

Organic Chemistry |Hot Paper|

Diastereo- and Enantioselective Cross-Couplings of Secondary Alkylcopper Reagents with 3-Halogeno-Unsaturated Carbonyl Derivatives

Alexander Kremsmair, Juri Skotnitzki, and Paul Knochel*^[a]

Abstract: Chiral secondary alkylcopper reagents were prepared from the corresponding alkyl iodides with retention of configuration by an I/Li-exchange using $tBuLi (-100 \,^\circ\text{C}, 1 \, \text{min})$ followed by a transmetalation with $CuBr \cdot P(OEt)_3 (-100 \,^\circ\text{C}, 20 \, \text{s})$. These stereodefined secondary alkylcoppers underwent stereoretentive cross-couplings with several 3-iodo or 3-bromo unsaturated carbonyl derivatives leading to the corresponding γ -methylated Michael acceptors in good yields and with high diastereoselectivities (dr up to 96:4). The method was extended to enantiomerically enriched alkylcoppers, providing optically enriched advanced natural product intermediates with up to 90% *ee.*

α,β-Unsaturated carbonyl derivatives are valuable synthetic intermediates^[1] and are present in various natural products such as aranorosin (1)^[2] or *ent*-stelletamide A (2)^[3] (see Scheme 1 a). For example, Landis et al.^[4] reported a one-pot protocol involving an iterative asymmetric hydroformylation and subsequent Wittig olefination for the preparation of such γ-chiral α,β-unsaturated carbonyls. Alternatively, chiral molecules of type **3** may be prepared by the retentive cross-coupling of α-chiral organometallic reagents (**4**) with 3-halogeno-unsaturated carbonyl derivatives of type **5**.

Recently, we have reported the preparation of chiral secondary alkyllithium reagents **6**, which were readily prepared from the corresponding alkyl iodides **7** via a stereoretentive l/Li-exchange reaction performed in a mixture of pentane:ether (3:2) at -100 °C using *t*BuLi. (see Scheme 1 b).^[5] Subsequent transmetalation of these secondary alkyllithium intermediates with CuBr-P(OEt)₃ afforded the corresponding secondary alkylcopper

[a]	A. Kremsmair, J. Skotnitzki, Prof. Dr. P. Knochel
	Department Chemie & Biochemie
	Ludwig Maximilians-Universität München
	Butenandtstraße 5–13, Haus F, 81377 München (Germany)
	E-mail: paul.knochel@cup.uni-muenchen.de
	Supporting information and the ORCID identification number(s) for the
D	author(s) of this article can be found under:

https://doi.org/10.1002/chem.202002297.
© 2020 The Authors. Published by Wiley-VCH GmbH. This is an open access article under the terms of Creative Commons Attribution NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Scheme 1. Natural products bearing a chiral center vicinal to an α,β-unsaturated carbonyl derivative (a). Cross-couplings of chiral alkylcopper reagents with 3-halogeno-unsaturated carbonyl derivatives (b). i) tBuLi (inv. add., 2.2 equiv), pentane/ether (3:2), -100 °C, 1 min, ii) CuBr·P(OEt)₃ (in ether, 2.0 equiv) -100 °C, 20 s.

reagents **4**, which were configurationally stable in THF at -50 °C for several hours.^[6] Herein, we wish to report stereoselective cross-couplings of chiral alkylcopper reagents (**4**) with a range of 3-halogeno Michael acceptors of type **5** leading to γ -methylated α , β -unsaturated carbonyl derivatives of type **3**. (see Scheme 1 b).

In preliminary experiments we have treated the diastereomerically pure alkyl iodide *syn-***7** $a^{[5c]}$ with *t*BuLi (2.2 equiv) in a 3:2 mixture of pentane:diethyl ether at -100 °C for 1 min followed by a dropwise addition of CuBr·P(OEt)₃ solution (2.0 equiv, 3 \bowtie in ether) leading to the corresponding alkylcopper reagent *syn-***4**a (see Table 1).

Such chiral secondary alkylcoppers were known to be configurationally stable at -50 °C in THF,^[6] therefore we have removed the solvents by vacuum and have replaced it with THF. Next, we have investigated this cross-coupling with various cyclopentenone derivatives bearing a leaving group at position 3. Therefore, cyclopentane-1,3-dione was converted into the corresponding tosylate (**5** a),^[7a] triflate (**5** b)^[7b] and pentafluorobenzoate (**5** c).^[7c] Thus, we have noticed that the reaction of *syn*-**4** a with the electrophiles **5** a–c did not afford any product of type **3** even after stirring for 12 h at -50 °C. However, the reaction of *syn*-**4** a with 3-iodocyclopent-2-en-1-one (**5** d)^[8] afforded the desired product *syn*-**3** a in 35% yield with dr=93:7.

Better results were obtained with 3-bromocyclopent-2-en-1one $(5 e)^{[9]}$ as substrate and addition thereof to a solution of *syn*-**4** a provided the cyclopentenone *syn*-**3** a in 62% yield with dr = 92:8 (entry 5).

Chem. Eur. J. 2020, 26, 11971 - 11973

Wiley Online Library

Chemistry Europe European Chemical Societies Publishing

Me Me Ph syn- 7a dr = 98:2	1) <i>t</i> -BuLi (2.2 equiv) (inv. add .) pentane:ether (3:2) -100 °C, 1 min 2) CuBr · P(OEt) ₃ (2.0 equiv) -100 °C, 20 s 3) solvent switch to THF at -50 °C	(3.0 ec ph cu syn-4a	yuiv) 5 min syn-3a	
Entry	Cyclopentenone derivative 5	Yield of <i>syn-</i> 3 a ^[a]	dr of syn- 3 a ^[b]	
1	5 a : X = OTs	no product ^[c]	_	
2	5 b: X = OTf	traces ^[c]	-	
3	5 c: X = OC(O)C ₆ F ₅	traces ^[c]	-	
4	5 d: I	35%	93:7	
5	5 e : Br	62%	92:8	
[a] Yield of analytically pure products. [b] The diastereomeric ratio (dr, <i>syn/ anti</i> ratio) was determined by ¹ H and ¹³ C NMR analysis. [c] No product was obtained even after a reaction time of 12 h at -50° C.				

With these results in hand, we have performed the stereoselective cross-coupling of syn-4a with a range of 3-halogeno Michael acceptors of type 5 (see Table 2). Thus, 3-iodo- and 3bromocyclohexenone (5 f and 5 g)^[10] reacted smoothly with syn-4a leading to syn-3b in 49–66% yield with dr > 94:6 (entry 1). Similarly, the cross-coupling of syn-4a with 3-iodo-2methyl cyclohexenone (5h)^[12] as electrophile afforded syn-3c in 77% yield with dr = 96:4 (entry 2). Furthermore, we have treated several 3-iodo or 3-bromo acrylates (5i-5m)^[12-14] with diastereomerically enriched alkylcoppers of type 4. Therefore, the coupling of syn-4a with either (Z)-ethyl 3-iodo-acrylate (Z-5 i) or with (Z)-ethyl 3-bromo-acrylate (Z-5 j) furnished stereoselectively syn-3d in 65-81% yield with dr up to 96:4 (E:Z>1:99, entry 3). Furthermore, the (Z)-ethyl enoate syn-3e was prepared in 49% yield (dr = 94:6, E:Z > 1:99, entry 4). The crosscoupling of syn-4a with either E-51 or E-5m provided the unsaturated ester syn-3 f in 45-52% yield with moderate diastereoselectivity (dr > 80:20, entry 5). To our delight, we could expand this cross-coupling to other secondary alkylcopper reagents (syn- and anti-4 b-c)^[5b,d] with the iodenoate (Z-5 i) (entries 6-9). Thus, the reaction of the secondary alkylcopper reagent syn-4b with (Z)-5i afforded the corresponding α , β -unsaturated ester syn-3g in 73% yield and dr=95:5 (entry 6). The corresponding anti-alkylcopper reagent anti-4b was prepared and subsequent cross-coupling with (Z)-5i afforded anti-3g in 81% yield and dr = 5:95 (entry 7). In addition, the OTBS-substituted Michael acceptors syn-3h (37% yield, dr=94:6, entry 8) and anti-3h (44% yield, dr=9:91, entry 9) were readily prepared.

We were able to further extend this method to the functionalization of optically enriched secondary alkyl iodides.^[6b] For example, (R)-3i and (S)-3i were obtained in good yield and enantioselectivity (73% yield, 88% ee; 70% yield, 90% ee, see Scheme 2).

Furthermore, intermediates, which are present in the syntheses of several natural products were prepared.^[2,3,15] Thus, (R)-3 j, occurring in the total synthesis of the above mentioned aranorosin,^[2] was prepared in 71% yield and 88% ee. The cor-

[a] Yield of analytically pure products. [b] The diastereomeric ratio (dr, syn:anti ratio) was determined by ¹H NMR, ¹³C NMR or GC-analysis. [c] The depicted relative stereochemistry of the major stereoisomer is only presumed on the basis of previous studies.[5,6]

anti-4c

responding S-enantiomer (S)-3j, which was used for the total synthesis of 6'epi-aranorosin, was also obtained in 70% yield, but in lower optical purity (72% ee). Furthermore, (R)-3k (62% yield and 82% ee) and (S)-3k (67% yield and 84% ee), were prepared using this I/Li-exchange sequence.[15] Finally, we prepared the corresponding S-enantiomer of a precursor, which was used in the total synthesis of *ent*-stellettamide A.^[3] Therefore, (S)-31 was obtained in 63% yield with 81% ee.

Chem. Eur. J. 2020, 26, 11971 - 11973

www.chemeuri.org

44% yield; dr = 9:91

Communication doi.org/10.1002/chem.202002297

Scheme 2. Optically enriched α , β -unsaturated carbonyl derivatives of type **3** prepared by a stereoretentive I/Li sequence and subsequent cross-coupling with α , β -unsaturated carbonyl derivatives. [a] In this case the *ee*% of the starting secondary alkyl iodide was difficult to determine by chiral GC-analysis. It was estimated to be ca. 85% \pm 5% *ee*.

In summary, we have reported that γ -chiral Michael acceptors were readily prepared from chiral secondary alkyl iodides by an I/Li-exchange reaction and subsequent transmetalation to copper followed by addition to a broad range of 3-halogeno- α , β -unsaturated carbonyl derivatives. This method afforded γ -methyl unsaturated enones and enoates from relatively unfunctionalized secondary alkyllithiums. Only a few functional groups are tolerated by this method.^(6b) Nevertheless, advanced precursors for the preparation of natural products were prepared to underline the synthetic value of this approach.

Acknowledgements

We thank the DFG for financial support. We also thank Albermarle for the generous gift of chemicals. J.S thanks the FCIfoundation for a fellowship. Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: copper · cross-coupling · lithium · stereoselectivity

[1] for a review see: a) A. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies, O. Diéguez, *Chem. Rev.* **2008**, *108*, 2796–2823; b) F. López, A. J. Minnaard, B. L. Feringa, *Acc. Chem. Res.* **2007**, *40*, 179–188; c) T. Jerphagnon, M. G. Pizzuti, A. J. Minnaard, B. L. Feringa, *Chem. Soc. Rev.* **2009**, *38*, 1039–1075. for recent examples of transformations of α , β -unsaturated carbonyl derivatives see d) J. A. Schiffner, K. Müther, M. Oestreich, *Angew. Chem. Int. Ed.* **2010**, *49*, 1194–1196; *Angew. Chem.* **2010**, *122*, 1214–1216; e) D. Enders, T. V. Nguyen, *Tetrahedron Lett.* **2012**, *53*, 2091–2095;

f) X. Jin, K. Yamaguchi, N. Mizuno, Angew. Chem. 2013, 125, 465-468; g) N. A. White, T. Rovis, J. Am. Chem. Soc. 2014, 136, 14674-14677; h) M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Nature 2016, 539, 76-80; i) C. Brenninger, J. D. Jolliffe, T. Bach, Angew. Chem. Int. Ed. 2018, 57, 14338-14349; Angew. Chem. 2018, 130, 14536-14547; j) S. Miaskiewicz, J. H. Reed, P. A. Donets, C. C. Oliveira, N. Cramer, Angew. Chem. Int. Ed. 2018, 57, 4039-4042; Angew. Chem. 2018, 130, 4103-4106; k) Z. Liu, C. Xu, J. del Porzo, S. Torker, A. H. Hoveyda, J. Am. Chem. Soc. 2019, 141, 7137-7146; I) B. M. Trost, Z. Zuo, J. E. Schultz, N. Anugula, K. A. Carr, Chem. Sci. 2020, 11, 2136-2140. For cross-couplings of organocuprates with α , β -unsaturated carbonyls bearing a leaving group in β -position see m) G. H. Posner, D. J. Brunelle, J. Chem. Soc. Chem. Commun. 1973, 907-908; n) E. Piers, I. Nagakura, J. Org. Chem. 1975, 40, 2694-2696; o) E. Piers, H. E. Morton, J. Chem. Soc. Chem. Commun. 1978, 1033-1034; p) R. K. Dieter, J. R. Fishpaugh, L. A. Silks, Tetrahedron Lett. 1982, 23, 3751-3754; q) R. K. Dieter, L. A. Silks, J. R. Fishpaugh, M. E. Kastner, J. Am. Chem. Soc. 1985, 107, 4679-4692.

Chemistry Europe

European Chemical Societies Publishing

- [2] a) W. H. Fehlhaber, H. Kogler, T. Mukhopadyay, E. K. S. Vijayakumar, B. N. Ganguli, *J. Am. Chem. Soc.* **1988**, *110*, 8242–8244; b) P. Wipf, Y. Kim, P. C. Fritch, *J. Org. Chem.* **1993**, *58*, 7195–7203.
- [3] G. A. Whitlock, E. M. Carreira, J. Org. Chem. 1997, 62, 7916-7917.
- [4] G. W. Wong, C. R. Landis, Angew. Chem. Int. Ed. 2013, 52, 1564–1567; Angew. Chem. 2013, 125, 1604–1607.
- [5] a) S. Seel, G. Dagousset, T. Thaler, A. Frischmuth, K. Karaghiosoff, H. Zipse, P. Knochel, *Chem. Eur. J.* 2013, *19*, 4614–4622; b) G. Dagousset, K. Moriya, R. Mose, G. Berionni, K. Karaghiosoff, P. Knochel, *Angew. Chem. Int. Ed.* 2014, *53*, 1425–1429; *Angew. Chem.* 2014, *126*, 1449–1453; c) K. Moriya, D. Didier, M. Simon, J. M. Hammann, G. Berionni, K. Karaghiosoff, H. Zipse, H. Mayr, P. Knochel, *Angew. Chem. Int. Ed.* 2015, *54*, 2754–2757; *Angew. Chem.* 2015, *127*, 2793–2796; d) V. Morozova, K. Moriya, P. Mayer, P. Knochel, *Chem. Eur. J.* 2016, *22*, 9962–9965.
- [6] a) K. Moriya, M. Simon, R. Mose, K. Karaghiosoff, P. Knochel, Angew. Chem. Int. Ed. 2015, 54, 10963–10967; Angew. Chem. 2015, 127, 11113– 11117; b) V. Morozova, J. Skotnitzki, K. Moriya, K. Karaghiosoff, P. Knochel, Angew. Chem. Int. Ed. 2018, 57, 5516–5519; Angew. Chem. 2018, 130, 5614–5617; c) J. Skotnitzki, V. Morozova, P. Knochel, Org. Lett. 2018, 20, 2365–2368; d) J. Skotnitzki, L. Spessert, P. Knochel, Angew. Chem. Int. Ed. 2019, 58, 1509–1514; Angew. Chem. 2019, 131, 1523– 1527; e) J. Skotnitzki, A. Kremsmair, P. Knochel, Synthesis 2020, 52, 189– 196.
- [7] a) Studies Towards Synthesis of Biologically Active Guaianolides: Enantioselective Total Synthesis of (+)-Arglabin. (PhD thesis of Dr. Srinivas Kalidindi); b) Same procedure, but trifluoromethanesulfonic anhydride was used instead of *p*-toluenesulfonyl chloride; c) Same procedure,but 2,3,4,5,6-pentafluorobenzoyl chloride was used instead of *p*-toluenesulfonyl chloride.
- [8] G. Lemière, V. Gandon, K. Cariou, A. Hours, T. Fukuyama, A.-L. Dhimane, L. Fensterbank, M. Malacria, J. Am. Chem. Soc. 2009, 131, 2993–3006.
- [9] C. H. Jensen, H. D. Hansen, T. Bay, S. B. Vogensen, S. Lehel, L. Thiesen, C. Bundgaard, R. P. Clausen, G. M. Knudsen, M. M. Herth, P. Wellendorph, B. Frølund, ACS Chem. Neurosci. 2017, 8, 22–27.
- [10] E. Piers, J. R. Grierson, K. C. Lau, I. Nagakura, Can. J. Chem. 1982, 60, 210–223.
- [11] F. L. Tietze, C. A. Vock, I. K. Krimmelbein, L. Nacke, Synthesis 2009, 2040– 2060.
- [12] B. M. Trost, J. P. N. Papillon, T. Nussbaumer, J. Am. Chem. Soc. 2005, 127, 17921 – 17937.
- [13] W. Chen, J. C. L. Walker, M. Oestreich, J. Am. Chem. Soc. 2019, 141, 1135-1140.
- [14] X. Li, X. Zeng, *Tetrahedron Lett.* **2006**, *47*, 6839–6842.
- [15] Y. Sridhar, P. Srihari, Org. Biomol. Chem. 2013, 11, 4640-4645.

Manuscript received: May 8, 2020 Revised manuscript received: June 17, 2020 Accepted manuscript online: June 19, 2020 Version of record online: September 2, 2020

Chem. Eur. J. 2020, 26, 11971 - 11973

www.chemeurj.org

11973