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Abstract

Measles is one the best-documented and most-mechanistically-studied non-linear infec-

tious disease dynamical systems. However, systematic investigation into the comparative

performance of traditional mechanistic models and machine learning approaches in fore-

casting the transmission dynamics of this pathogen are still rare. Here, we compare one of

the most widely used semi-mechanistic models for measles (TSIR) with a commonly used

machine learning approach (LASSO), comparing performance and limits in predicting short

to long term outbreak trajectories and seasonality for both regular and less regular measles

outbreaks in England and Wales (E&W) and the United States. First, our results indicate

that the proposed LASSO model can efficiently use data from multiple major cities and

achieve similar short-to-medium term forecasting performance to semi-mechanistic models

for E&W epidemics. Second, interestingly, the LASSO model also captures annual to bien-

nial bifurcation of measles epidemics in E&W caused by susceptible response to the late

1940s baby boom. LASSO may also outperform TSIR for predicting less-regular dynamics

such as those observed in major cities in US between 1932–45. Although both approaches

capture short-term forecasts, accuracy suffers for both methods as we attempt longer-term

predictions in highly irregular, post-vaccination outbreaks in E&W. Finally, we illustrate that

the LASSO model can both qualitatively and quantitatively reconstruct mechanistic assump-

tions, notably susceptible dynamics, in the TSIR model. Our results characterize the limits

of predictability of infectious disease dynamics for strongly immunizing pathogens with both

mechanistic and machine learning models, and identify connections between these two

approaches.

Author summary

Machine learning techniques in infectious disease modeling have grown in popularity in

recent years. However, systematic investigation into the comparative performance of

these approaches with traditional mechanistic models are still rare. In this paper, we
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compare one of the most widely used semi-mechanistic models for measles (TSIR) with a

commonly used machine learning approach (LASSO), comparing performance and limits

in predicting short to long term outbreaks of measles, one of the best-documented and

most-mechanistically-studied non-linear infectious disease dynamical systems. Our

results show that in general the LASSO outperform TSIR for predicting less-regular

dynamics, and it can achieve similar performance in other scenarios when compared to

the TSIR. The LASSO also has the advantages of not requiring explicit demographic data

in model training. Finally, we identify connections between these two approaches and

show that the LASSO model can both qualitatively and quantitatively reconstruct mecha-

nistic assumptions, notably susceptible dynamics, in the TSIR model.

Introduction

Mechanistic and semi-mechanistic models have been foundational in developing an under-

standing of the spread of infectious diseases in human and wildlife populations. These models

approximately depict how pathogen transmission is shaped by population dynamics (e.g., how

transmission is reduced by herd immunity). Such modeling approaches are essential for

understanding the natural history of pathogens transmission and providing insights into

designing effective control strategies. While models such as the Susceptible-Infected-Recov-

ered framework are mechanistically well-understood, calibrating them against stochastic, and

often partially unobserved, incidence or mortality data is a steep statistical challenge. The pri-

mary focus of mechanistic models has been understanding and characterizing the natural his-

tory of transmission. In contrast to their mechanistic counterparts, implementations of

statistical and machine learning techniques in infectious disease modeling have primarily

focused on improving forecasting accuracy without the explicit aim of inferring transmission

dynamics. Such approaches have grown in popularity in recent years [1–5], and they also have

a long pedigree in terms of using statistical approaches to study measles dynamics [6,7].

Patterns of pre- and post-vaccination measles incidence are among the most well-docu-

mented, and well-studied, non-linear systems in ecology. A suite of analyses using determin-

istic and stochastic (semi-) mechanistic models have illuminated how the interplay between

seasonal forcing and susceptible recruitment shape dynamics in large urban populations [8],

ranging from simple limit cycles to coexisting attractors [8,9], and even chaos with the domi-

nation of stochastic extinction in small highly vaccinated populations [10,11]. A focus of previ-

ous analysis has been detailed weekly spatio-temporal notifications of measles from England

and Wales (E&W), interpreted with the TSIR model and other inferential approaches, notably

particle filtering [12,13]. While partially mechanistic approaches for measles dynamics are

being explored [14–16], a more comprehensive comparison between mechanistic and fully sta-

tistical approaches is still lacking. Such comparisons would yield insight into the choice of

most appropriate modeling techniques given different patterns of data. Measles is an excellent

test bed for these questions, given that we have both rich historical notification time series and

successful applications of mechanistic and semi-mechanistic models.

In this paper, we explore and compare forecasting capability of these two contrasting

approaches for both regularly periodic and relatively irregular recurrent measles epidemics in

England and Wales between 1944–1994 and in the US between 1932–45. We consider both a

semi-mechanistic TSIR model and a fully-statistical model using a popular machine learning

(ML) approach (Least Absolute Shrinkage and Selection Operator, the LASSO) which has

been applied to other diseases such as Dengue and tuberculosis [17,18].
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Our results suggest that the proposed LASSO model, compared to the TSIR model, can effi-

ciently use data from multiple major cities and achieve similar short-to-medium term forecast-

ing performance for more regular measles outbreaks in E&W during the pre-vaccination era

(1944–1964). Strikingly, even when trained solely on data with an annual cycle, forecasts in

our LASSO framework capture the characteristic annual to biennial bifurcation 1950 driven

by a decline in birth rates. When important demographic information (such as the birth rate

data) is not included, the LASSO model still performs reasonably well, likely due to the fact

these dynamics may have been implicitly incorporated within the approach (see Models and
Methods). LASSO may also outperform the TSIR for predicting less-regular dynamics such as

those observed in major cities in the US between 1932–45. Although both approaches capture

short-term forecasts, accuracy suffers for both methods as we attempt longer-term predictions

in highly irregular, post-vaccination epidemics in E&W. Overall, our results show that fitting a

LASSO model may both qualitatively and quantitatively rediscover major mechanistic

assumptions in the TSIR model. These insights inform the limits of predictability, and the con-

nections of both approaches in infectious disease dynamics for fully-immunizing pathogens.

Results

Forecasting measles outbreaks in England and Wales

Measles dynamics pre- and post- the introduction of mass-vaccination program are particu-

larly well-documented from historical notifications in England and Wales [19]. Before wide-

spread vaccination in the late 60s, measles epidemics in E&W were characterized by highly

regular periodic (often biennial) cycles in large cities (see Fig 1 showing outbreaks in London).

Analyses often focus on populations at, or above, the Critical Community Size (i.e., the

endemic threshold, CCS) of approximately 300,000 individuals [20]. We follow this precedent

here and focus on modeling eight major cities, each with a population above the CCS: namely,

London, Liverpool, Birmingham, Manchester, Nottingham, Bristol, Leeds and Sheffield.

Although dynamics were highly-consistent in the pre-vaccine era, the introduction of measles

vaccination in 1968 led to reduction in both epidemic size and regularity.

We fit both the LASSO model and the TSIR model (see Models and Methods) to the measles

epidemics in those major cities in the pre-vaccination era, using the data from 1944–51 for

model training. We illustrate our findings by comparing two approaches in predicting epidem-

ics in London. Fig 2 and S1 Fig shows that the TSIR model can predict the epidemic reasonably

accurately in short to medium-term. In particular, while both approaches are able to capture

the trends of the epidemic trajectories, their accuracy generally decline from 8-biweeks in the

future. Although direct inference of a single location (e.g., London) is relatively straightfor-

ward in the TSIR framework, incorporating incidence from multiple locations is challenging

Fig 1. Long-term dynamics of measles in London. Bi-week incidence of measles cases in London (1944–94) and time

series of vaccination. Following the widespread vaccination in the late 60s, the epidemics shifted from highly regular

cycles to largely irregular dynamics.

https://doi.org/10.1371/journal.pcbi.1010251.g001
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[9,19]. The LASSO model, which is able to simultaneously incorporate incidence data from

multiple sites [5], can achieve similar performance (S3 Fig also shows that TSIR clearly outper-

forms LASSO when only London data is used for model training).

Fig 2. Out of sample predictions for measles in London. A subset of 1 to 52th-biweek ahead out-of-sample (i.e.,

period excluding data in the training set) predictions from our LASSO model and the TSIR model, for pre-vaccination

measles epidemics in London from 1944–64. For kth-step ahead predictions, the incidence at a particular time point t

was predicted using the LASSO model or TSIR model conditional on observations up between time t−k−tlag and t−k

where we use tlag = 130 (see Models and Methods). Data between 1944–51 (from 8 places whose average population

sizes are greater than the critical community size 300,000) are used to train a model. Dots indicate the observed

incidences. (a) Comparisons of predicted epidemic trajectories; (b) Comparisons of the mean absolute prediction error

[21] in ratio (i.e., the absolute difference between the predicted and observed value divided by the observed value); (c)

Comparisons of the trends (summarized by the correlation) between the predicted and observed trajectories. Although

predictions made by the TSIR appear to be more volatile, performance of the two approaches are comparable and they

both show the general trend of decreasing performance as steps increases.

https://doi.org/10.1371/journal.pcbi.1010251.g002
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Birth rate is an important variable for mechanistic models including the TSIR model as it

governs the rate of the replenishment of susceptible population (see also Models and Methods).
One common feature of the E&W dataset is an observed bifurcation from annual to predomi-

nantly biennial dynamics due to the "Baby Boom" in the late 40s. The impact of this demo-

graphic shift was particularly strong; dynamics remained biennial until the transient post-

vaccination era starting in the late 60s. We found that the LASSO model forecasts identified

and captured the bifurcation reasonably well (Fig 3). Interestingly, we find that the ability of

LASSO in predicting the bifurcation remains very similar even without the knowledge of

births, the primary causal driver of this dynamic perturbation (S2 Fig). By heuristically deriv-

ing the connections between TSIR and LASSO (see Models and Methods), we show that the

impacts of births and susceptibles may have been implicitly incorporated by the LASSO.

Turning to the post-1968 vaccine era, both approaches appear to be able to predict highly

irregular epidemic trajectories in the short-term among the highly vaccinated populations, but

struggle beyond 4-biweek ahead predictions (Fig 4).

Forecasting pre-vaccination measles outbreaks in the US

In the previous section we illustrated how both the TSIR and the LASSO model can success-

fully capture key traits (e.g., epidemic size and periodicity) of the observed E&W time series

data. However, a rich analytical literature has illustrated the relative dynamic stability of the

E&W data (i.e., Lyapunov Exponent < 0) [8,9]. We now turn our attention to a set of

Fig 3. Power spectra of the out of sample predictions for measles in London using the LASSO model. Here we use

data between 1944–46 data to train the LASSO models. LASSO successfully captures both measles periodicity and

bifurcation timing (1950). For each figure, red indicates regions of identified periodicity. Black contours indicate 95%

confidence intervals. Notably, the LASSO model captures the 1950 bifurcation from annual to biennial dynamics starting

in 1950.

https://doi.org/10.1371/journal.pcbi.1010251.g003
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incidence data corresponding to more challenging chaotic dynamics (i.e., Lyapunov

Exponent > 0). One such source of data comes from the United States. In contrast to E&W,

the US city pre-vaccination measles data exhibit signatures of deterministic chaos [11]. Here,

we examine the comparative ability for our LASSO model to predict chaotic dynamics. Fitting

both models to the US data, we found the LASSO model may outperform the TSIR model’s

ability to capture both the amplitude and trend for the outbreak in New York (Fig 5). Similar

results can be found for other US major cities (S4 Fig).

Fig 4. 1 to 8th-biweek ahead out-of-sample predictions from our LASSO model and the TSIR model, for measles

epidemics in London during the vaccination era from 1985–94. Data between 1970–80 (from 8 places whose average

population sizes are greater than the critical community size 300,000) are used to train a LASSO model. Note that here

we do not compare the prediction error via a ratio (see Fig 2) because observed incidences (the denominator) are often

zero in the time period.

https://doi.org/10.1371/journal.pcbi.1010251.g004
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Reconstructing the TSIR mechanism via the LASSO model

Our E&W results show that our LASSO model may reconstruct/rediscover some of the under-

lying assumptions in the TSIR model. The TSIR model (see also Models and Methods) assumes

that the mean incidence at time t is governed by the product of incidence and St−1 the number

of susceptibles at the previous time step, i.e.,

EðItÞ ¼ btI
a

t� 1
St� 1;

Fig 5. Short-to-medium term predictability for irregular dynamics. 1 to 8th-biweek ahead out-of-sample predictions

from our LASSO model and the TSIR model, for measles epidemics in New York from 1932–45. Data between 1932–

40 (from 7 major cities which also have non-missing incidence data during this period) are used to train the LASSO.

For kth-step ahead predictions, the incidence at a particular time point t was predicted using the LASSO model or TSIR

model conditional on observations up between time t−k−tlag and t−k where we use tlag = 130.

https://doi.org/10.1371/journal.pcbi.1010251.g005
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where βt is a seasonally repeating contact rate with 26 biweekly points per year. The exponent

α of the TSIR model captures heterogeneities in mixing, which is typically slightly less than 1

(e.g., 0.98). This formulation implies that It is expected to be largely positively associated with

It−1, and less so with It−k for k>1 (as larger It−k in general lead to larger degree of susceptible

depletion and hence smaller St−1). Secondly, It and It−n×26 is also expected to have a positive

association due the seasonality assumption embedded in βt. Our LASSO model estimates

appear to be able to largely capture these trends (i.e., susceptible depletion and seasonality)

implied by the TSIR model (Fig 6). In particular, and our associated LASSO coefficient (of

incidence at the 1-biweek lag) is quantitatively capturing the exponent α in the TSIR model

(Fig 6A). We provide additional insights in the Models and Methods regarding how the LASSO

model and the TSIR model are interconnected.

Discussion

Transmission of infectious diseases at the population-level is characterized by inherent, and

often complex, non-linear dynamics that are driven by intrinsic and extrinsic factors such as

infectivity of pathogens, human behaviors and public health interventions, notably variable

contact patterns and vaccinations among host populations, and even environmental factors.

Mechanistic and semi-mechanistic models provide biologically plausible and directly inter-

pretable frameworks for modeling such complex dynamics. In contrast, machine learning

approaches primarily focus on identifying patterns within the data to improve prediction and

forecasting; they include no specific mechanistic framing, and often lack biological interpret-

ability. While machine learning approaches have shown success in forecasting complex epide-

miological systems (e.g., dengue [5]), comprehensive and long-term data for these pathogen-

human interactions are often lacking, making detailed methodological comparisons

Fig 6. Coefficients associated with lagged incidences in the LASSO model (Eq 3 in Models and Methods), from

fitting the one-step ahead model to the pre-vaccination E&W data. Only non-zero LASSO coefficients are shown for

clarity. The estimated LASSO model resembles and discovers the TSIR model. (a) Coefficient for the most recent

lagged incidence is significantly larger (and positive) and most of the coefficients within one year (26 biweeks) are

negative, which is consistent with the TSIR assumptions; moreover, the coefficient of the most recent lag is also

quantitatively consistent with the value of the exponent parameter (slightly less than 1) in the TSIR model. (b)

Coefficients at 2 and 3-year lags are significantly larger (and positive) compared to coefficients at other lags, consistent

with the seasonality assumption of the TSIR model. Coefficient at 1-year does not appear to have a positive association,

possibly because it is counterbalanced by the effect of susceptible depletion. Lagged incidences beyond 3 years do not

appear to have systematic positive associations.

https://doi.org/10.1371/journal.pcbi.1010251.g006
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challenging. Here, we leverage unique time-series data and a large body of work on semi-

mechanistic modeling to develop a full comparison between these approaches using measles as

a test case.

Our results indicate that a LASSO-based machine learning model can efficiently leverage

the detailed historical measles incidence data from multiple locations in E&W to achieve short

to medium-term forecasting accuracy that is comparable to one of the mostly commonly used

mechanistic model for measles (the TSIR model). Interestingly, our results show that the

LASSO model performs similarly even without the knowledge of births that are required by

the TSIR model. This suggests that the correlation/dependence structure between birth and

incidence can be “absorbed” by a parsimonious LASSO model that only considers historical

incidence to infer changes in temporal patterns without explicit knowledge of the cause of

these changes (e.g., here, the impact of births on the underlying susceptible population size).

As a result, the LASSO model appears to be able to capture the bifurcation in dynamics in

1950, one of the key properties of the measles outbreaks in E&W, without requiring the data

driving the change in pattern. We do, however, find that the LASSO forecasts are comparable to

those from TSIR only when all data from the major cities are used for model training (S3 Fig).

Moreover, while both the LASSO model and the TSIR model do not work well for the highly

chaotic dynamics beyond short-term prediction, the LASSO approach may outperform TSIR in

the scenarios with a mixture of seasonal and mildly chaotic dynamics (as observed in historical

outbreaks in the major cities of US [11]). Finally, our results also show that the LASSO model

can reconstruct/discover the mechanistic assumptions of the TSIR model (Fig 6).

Our results are consistent with recent work which shows that the TSIR model may be dis-

covered by some partially-mechanistic machine learning approaches that consider higher

orders of polynomial terms for transmission dynamics [14]. Compared to their work, our

work focuses on out-of-sample prediction (as opposed to focusing on “discovery”). Also, while

these approaches require the knowledge of susceptible population (via some pre-processing

procedures leveraging TSIR), we do not require reconstructed susceptible population, creating

a more explicit test of fully statistical approaches. The effect of susceptible depletion seems to

be implicitly captured by the non-positive LASSO coefficient values associated with the more

recent lags within the previous year (see Fig 6A and Models and Methods). This feature is likely

to explain why the LASSO model may perform reasonably well despite lacking explicit knowl-

edge of births/susceptibles.

This analysis represents an initial step and there are several clear directions for future work:

while we compared one of the most successful mechanistic models for measles (the TSIR) with

a commonly used machine learning approach (the LASSO), other machine learning

approaches (e.g., neural-network based models) may yield different results. In particular,

recent theoretical work [22–24] has demonstrated excellent predictability for simulated deter-

ministic chaotic systems using a network-based machine learning approach (“reservoir com-

puting”). Such variants could also be extended to and tested on the stochastic measles

outbreaks that we consider. Despite this, it is worth noting that the LASSO model is an additive

model and relatively interpretable compared to many other machine learning approaches, and

thus seems a sensible starting point here. In particular, LASSO’s additive nature allows us to

analytically link it to the TSIR model (see Models and Methods). Finally, while our preliminary

simulation studies (S5 Fig) further illustrate the predictive power of the LASSO model for mea-

sles epidemics, more extensive simulation studies including the investigations of explicitly

leveraging spatial information of the epidemics may be considered for future directions. These

investigations may shed light on, for example, how machine learning approaches may best

complement mechanistic models for modelling less populated places whose dynamics are

known to be more stochastically-driven.
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Models and methods

A mechanistic modelling approach: The TSIR model

We model the local measles dynamics using the time-series-Susceptible-Infected-Recovered

(TSIR) framework. Balancing births against disease transmission, the TSIR equations are given

as

EðItþ1Þ ¼ btþ1 � Iat � St ð1Þ

and

Stþ1 ¼ Btþ1 þ St � Itþ1; ð2Þ

where It and St are the number of incident and susceptible individuals in a given biweek t, and

Bt refers to the number of births in a given biweek. βt is a seasonally repeating contact rate

with 26 values per year. The exponent α (typically slightly less than 1) captures heterogeneities

in mixing that were not explicitly modelled by the seasonality and the effects of discretization

of the underlying continuous time process [25,26]. The TSIR estimates obtained in this manu-

script used the recently developed tsiR package [27]. Specifically, in our analysis, α is fixed to

be 0.98 [11] and a Gaussian process regression is performed between cumulative cases and

cumulative births. Parameter estimates were obtained for each location for each time period of

interest. A more extensive description of the TSIR fitting process in terms of theory and imple-

mentation can be found in [25,27].

A machine learning approach: The LASSO model

We consider modelling incidence k-step ahead of time t for place i (i.e., Ii,t+k) as a linear combi-

nation of log-transformed historical local incidence and births. Specifically, we consider

logðEðIi;tþkÞÞ ¼ Zþ
XTlag

J¼1

cJ�logðIi;t� J þ 1Þ þ g� logð�Bi;ðt� Tlag Þ:t
þ 1Þ ð3Þ

where �Bi;t� Tlag :t denotes the average of births of the previous Tlag biweeks. We consider bi-

weekly data and two-year forecasting windows k = 0,1,. . .,52 and Tlag = 130. A separate model

is fitted for each forecast window k, using Least Absolute Shrinkage and Selection Operator

(LASSO) regression [28]. LASSO is a machine learning technique that simultaneously per-

forms estimations of the regression coefficients θ ¼ ðZ;c1; . . . ;cTlag
; gÞ and variable selection

by shrinking some of the smallest estimated coefficients towards zero. LASSO holds the prop-

erty of variable selection as it allows a coefficient to be shrunk to exactly zero (also known as L-

1 regularization). Compared to the traditional regression technique the Least Squares Esti-

mates (LSE), this shrinkage process has the effect of significantly reducing variance of model

prediction and is the key for improving model fit. We also consider a LASSO model without

explicit inclusion of the births (the last term in Eq 3).

In particular, LASSO estimates θ̂ are the values of coefficients that minimize an objective

function

Xn

t¼1

yi;tþk � Z �
Xp

k¼1

yk�xt;k

 !2

þ l�
Xp

k¼1

jykj ð4Þ

where yi,t+k is the response variable, p = 2×Tlag and n is the number of observations. Note that

for clarity we have used θk to denote the kth coefficient in θ (not including the intercept η) and
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xt,k to denote the covariate associated with it. The penalty term l�
Pp

k¼1
jykj serves as the

machinery to allow shrinkage of the coefficient estimates, i.e., the larger the value of λ, the

greater the effect of shrinkage. Shrinkage significantly reduces overfitting and variances of pre-

dictions, but at the cost of slight increase in bias − and tuning of λ is critical for achieving an

‘optimum’ (often measured by the test mean squared error) among this bias-variance trade-

off. We used ten-fold cross-validation to identify the optimal value of λ.

Reconstructing the TSIR mechanism via the LASSO model

In this section, we provide additional insights into how our LASSO model can reconstruct/dis-

cover a TSIR model. Taking the log of both sides of TSIR model (Eq 1), we have

logðItþ1Þ ¼ logðbtþ1Þ þ a� logðItÞ þ logðStÞ

¼ logðbtþ1Þ þ a� logðItÞ þ logf
Xt� 1

k¼1

ðBk � IkÞgðassuming S1 ¼ 0Þ

¼ logðbtþ1Þ þ a� logðItÞ þ logf
Xt� 1

k¼1

Bk �
Xt� 1

k¼1

Ikg

¼ log btþ1

� �
þ a� log Itð Þ þ logf

Xt� 1

k¼1

Bk � ð1 �

Pt� 1

k¼1
Ik

Pt� 1

k¼1
Bk

Þg

¼ log btþ1

� �
þ a� log Itð Þ þ logf

Xt� 1

k¼1

Bkg þ logf1 �

Pt� 1

k¼1
Ik

Pt� 1

k¼1
Bk

g

� log btþ1

� �
þ a� log Itð Þ þ logf

Xt� 1

k¼1

Bkg �

Pt� 1

k¼1
Ik

Pt� 1

k¼1
Bk

(assuming Ik is much smaller than Bk)

¼ logðbtþ1Þ þ a� logðItÞ þ c�
Xt� 1

k¼1

Ik þ logf
Xt� 1

k¼1

Bkg:

Note that, under the TSIR, we have α�0 (and slightly less than 1) and c�0, which respec-

tively indicate positive association and negative association of the corresponding lagged inci-

dence Ik with the current incidence. The negative association indicated by the parameter c may

implicitly capture the impact of susceptible depletion. Should the LASSO model (Eq 3) resem-

ble the TSIR, we would expect to see a tendency towards positive coefficients ψJ associated

with the most recent lagged incidence (corresponding to the positive α value) and non-positive

coefficients at other lagged incidence (corresponding to the non-positive c value). Also note

that historical births may be absorbed in the intercept term of the LASSO model.

We stress that we are not aiming to draw close equivalence between the TSIR and our

LASSO model. Instead, this framing aims to provide some insights into the question that how

these two modeling approaches may be interconnected heuristically.
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