes/metaSPAdes

BiosyntheticSPAdes starts with launching SPAdes (Bankevich et al.
2012) or metaSPAdes (Nurk et al. 2017) assemblers. SPAdes and
metaSPAdes first construct a de Bruijn graph (Compeau et al.
2011) of all reads and subsequently perform various graph simpli-
fication procedures (e.g., bubble collapsing and tip removal) to trans-
form it into an assembly graph. Both SPAdes and metaSPAdes use
exSPAnder (Prjibelski et al. 2014) to utilize the read-pair informa-
tion for repeat resolution and scaffolding in the assembly graph.

Step 2: identifying domain-edges in the assembly graph

The first step toward reconstructing the nucleotide sequence of a
BGC is reconstruction of the arrangement of its biosynthetic do-

mains. In many cases, this arrangement alone provides sufficient
information for predicting the structure of the core scaffold of a
natural product encoded by the BGC.

To identify edges harboring biosynthetic domains in the as-
sembly graph, contigs generated by SPAdes/metaSPAdes are
searched for the domain motifs using HMMER (Zhang and
Wood 2003; Eddy 2011). For illustration purposes, here, we ana-
lyze only A-domains. After mapping contigs back to the assembly
graph, biosyntheticSPAdes identifies the positions of all detected
domains in the assembly graph (Fig. 1, top). Mapping the A-do-
mains from the CALC BGC back to the assembly graph reveals
that three A-domains (4, 5, and 7) map to the same positions on
a single edge of the assembly graph. The edge harboring these
positions has approximately three times higher coverage than
the average coverage of edges that contain only a single copy of
an A-domain. Supplemental Figure S1 illustrates that these three

Figure 5. The BGC subgraph and the scaffolding graph for the supragingival plaque metagenome (SRS013723) in the HMP data set. (1,2) The BGC
subgraph and the scaffolding graph. (3,4) Two rural postman routes in the scaffolding graph. The duplicated C-domain is highlighted with red border
and is traversed twice in the rural postman routes. The numbers labeling the dashed edges indicate their order in the resulting tour. (5) Since
biosyntheticSPAdes and antiSMASH use different thresholds and filtering options, antiSMASH identified only five (rather than six) A-domains in the
NRP BGC predicted by biosyntheticSPAdes. The three most likely amino acids for each A-domain are shown along with their NRPSpredictor2 (Röttig
et al. 2011) scores for the first of two rural postman routes.
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domains are similar to each other and share identical repeats of
length ≈100 bp and longer. Sequences of these domains are
collapsed during assembly, because the assembly graph was con-
structed from k-mers that are shorter than 100 nucleotides.

Step 3: extracting BGC subgraphs from the assembly graph

BGCs contain various domains andmultiple biosynthetic genes in
close proximity to each other. Analysis of all complete NRP BGCs
from the MIBiG repository of BGCs (Medema et al. 2015) revealed
that the distances between consecutive NRPS- or PKS-related do-
mains do not exceed 20 kb in 95% of the cases (Supplemental
Fig. S2).

Hence, we consider all edges in the assembly graph within
10 kb from the positions of domains on the domain edges identi-
fied in theprevious step to capture all consecutive domains separat-
ed by, at most, 20 kb. The subgraph of the assembly graph formed
by these edges, referred to as the BGC assembly graph, usually con-
sists of multiple connected components, where each component,
referred to as a BGC subgraph, usually corresponds to a single
BGC. For example, four NRP BGCs in the S. coelicolor genome are
represented by four different connected components of the BGC
assembly graph. However, in some cases a single component of
the BGCassembly graphmay combinemultiple BGCs, particularly
when these BGCs share very similar domains with identical se-
quences exceeding the maximum default k-mers size in SPAdes.
The complexity of the BGC subgraph is defined as the total number
of A-domains andAT-domains in this subgraph.We define nontriv-
ial BGC subgraphs as BGC subgraphs of complexity at least 3.

The BGC assembly graph for S.coelicolor consists of 24 BGC
subgraphs. Three of them are nontrivial BGC subgraphs with com-
plexities 9 (for the CALC BGC), 4, and 3. The BGC subgraph corre-
sponding to the CALC BGCwith 11 A-domains revealed only nine
A-domains, since three A-domains were collapsed into a single
edge.

Step 4: restoring collapsed domains in the assembly graph

Figure 1 reveals a limitation of existing assemblers (repeat collaps-
ing) that negatively affects gene prediction tools: Three A-domains
sharing long identical segments are collapsed into a single edge in
the assembly graph. As a result, valuable information about the dif-
ferences between these A-domains is lost (Supplemental Fig. S1).
This effect is amplified in metagenomics assemblies since they ag-
gressively collapse bubbles to improve contiguity of the assembly
(Nurk et al. 2017), particularly in the case of metagenomes
containing similar strains. A side effect of the bubble collapsing
procedure is collapsing similar domains,
which leads to a high number of mis-
matches and indels in reconstructed
BGC sequences (referred to as an “assem-
bly deterioration”).

This limitation of the existing as-
semblers can be remedied by restoring
subtle variations in the collapsed repeats
to enable better repeat resolution. Since
SPAdes and metaSPAdes map each read
to the assembly graph, we consider all
reads mapped to edges of all BGC sub-
graphs and compute the median depth
of coverage of each edge. Given an edge
with coverage cov in a BGC subgraph,
we extract all k-mers from the reads
mapped to this edge. A k-mer is defined
as solid if it does not belong to the edge

but appears in at least α∗cov reads mapped to this edge (the default
value α=0.2). Solid k-mers reveal variations in repeats (rather than
sequencing errors), as the expected frequency of erroneous k-mers
is typically below α∗cov. We define a path formed by solid k-mers as
a solid bubble if it forms an alternative path in a BGC subgraph.We
restore all such solid bubbles in a BGC subgraph and rerun the
exSPAnder repeat resolution on the modified BGC subgraphs
with restored solid bubbles. We emphasize that we applied the
domain restoration step to the domain edges in the BGC sub-
graphs only, since applying it to the entire assembly graph leads
to deterioration of the assembly and reduced N50 statistics.

Note that the consensus sequence of the edge harboring three
similar but not identical A-domains in the CALC assembly (Fig. 6)
differs from the sequences of each of these A-domains. Therefore,
it provides slightly inaccurate sequences for each of these three do-
mains. However, after the domain restoration procedure, these
three A-domains correspond to three different and 100% accurate
consensus sequences. In some cases, the domain restoration proce-
dure even enables exSPAnder to utilize the restored variations be-
tween domains for further repeat resolution by utilizing
variations between long imperfect repeats.

We note that, although the described bubble restoration pro-
cedure has a potential to resolve close strains in metagenomics as-
semblies, it has not been implemented in metaSPAdes yet.

Running exSPAnder on the modified BGC subgraph with re-
stored bubbles often results in amore accurate estimate of the total
number of domains (Fig. 6). In contrast to the initial BGC sub-
graph with only nine identified A-domains for the CALC BGC,
all 11 A-domains are now captured in five resulting contigs in
the modified BGC subgraph.

Step 5: constructing the scaffolding graph

We represent each domain-containing contig as an isolated solid
edge in the scaffolding graph (Fig. 7). Given solid edges e and e′,
we connect the ending vertex of e with the starting vertex of
e′ by a dashed edge if the last domain on e and the first domain
of e′ are close in the BGCassembly graph, i.e., the distance between
them is <10 kb. Given a directed graph with solid and dashed edg-
es, the Rural Postman Problem is to find a rural postman route, i.e., a
path visiting all solid edges of the graph (Orloff 1974).

Step 6: constructing putative BGCs by solving the Rural

Postman Problem

Inferring the arrangement of domains in an NRP BGC is crucial for
identifying the NRP encoded by this NRPS. Since each NRP

Figure 6. Effect of bubble restoration on the reconstruction of the CALC BGC. Schematic representa-
tion of repeat collapsing and consensus deterioration in the case of the CALC BGC assembly. While
SPAdes outputs a single (and incorrect) consensus sequence of all three collapsed A-domains, these three
sequences are not identical. In contrast, biosyntheticSPAdes utilized restored domains and reconstructed
their distinct sequences with 100% accuracy (as compared to 99.6% accuracy for SPAdes). Numbers
near dashed vertical lines represent the column numbers in the multiple alignment of three A-domain.
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synthetase corresponds to a rural postman route in the scaffolding
graph, biosyntheticSPAdes searches for all rural postman routes in
the scaffolding graph using a brute force algorithm (most scaffold-
ing subgraphs have less than 20 vertices). Figure 7 shows two rural
postman routes in the CALC scaffolding graph.

Some bacterial genomes contain 100% identical domains
that are collapsed into a single edge even after domain restoration.
As the result, a rural postman route may visit the collapsed solid
edges in some scaffolding graphs multiple times. For each solid
edge in the scaffolding graph, the approximate number of times
it should be traversed is defined by the ratio of the coverage of
the corresponding domain-edge in the BGC subgraph to themedi-
an coverage across all edges of the BGC subgraph.

As Figure 7 illustrates, biosyntheticSPAdes may output
multiple arrangements of A-domains, each arrangement corre-
sponding to a rural postman route. For each rural postman route,
biosyntheticSPAdes reconstructs a path in the BGC assembly
graph corresponding to this route and its nucleotide sequence.
Dashed edges in a rural postman routemay correspond tomultiple
paths in the BGC assembly graph, and we report the path with the
length closest to any of distances from the set of 550, 1500, and
2400 bp, the values of the three pronounced peaks in the distribu-
tion of the distances between consecutive domains in known
NRPSs (Supplemental Fig. S2).

biosyntheticSPAdes and NRPquest for PNP reconstruction

Even when biosyntheticSPAdes fails to assemble a BGC into
a single contig, it typically reduces the number of contigs as com-
pared to SPAdes, e.g., outputs two contigs A and B without provid-
ing one of two possible orders to concatenate these contigs (B after
A or A after B). This feature is important for natural product
researchers since they often perform additional experiments to re-
construct the correct order of contigs (Kleigreve 2015). For exam-
ple, in the case of NRP BGC, one can generate all possible
concatenates, predict putative NRPs for each concatenate, and
match a spectral data set against all putative NRPs to find a concat-
enate with the best match. Supplemental Information, Appendix:
“Output format of biosyntheticSPAdes” specifies the details of
the biosyntheticSPAdes output. Supplemental Information,
Appendix: “Coupling biosyntheticSPAdes and NRPquest for PNP
reconstruction” presents an example of combining genomic and
mass spectrometry data to infer the correct arrangement of
A-domains.

Extending biosyntheticSPAdes from NRP BGCs to other BGCs

In addition to the A-domains, biosyntheticSPAdes analyzes
other domains in NRP BGCs such as C–condensation domains

(C-domains) and thioesterase domains (TE-domains), among others.
Moreover, biosyntheticSPAdes is not limited to NRP BGCs and
also works with BGCs encoding PKS BGCs (Robinson 1991).
PKSs are built from various domains including acyltransferase
domains (AT-domains), keto-synthase domains (KS-domains),
keto-reductase domains (KR-domains), and acyl carrier protein do-
mains (ACP-domains).

Reference-based BGC ranking algorithm

When a database of reference genomes is available, it can help to
predict the correct order of contigs by identifying a genome with
a similar BGC. This is especially relevant when assembling ge-
nomes that are related to an already sequenced species or during
studies of microbial communities from which individual strains
have been isolated and sequenced. biosyntheticSPAdes includes
a pipeline that matches all possible orders of multiple putative
BGC sequences to gene clusters in antiSMASH-DB (Blin et al.
2017) and ranks thembased onhowwell the order of thematching
domains corresponds to the domain order in the most similar
BGC.

Note that the reference-based BGC ranking algorithm is an
optional module in biosyntheticSPAdes that should be called
only in cases when there is more than one plausible path in the as-
sembly graph. In most of our test cases, biosyntheticSPAdes leads
to a single plausible path through the assembly graph and thus a
single BGC architecture. In all such cases, reference genomes are
not required to infer the correct assembly.

In the case when a BGC-subgraph is not resolved into a sin-
gle BGC, biosyntheticSPAdes generates multiple putative BGCs
(pBGCs) and ranks them based on their similarity to BGCs from
reference genomes from antiSMASH-DB (Blin et al. 2017). Each
pBGC is compared to each reference BGCs (rBGCs) and scored ac-
cording to the similarity between the pBGC and the rBGCs with
respect to sequence similarity, domain composition, and domain
order. See Supplemental Information, Appendices: “Reference-
based putative BGC ranking algorithm,” “Ranking putative BGCs
from Streptomyces coelicolor A3(2) and Streptomyces avermitilis MA-
4680,” Supplemental Figures S6, S7, and S8, and Supplemental
Tables S6 and S7 for details.

Software availability

biosyntheticSPAdes will be included in the next version of the
SPAdes toolkit available from http://cab.spbu.ru/software/spades
starting from version 3.14. The prerelease version, that was
used for benchmarking in this paper and the biosyntheticSPAdes
ranking pipeline, is available in Supplemental Material.
BiosyntheticSPAdes source code is alternatively available from

Figure 7. The scaffolding graph of the CALC BGC. (Left) Five solid edges in the scaffolding graph correspond to five contigs shown in Figure 4 (bottom)
that contain A-domains. These contigs are shown as a red edge (A-domains 1, 2, 3, 4, and 5), a green edge (A-domain 6), a pink edge (A-domain 7), a blue
edge (A-domains 8, 9, and 10), and a black edge (A-domain 11). Eight dashed edges in the scaffolding graph connect solid edges that contain closely
located domains in the BGC subgraph. (Right) Two rural postman routes in the CALC scaffolding graph. The first tour contains all violet dashed edges
and results in the (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) arrangement of A-domains, while the second tour contains all brown dashed edges and results in
the (1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 11) arrangement of A-domains.
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http://dx.doi.org/10.6084/m9.figshare.6948260.v2, and the
biosyntheticSPAdes ranking pipeline is alternatively available
from https://git.wur.nl/medema-group/biosyntheticSpadesRank
ingPipeline.
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