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Abstract 

Background:  Recent clinical advances in cancer immuno-therapeutics underscore 
the need for improved understanding of the complex relationship between cancer 
and the multiple, multi-functional, inter-dependent, cellular and humoral mediators/
regulators of the human immune system. This interdisciplinary effort exploits engi-
neering analysis methods utilized to investigate anomalous physical system behaviors 
to explore immune system behaviors. Cancer Immune Control Dynamics (CICD), a 
systems analysis approach, attempts to identify differences between systemic immune 
homeostasis of 27 healthy volunteers versus 14 patients with metastatic malignant 
melanoma based on daily serial measurements of conventional peripheral blood 
biomarkers (15 cell subsets, 35 cytokines). The modeling strategy applies engineering 
control theory to analyze an individual’s immune system based on the biomarkers’ 
dynamic non-linear oscillatory behaviors. The reverse engineering analysis uses a Sin-
gular Value Decomposition (SVD) algorithm to solve the inverse problem and identify 
a solution profile of the active biomarker relationships. Herein, 28,605 biologically pos-
sible biomarker interactions are modeled by a set of matrix equations creating a system 
interaction model. CICD quantifies the model with a participant’s biomarker data then 
computationally solves it to measure each relationship’s activity allowing a visualization 
of the individual’s current state of immunity.

Results:  CICD results provide initial evidence that this model-based analysis is consist-
ent with identified roles of biomarkers in systemic immunity of cancer patients versus 
that of healthy volunteers. The mathematical computations alone identified a plausible 
network of immune cells, including T cells, natural killer (NK) cells, monocytes, and 
dendritic cells (DC) with cytokines MCP-1 [CXCL2], IP-10 [CXCL10], and IL-8 that play a 
role in sustaining the state of immunity in advanced cancer.

Conclusions:  With CICD modeling capabilities, the complexity of the immune system 
is mathematically quantified through thousands of possible interactions between 
multiple biomarkers. Therefore, the overall state of an individual’s immune system 
regardless of clinical status, is modeled as reflected in their blood samples. It is antici-
pated that CICD-based capabilities will provide tools to specifically address cancer and 
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treatment modulated (immune checkpoint inhibitors) parameters of human immunity, 
revealing clinically relevant biological interactions.

Keywords:  Math modeling, Oncology, Melanoma, Systemic immunity, Peripheral 
blood biomarkers

Background
In recent years, new insights into the state of the systemic immunity in cancer patients 
suggest a constellation of multiple abnormalities in the immune system that have the 
potential to directly impact not only the clinical response to immune checkpoint inhibi-
tors (ICI) therapy but also the natural history of the malignant disease [1]. It is becom-
ing increasingly clear that the panoply of multiple aberrancies in the immune system of 
cancer patients likely represent a manifestation of a complex set of biological processes 
that require an interrogative approach capable of complex systems analyses that take 
into account multiple variably interdependent parameters (biomarkers). The scientific 
community is increasingly recognizing that to analyze such complex systems, a chal-
lenging interdisciplinary approach to create meaningful biological computational tools 
is urgently needed [2–7]. A team of medical oncologists/immunologists and systems 
engineers have come together to overcome these challenges by applying well-established 
mathematical algorithms and engineering knowledge of physical non-linear oscilla-
tions to biological oscillations of cells and cytokines in the immune system [8–12]. The 
product of this multi-year collaboration is the innovative biological mathematical tool, 
Cancer Immune Control Dynamics (CICD), a clinical data driven model of systemic 
immunity. CICD strives to bridge biology and engineering by generating an adaptable 
biological model-based analysis program that incorporates multiple biomarkers. This 
endeavor attempts to understand and organize the individual roles of multiple meas-
ured, interacting, variably interdependent mediators (cellular and humoral) of systemic 
immune homeostasis (both up and down regulatory) through measurable biomarker 
concentrations in peripheral blood. The overall state of an individual’s immune system 
regardless of clinical status, is modeled as reflected in their blood samples.

Mathematical modeling concepts used in various engineering systems are the foun-
dation of the CICD model presented herein. Physical system models simultaneously 
embed a multitude of complex and often ill-defined representational features includ-
ing system disturbances, environment, feedback relationships, modularity, adaptability, 
robustness, redundancy, etc. These same ill-defined features are observed in the adaptive 
immune system that generate a dynamic response via a complex network of immune 
biomarker interactions that are heterogeneous, highly redundant and maintain homeo-
stasis. Biological and engineering technologies appear very different but at the system 
level have characterizations that are mathematically equivalent and can potentially be 
modeled using the same principles [13–15]. To mathematically model the dynamics 
of the immune system, we assume that the oscillations of biomarkers’ concentrations 
will expose their interrelations, regardless of their disparate phenotypes and disparate 
functions (up vs. down regulatory). By mathematically determining which biomarkers 
are fluctuating together (and which are not), thereby possibly mediating each other via 
activation or suppression, the underlying biological complexity of the immune system is 
uncovered.
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Mathematical modeling of biological systems, specifically the immune system has greatly 
increased in recent years [7]. CICD modeling utilizes the common ordinary differential 
equation (ODE) methods [16–18]. This approach both enables calibration against vari-
ous data and is also computationally efficient making it the most widespread and flexible 
of models. However, its complexity grows with the addition of more equations and con-
sequently an exponentially growing number of to-be-defined parameter values. This size 
problem places limits on ODE model growth potential for predictive analysis applications. 
To date these models are effective for well-known situations but do not fully include the 
ability to investigate the enormous number of possible immune interactions that can take 
place in the human system concurrently. CICD circumvents these limitations by apply-
ing the same ODE to each biomarker to represent all possible interactions and parameters 
that affect its rate of change. Patient immune parameter measurements (concentrations of 
peripheral blood biomarkers) populate these equations producing a mathematical repre-
sentation of an individual’s immune system.

Once a system is modeled mathematically, reverse engineering strategies [19, 20] can 
decompose a physical system’s complex interactions to reveal otherwise hidden features, 
structure, and control principles. By exploiting these reverse engineering methodologies for 
immunology [8], the connectivity and underlying dynamics characterizations for biomarker 
interaction networks can potentially be exposed. CICD methodology, constructed on these 
principles, is able to quantify underlying biomarker relationships in the complex immune 
system network through an expandable, descriptive method of mathematical modeling 
based solely on an individual’s test period data record.

CICD results provide initial evidence that model-based systems analysis leads to patient 
specific clinical insights pertaining to the biology of disease (antitumor immunity) in 
humans. Herein we present results of our initial effort to develop an interrogative approach 
that reverse engineers in silico a model of the human immune system in patients with 
metastatic melanoma (and healthy volunteers) utilizing peripheral blood derived measure-
ments (time-series) of immune function (biomarkers). This effort has adopted a data-driven 
approach that exploits engineering analysis methods utilized to investigate anomalous 
system behaviors. First verification of the computational process for this novel approach 
is presented in detail to validate the calculations used to identify and quantify biomarker 
pairings prevalent in clinical diagnoses. Next, confirmation of CICD modeling begins with 
the portrayal of the biological community’s accepted truths regarding homeostasis, redun-
dancy, heterogeneity, and homogeneity.

CICD exposes the underlying causes consisting of the biomarker relationships that 
together affect the observed populations of the biomarkers in the blood, thereby providing 
an insight rich snapshot of an individual’s state of immune homeostasis. Its main objec-
tive is discovery, to help lead to improvements in the efficacy of existing immune therapies 
(patient selection; drug combinations) and insight into new therapeutic targets that may 
significantly reduce the time to discover new therapeutics capable of meaningful clinical 
impacts.
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Methods
Engineering approach

CICD’s modeling methodology belongs to a specialized sub-discipline known as inverse 
problems, important mathematical problems in science and mathematics because they 
provide information about parameters that are not directly observed. In essence, an 
inverse problem in science consists of the process of calculating from a set of observa-
tions the causal factors that produced them. CICD’s fundamental assumption (Fig. 1a) 
is that a multi-dimensional cause and effect dynamic biomarker interaction network 
occurs between biomarker populations in the immune system. CICD uses the observed 
measurable output populations to mathematically calculate the activity of the underly-
ing input interactions that are potential signals utilized to control the immune system. 
CICD takes advantage of the oscillatory nature of the changes in biomarker concentra-
tions over time in order to resolve inter-parametric relationships that result in the main-
tenance of systemic immune homeostasis in cancer versus healthy.

CICD utilizes principles of control theory to examine the internal dynamics of 
the human immune system. As in mechanical systems, a sensor provides continu-
ous feedback information to a controller to induce a response to maintain the stability 

Fig. 1  CICD engineering approach: a Representation of the multi-dimensional cause and effect dynamic 
interaction network. Multiple cell and cytokine relationships cause the effect of dynamic population changes 
in the measurements of the peripheral blood biomarkers of immune function over time. The CICD math 
model assumes that the rate of change of the effects, i.e. the observed biomarkers’ populations, is equal 
to the sum of all causes, i.e. the biomarker relationships that produce a change in a biomarker population. 
With this time series data CICD is able to solve the inverse problem to quantify specific active relationships 
that manifest in the oscillations of biomarker concentrations. b Foundational architecture for CICD analysis 
process. Daily blood draws were performed to obtained daily measurements of both cell and cytokine 
immune biomarkers. CICD’s system identification process then creates a system characterization matrix 
to provide a dynamic system math model with biomarker data, predator–prey equations, a truncated 
Kolmogorov–Gabor polynomial and thousands of possible biomarker relationships. Reverse engineering 
analysis uses a Singular Value Decomposition algorithm (SVD) to solve the inverse problem and identify a 
solution profile of the active biomarker relationships. With CICD modeling capabilities, the complexity of the 
immune system is mathematically quantified through thousands of possible interactions between multiple 
biomarkers
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(homeostasis) of the system. Prior to distinguishing biological embedded sensors and 
controllers, a model first needs to be developed through system identification which 
builds a mathematical model of the dynamical system from measured data. With a via-
ble mathematical model, additional engineering principles and algorithms are applied 
to reveal the underlying causes or signals that provide information to the system [9]. 
CICD’s innovation is that it provides a quantitative math model representation for the 
dynamic interaction network of the immune system based on serially collected periph-
eral blood measurements. Figure  1b provides the foundational architecture of CICD’s 
analysis process. The system identification process builds the math model by (1) utilizing 
the serially collected peripheral blood samples (biomarker data) as measured data for 
patient biological status, (2) representing the biomarker population dynamics as math-
ematical relationships between measured data expressed as non-linear ordinary differ-
ential Lotka–Volterra predator–prey equations, and (3) creating a biomarker interaction 
network, through a matrix generalization of these equations using a truncated Kolmogo-
rov–Gabor polynomial to include all possible biomarker relationships as specified in the 
Knowledge Model. These components generate predator–prey equations for each bio-
marker studied that are combined into a system characterization matrix to provide a 
dynamic behavior model. This matrix is the foundation for the reverse engineering anal-
ysis. This math model is reverse engineered using methods of linear matrix computation 
[11], specifically Singular Value Decomposition (SVD) to approximate all biologically 
possible nonlinear cause and effect coupling mechanisms. The composite resultant data 
exposes the most active biomarker relationships or causes that associate with observed 
effects as measured in the blood data. This unique modal analysis solution process cre-
ates a database of information that can be mined for characterizing patient and multi-
patient cause and effect network interaction dynamics.

The development of CICD has evolved through collaboration between medical and 
engineering disciplines using extensive control theory experience in the computational 
modeling of ill-conditioned systems. The associated vision for the analysis framework 
for how CICD’s model-based information should be formulated, collected and presented 
has been influenced by multiple contributing sources [10, 13, 16, 21–25].

CICD patient biological status

The data used consists of 35 cytokines (plasma concentrations): EGF, EOTAXIN, FGF-
2, FLT-3L, FRACTALKINE, G-CSF, GM-CSF, IFNa2, IFNg, IL-10, IL-12p40, IL-12p70, 
IL-13, IL-15, IL-17A, IL-1a, IL-1b, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, 
IP-10, MCP-1, MCP-3, MIP-1a, MIP-1b, TGFa, TNFa, TNFb, VEGF and 15 cell phe-
notypes (relative concentrations among peripheral blood mononuclear cells): CD11c+, 
CD11c/CD14+, CD11c/CD86+, CD11c/HLA-DR+, CD123/HLA-DR+, CD14/
CD197+, CD16/CD56+, CD3+, CD3/CD4+, CD3/CD62L+, CD3/CD69+, CD3/
CD8+, CD4/CD294+, CD4/TIM3+, and CD56+. Blood samples are obtained at 
approximately the same time of day Monday thru Friday over a 2-week period in 14 
patients with stage IV metastatic melanoma, not on active therapy as well as in 27 
healthy volunteers. Cells and cytokines are collectively referred to as biomarkers. Com-
putational analysis for system oscillatory dynamics builds upon the implicit assumption 
that data sampling is a continuous dynamic process for which characterization models 
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are derived from available data records. Herein linear interpolation defines the bio-
marker rate of change, slope, as constant between blood draws providing an initial, sim-
ple, numerical approximate of the entire test period response. CICD analysis is valid at 
any instant between blood draws. Six equally timed sampling points are chosen between 
each draw to approximate dynamic biomarker actions executed between blood draw 
instances. The methods used to obtain the clinical data is found in Additional file 1.

CICD model of biomarker population dynamics

A mathematical expression that can model biomarkers’ fluctuations over time in relation 
to each other’s growth and decay is needed to determine the prominent relationships. 
The Lotka–Volterra predator–prey equations are first-order nonlinear differential equa-
tions used to describe the dynamics of biological systems in which two species interact. 
To “translate” these mathematical equations into immune biology, each cell and cytokine 
is viewed as an individual species. The predator–prey approach merely provides a sim-
ple mathematical framework to organize the competing influences of the numerous 
immune-activating and immune-suppressing sets of signals involving both cellular and 
cytokine biomarkers. CICD generalizes these established constitutive relationship equa-
tions to include multiple biomarkers to model their interacting populations. The state 
variables of immunology are biomarker population size observed in blood (measured 
concentrations). This modeling approach provides the ability to capture concurrently 
oscillatory, exponential growth and decay behaviors between interacting biomarker pop-
ulations as they are continuously being used and replaced (concentrations going down 
and up, respectively). Each biomarker’s population change is expressed via an equation, 
which CICD then uses to build a large, generalized, biomarker interaction matrix model.

CICD model of biomarker interaction network

The fundamental CICD derived relationship consists of three components “Target”, 
“Source”, and “Modulator”, modeled as the population of the Target biomarker is stimu-
lated or suppressed by the population of the Source biomarker that is either modulated 
by the population of the Modulator biomarker (bi-linear) or is not modulated (linear) 
(Fig.  2). This relational concept provides a means to create a profile of the dynamic 
immune system by defining thousands of sets of potential immune signals (up and down 
regulatory). A major design goal for CICD is to identify and quantify only the biologi-
cally possible underlying networks of connectivity in the human immune system. To 
ensure the broad applicability of CICD’s analysis methodology, a systems-engineering 
approach is adopted where theoretically all combinations can be included while allow-
ing the user an ability to reduce or expand the characterization model according to the 
needs of the study. Through quantification of the observed behaviors of these possible 
causes, CICD creates a descriptive mathematical model of what has occurred in contrast 
to predicative models that hypothesize what will occur.

CICD uses a template, referred to herein as the Knowledge Model, to generate a com-
prehensive list of biomarker relationships that may cause a change in a biomarker popu-
lation. In order to maintain biological integrity, a template is incorporated to identify 
specific biologically possible combinations for the analysis according to the biomarker’s 
type (Fig. 2). The Knowledge Model template states which group, cells or cytokines, can 
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populate each component. With these criteria, currently 7 types of relationships, the 
35 cytokines and 15 cells studied generate 28,605 unique biomarker relationships. This 
allows the application of system identification concepts to generalize the predator–prey 
equations to a mathematical model that approximates specific biologically possible rela-
tionships according to the study’s needs and is consistent with well-established biologi-
cal knowledge. The generalization provides the framework to include all possible causes, 
i.e. biomarker relationships that affect the biomarker population rate of change.

Once all relationships to be included are determined, the Kolmogorov–Gabor poly-
nomial (Eq. 1) models all actions that drive cell-cytokine interaction network dynamics. 
It provides a framework to express each possible population change cause as an atomic 
element in the equation, as a linear (non-modulated source) or bi-linear (modulated 
source) product of state variables, each with an associated unknown parameter. Based 
on CICD’s multi-dimensional cause and effect assumption, the rate of change of a Target 
biomarker is expressed as being equal to the algebraic sum of each atomic element for 
every CICD derived relationship as dictated by the Knowledge Model.

The generic format of the Kolmogorov–Gabor polynomial is:

Fig. 2  Knowledge model template of the fundamental CICD derived relationships. The fundamental CICD 
derived relationship is a Modulator biomarker modulates a Source biomarker that stimulates or suppresses 
a Target biomarker. Modulator is a biomarker that modulates a Source biomarker. Source is a biomarker 
that stimulates or suppresses a Target biomarker. Target is a biomarker that is stimulated or suppressed by 
either a modulated Source biomarker or a non-modulated Source biomarker. The Knowledge Model for the 
current study is a template of 7 relationship criteria to reduce number of relationships analyzed to a total 
of 28,605 unique relationships. Each type of CICD derived relationships is shown with the total number of 
combinations included in the current Knowledge Model. For each relationship, a cell is required to be either 
a Target or a Source component. Bi-linear relationships are those in which the Modulator affects the Source, 
then this Source affects the Target. Bi-linear relationships with more than one cellular component requires it 
is the same cell unless it acts as a Modulator for a cytokine Target; that is, autocrine signaling is included and 
for simplicity purposes paracrine signaling is currently excluded. Linear relationships are a non-modulated 
Source biomarker acting directly on a Target biomarker. *Relationship requires the same cell used for each 
cellular component. **An additional modulator has been included to model possible non-biomarker 
modulations
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Herein, each variable of state x1, . . . , xn represents a biomarker population, (Sources 
and Modulators), the a’s are the unknowns of the atomic elements of population change, 
and Y (x1, . . . , xn) is the resultant of all possible relationships as dictated by the Knowl-
edge Model that impact one system biomarker (Target). The unknown (a’s) incorporate 
all known and unknown underlying mediating parameters. CICD truncates the polyno-
mial (Eq. 1) at the bi-linear term to maintain SVD solution accuracy consistent with the 
square root of machine precision as well as limit problem size. The polynomial models 
all biomarkers relationships by providing a framework to express the set of Target equa-
tions (herein, 50) in linear matrix form (Eq. 2). This matrix provides the characterization 
of the immune regulatory system interactions at any time instant during the test period.

CICD model of reverse engineering

The system dynamics analysis relationship is expressed in linear matrix form (Eq. 2) as:

Herein 
{

dx
dt

}

 is the short (50 × 1) vector of biomarker state variables, {a} is the long 

(28,605 × 1) vector of all linear and bi-linear relationship unknowns and [K ] is the long 
thin (50 × 28,605) rectangular matrix of Kolmogorov polynomial state variable linear 
and bi-linear scalar products. For all atomic element constitutive relationships implicit 
in equation (Eq.  1), the CICD characterization matrix [K ] is completely quantified by 
biomarker values. The participant’s biomarker data populates each of the Knowledge 
Model’s 28,605 relationships for every analysis time point, currently 48 for 10  days of 
serial blood collections. This step of data preparation prior to the SVD calculation gen-
erates 48 uniquely valued matrixes each containing 28,605 non–zero data points for 
every participant. This non-typical predator–prey equation format creates a linear 
matrix algebraic relationship between the time instant biomarker change vector 

{

dx
dt

}

 

and all Kolmogorov Polynomial unknowns. The net result is a SVD-friendly re-formula-
tion of the non-linear predator–prey ODE dynamics problem into an identical linear 
ODE problem that has a well-defined matrix [K ] of time varying coefficients and a com-
putable vector of unknowns, i.e. {a} for every time instant for which 

{

dx
dt

}

 is defined. By 

making the plausible linear interpolation hypothesis for all biomarker response signals 
inserted between measured data points, a well-defined constant value for 

{

dx
dt

}

 is 

obtained. The second equality sign introduces the SVD (Eq. 3) relationship that equates 
matrix [K ] to the matrix triple product of Left Singular Vectors (LSV’s) in [U ] , singular 
values in [�] and Right Singular Vectors (RSV’s) in [V ]T . These orthogonal vectors 
decompose the time instant set of fully coupled biomarker system equations into an 
equally sized set of fully decoupled generalized coordinate system equations. Singular 
values are scale factors associated with all ortho-normalized LSV’s and RSV’s.

(1)Y (x1, . . . , xn) = a0 +

n
∑

i=1

aixi +

n
∑

i=1

n
∑

j=i

aijxixj + · · ·

(2)
{

dx

dt

}

= [K ]{a}

(3)[K ]{a} = [U ][�][V ]
T {a}
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From the mathematical viewpoint, CICD fundamental Eqs. (2) and (3) directly equates 
the blood sample input data to the CICD results output. Input data totally defines con-
tents of 

{

dx
dt

}

 and [K ] . Computed results totally define the contents of {a } , [U ], [�] and 

[V ]T . CICD analysis ensures that the resultant data is accurate to machine precision by 
having a quality check incorporated into the program. The resultant data, the computed 
values for {a } , [U ] , [�] and [V ]T is used to back compute the input data to ensure both 
the original input data and recalculated input data are within expected machine preci-
sion bounds. This validation ensures the integrity and numerical stability of the com-
puted results.

An SVD algorithm variant specialized to work with the very long thin (50 × 28,605) 
rectangular matrices is utilized by CICD to circumvent well-known numerical computa-
tion problems associated with several nearly equal singular values [26]. Conceptually, 
the SVD iterative solution process creates a sequential product of similarity transforma-
tions that is stopped before an ill-conditioned computing step is executed. The net result 
is a minimum norm, least effort, solution that has machine solution accuracy and a LSV 
matrix [U ] that is not unit diagonal. This specialized SVD decomposition of the system 
characterization matrix [K ] is key to CICD’s ability to reverse engineer a patient’s test 
period record to quantify all active causes that result in a biomarker population change. 
CICD analysis uncovers and quantifies the active biomarker relationships specific to an 
individual’s immune network through the interaction strength values for all LSV’s and 
RSV’s elements.

CICD model of biomarker cause and effect interaction network

Once SVD calculates the resultant data structures, they must be interpreted to under-
stand the biological interactions relative to the measured input data. Figure 3 provides a 
flow chart on how the large relational data structure is processed to interpret and extract 
biologically relevant insight.

CICD analysis decomposes a [K ] matrix by SVD at every analysis time point during the 
test period so that each LSV column of [U ] has an associated RSV row of [V ]T that con-
tains all possible relationships as defined by the Knowledge Model (Fig. 3a). This results 
in two additional dimensions to the current three-dimensional CICD derived relation-
ship. Therefore, at each time point, the SVD calculation generates a CICD relationship 
with 5 dimensional components and an associated value: (1) test period time instant, (2) 
LSV column, (3) Target biomarker, (4) Source biomarker, and (5) Modulator biomarker.

The SVD variant computes 50 LSVs corresponding directly to the number of biomark-
ers analyzed. To connect the math of Eq. (3) to biology it is necessary to label each spe-
cific LSV column of [U ] and RSV row of [V ]T . This effort is non-trivial. At every analysis 
time instant, a name-tagging algorithm associates a unique biomarker name to each 
LSV according to its dominant biomarker component. This associates each LSV natural 
mode of behavior with a specific biomarker. Ambiguous cases exist per LSV matrix [U ] 
but are relatively few in which additional steps are utilized. This labeling method ensures 
that every LSV is associated with a unique biomarker nametag according its behavioral 
activity.

CICD methodology includes a small set of response threshold rules to reflect 
the biology response expectation that LSV solutions will have a clearly identified 
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Fig. 3  CICD’s flow chart for data processing and interpretation. a SVD generated 5-dimensional relationship. 
SVD calculations adds two additional dimensions to the Knowledge Model relationships, an LSV associated 
biomarker and a time point, b Occurrence Count. A Knowledge Model relationship is active for a LSV 
associated biomarker at a single time point if its value is above the determined LSV threshold. This is counted 
as one Occurrence Count. c Σ Summation series of CICD result data. Σ Summations across like components 
generates multiple test period resultant views of the CICD data. The initial CICD summation involves the 
time instant dimension. The active 5-D relationships are summed across time to produce a unique Quad 
relationship containing its Modulator, Source, Target and LSV component. Next, the clear patterns of Quad 
activity enable the ability to sum the number of active occurrences with the same biomarker components to 
produce what is referred to herein as Triplets, Doublets, and Singlets. The LSV components are combined to 
create the 3-dimensional Triplet view. The next summations can be performed across any of the remaining 
components, Target, Source or Modulator to create three, 2-dimensional Doublet views, Modulator-Source 
(shown), Source-Target, Target-Modulator. Singlet views is the sum of all Occurrence Counts for a biomarker 
acting as a Modulator (shown), Source, Target, or LSV component. d CICD’s Fundamental data structure, Quad 
relationship. The SVD generated LSV quantifies the number of active occurrences for each Knowledge Model 
relationship over the course of the study and is the basis for analysis presented
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dominator component and a modest number of supporter components, while 
removing very small valued interactions. For the resultant data analysis, all LSV 
components with values above the threshold are considered active. Therefore, for 
each 5-dimensional relationship if its value is greater than the threshold limit it is 
assumed active and counted as a single Occurrence Count (Fig. 3b).

Each CICD calculated unknown value is assumed to represent all parameters 
acting on its specific relationship. Herein we removed those relationships with an 
unknown value of zero, per the original equation in which each term is the product 
of the unknown and the state variables representing the total causal effect of the 
specific biomarker relationship. If this effect is equal to zero, then it is assumed not 
active and is not included in the current investigation.

A key data processing step of the result data is a series of (Σ) summations to expose 
the highly active biomarker networks. Figure 3c illustrates the multiple views of the 
data that are generated by combining CICD relationships with like components. 
Each level provides insight into an individual’s immune state via several resultant 
test period relationships that can be explored for possible clinical insight.

CICD via SVD, computes 50 Singular Values with an associated set of Left and 
Right Singular Vectors (LSV, RSV). Each LSV has 50 components, one for each bio-
marker. Each RSV has 28,605 components, one for each possible biomarker rela-
tionship defined by the Knowledge Model in the current study. For modal analysis, 
this generates 50 × 28,605 unique 4-dimensional relationships, each with a unique 
Knowledge Model relationship and an associated LSV across the time period creat-
ing CICD’s fundamental data structure, the Quad relationship (Fig. 3d). Therefore, 
the Quad relationship contains a unique Modulator, Source, Target, and LSV combi-
nation with the number of Occurrence Counts over the test period.

The CICD analysis establishes a new unique measurement, Occurrence Count 
that quantifies the influence of these biomarkers relationships or signals in an indi-
vidual’s immune system. The total Occurrence Count is the number of times each 
specific Quad is active during the test period. The maximum Occurrence Count 
for each Quad corresponds directly to the number of blood draws and number of 
time instances analyzed, herein 48 for the 10 days of serial peripheral blood sample 
collections. To aid current patient comparisons as well as potential future studies 
(reducing the number of days for serial peripheral blood collections), each Quad’s 
Occurrence Count is divided by the maximum count as dictated by the number of 
time points then multiplied by 100. This normalization provides a consistent maxi-
mum value independent of study length as well as a representation of the percent-
age of activity for the Quad across the study period. Therefore, active Quads have a 
range of Occurrence Counts from 0 to 100. The CICD resultant data analyzed herein 
is the normalized Occurrence Count value of each unique Quad and is the basis 
for all result figures presented. CICD analysis presented herein originates with the 
Quads that are combined by LSV and Targets to obtain the Source-Modulator Dou-
blets in which high variation was observed across individuals. The principal results 
illustrate the variability of the Doublet Occurrence Counts across patient and clini-
cal groups.
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Results
Patient peripheral blood derived serial biomarker data

A sample of the peripheral blood data is presented in Fig. 4. 50 biomarkers are analyzed 
for both cancer patients and healthy volunteers across the 2-week test period (consecu-
tive weekdays only). Biomarker values vary both across time and between individu-
als. The highly dynamic and fluctuating nature of the immune system is demonstrated 
through a sample of the CICD biomarker input data for an individual cancer patient and 
a healthy donor. These graphs illustrate the overall general similarities and the devia-
tions found between the study groups. It is these variations that CICD seek to quantify 
via underlying unobservable interactions that manifest in the observed and measurable 
concentrations. Each participant’s graphs of cell and cytokines concentrations as shown 
in Fig. 4 are found in Additional file 2.

CICD data analysis

A verification of methodology is presented through the findings that only 133,000 Quads 
out of a possible 1.4 million are non-zero across all participants and only several thou-
sand for an individual. The CICD final results consist of a list of active Quad relation-
ships and their normalized Occurrence Count for each patient.

The total Occurrence Count for each Quad, Triplet, Doublet and Singlet is explored 
and compared between patients and patient groups to reveal active biomarker inter-
actions. Table  1 provides a small sample of the thousands of active Quads for a can-
cer patient and a healthy donor, furthermore it illustrates the summation process as 
depicted in Fig. 3c for Triplets (Modulator, Source, and Target) and Doublets (Modula-
tor and Source). Due to the large dataset only one Target, IL-8 for the Modulator-Source 
Doublet, IP-10/CD3 + is provided herein, but it has been observed throughout datasets 
that a consistent pattern of activity is repeated for Targets/LSVs in an active Doublet. 

Fig. 4  Patient peripheral blood derived serial biomarker data. A data sample of 8 cytokines and 8 cells 
for one healthy volunteer (#10) and one cancer patient (#12A) across a study time period demonstrates 
the highly dynamic and fluctuating nature of the immune system. Values are the measured biomarker 
concentrations. Biomarker values are connected via linear interpolation, which approximates the oscillatory 
behaviors of the biomarkers over time, thus providing the computational analysis with a first order 
approximant model for all test period response data
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Table 1  CICD data analysis for cancer patient 12A and healthy volunteer 10

BI-linear, modulated relationships Cancer patient 12A Healthy volunteer 10

Quad: Modulator, Source, Target, LSV

Triplet: Modulator, Source, Target

Doublet: Modulator, 
Source

Modulator Source Target LSV OCC. Count Sum OCC. count Sum

IP-10 CD3+ CD3+ CD3+ 100.00 100.00

IP-10 CD3+ CD3+ Triplet: 100 Triplet: 100
IP-10a CD3+a IL-8a IL-8a 93.75 89.58

IP-10 CD3+ IL-8 EOTAXIN 35.42 2.08

IP-10 CD3+ IL-8 IP-10 29.17 2.08

IP-10 CD3+ IL-8 MCP-1 29.17 6.25

IP-10 CD3+ IL-8 VEGF 25.00 6.25

IP-10 CD3+ IL-8 TGFA 20.83 16.67

IP-10 CD3+ IL-8 IL-1A 20.83 8.33

IP-10 CD3+ IL-8 EGF 18.75 4.17

IP-10 CD3+ IL-8 IL-12P40 14.58 2.08

IP-10 CD3+ IL-8 FGF-2 14.58 2.08

IP-10 CD3+ IL-8 FRAC-
TALKINE

14.58 4.17

IP-10 CD3+ IL-8 G-CSF 12.50 0.00

IP-10 CD3+ IL-8 IL-12P70 12.50 0.00

IP-10 CD3+ IL-8 IL-1RA 12.50 4.17

IP-10 CD3+ IL-8 IL-3 12.50 2.08

IP-10 CD3+ IL-8 MCP-3 12.50 2.08

IP-10 CD3+ IL-8 TNFB 12.50 2.08

IP-10 CD3+ IL-8 IFN-G 10.42 0.00

IP-10 CD3+ IL-8 IL-2 10.42 0.00

IP-10 CD3+ IL-8 MIP-1A 10.42 0.00

IP-10 CD3+ IL-8 GM-CSF 8.33 0.00

IP-10 CD3+ IL-8 IFN-2A 8.33 2.08

IP-10 CD3+ IL-8 IL-10 6.25 0.00

IP-10 CD3+ IL-8 IL-13 6.25 4.17

IP-10 CD3+ IL-8 IL-17A 6.25 0.00

IP-10 CD3+ IL-8 IL-1B 6.25 4.17

IP-10 CD3+ IL-8 IL-4 6.25 4.17

IP-10 CD3+ IL-8 IL-9 6.25 4.17

IP-10 CD3+ IL-8 MIP-1B 6.25 0.00

IP-10 CD3+ IL-8 TNFA 6.25 2.08

IP-10 CD3+ IL-8 FLT-3L 4.17 0.00

IP-10 CD3+ IL-8 IL-7 4.17 2.08

IP-10 CD3+ IL-8 IL-15 2.08 2.08

IP-10 CD3+ IL-8 IL-6 2.08 4.17

IP-10 CD3+ IL-8 IL-5 0.00 0.00

IP-10 CD3+ IL-8 502.08 Triplet: 
502.08

183.33 Triplet: 
183.33

IP-10 CD3+ Doublet: 
11,839.58b

Doublet: 
5210.42b
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Table 1  (continued)

Linear, non-modulated relationships Cancer patient 12A Healthy volunteer 10

Quad: Modulator, Source, Target, LSV

Triplet: Modulator, Source, Target

Doublet: 
Modulator, 
Source

Modulator Source Target LSV OCC. 
Count

Sum OCC. 
Count

Sum 

n.a IL-8 CD3/CD69+ CD3/CD69+ 18.75 Triplet: 18.75 0.00 Triplet: 0

n.a IL-8 CD11c/CD86+ CD11c/CD86+ 10.42 Triplet: 10.42 0.00 Triplet: 0
n.a IL-8 CD11c/HLA-DR+ CD11c/HLA-DR+ 10.42 Triplet: 10.42 0.00 Triplet: 0
n.a IL-8 CD11c+ CD11c+ 8.33 Triplet: 8.33 0.00 Triplet: 0
n.a IL-8 CD4/CD294+ CD4/CD294+ 6.25 Triplet: 6.25 0.00 Triplet: 0
n.a IL-8 CD4/TIM3+ CD4/TIM3+ 6.25 Triplet: 6.25 0.00 Triplet: 0
n.a IL-8 CD56+ CD56+ 2.08 Triplet: 2.08 0.00 Triplet: 0
n.a IL-8 83.33 Doublet: 83.33 0.00 Doublet: 0

43 of the 10,869 active Quad’s for the cancer patient and 25 of the 10,757 active Quad’s for the healthy volunteer are 
presented. Every row represents one unique active Quad containing the four components (LSV, Target, Source, and 
Modulator) and a value for its Occurrence Count. Examples of both bi-linear, modulated relationships (top section) and 
linear non-modulated relationships (bottom) are shown. The Triplets have the same Target, Source, and Modulator and its 
value is the sum of all its LSVs Occurrence Counts. The Doublets have the same Source and Modulator, combining all Target 
and LSV biomarkers. The value is the sum of all Occurrence Counts that have this common Doublet within its Quad.
a  Dominator LSV, Target and LSV are the same cytokine in Quad
b  Actual Doublet Value is higher due to additional Quads not shown

Fig. 5  Quad Occurrence Count activity patterns. Observed Occurrence Counts for the bi-linear Quads across 
all participants present in similar cumulative pattern as shown. If a Doublet or Triplet has an Occurrence 
Count, first the Quad with the same cell in the Source, Target, and LSV must be active. Second, a Dominator 
Quad (same cytokine in the Target and LSV) Occurrence Count is observed. Finally, if both types of bi-linear 
Quads are active then Supporter Quads (different cytokine in the Target and LSV) Occurrence Counts are 
observed. Therefore, the higher the Doublet Occurrence Count the more activity is found in the Dominator 
and Supporter Quads
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Three levels of Target/LSV activity have been continuously observed throughout all 
Quad datasets (Fig. 5). First, if the Doublet is active it will have at a minimum an Occur-
rence Count for the Quad with the same cell in the Source, Target, and LSV (Quad: 
IP-10/CD3+/CD3+/CD3 +). The Source cell stimulates/suppresses itself. The next level 
of observed activity is in the Dominator LSV, the Quad with the same cytokine in the 
Target and LSV (Quad: IP-10/CD3+/IL-8/IL-8). The redundancy of the system is illus-
trated by the final level of activity, the Supporter LSVs, the Quads with a different LSV 
cytokine from the Target (Quad: IP-10/CD3+/IL-8/non-IL-8 Cytokines). These addi-
tional Occurrence Counts are viewed as supporting activity for the Triplet, increasing 
the effects on the Target cytokine. It has been observed that if a specific Doublet is found 
active in a specific patient, the Occurrence Counts for the cell Target, Dominator LSV 
and Supporter LSV activity presents in a similar pattern. The supporting activity var-
ies across the LSVs but is only observed if both the cell Target and the Dominator LSV 
Quad are active for the Triplet providing the justification for the summation process. 
This cumulative pattern of Occurrence Counts manifests in the total Modulator-Source 
Doublet Occurrence Count, the higher the sum value, the higher the level of support-
ing LSVs across all Targets, and therefore the higher its overall effects on all biomarkers 
Targets. Much of the CICD result data reflects observations seen in the biomarker data 
that cannot be currently quantified. For the two study participants provided in the paper, 
the IL-8 input data (blood biomarker concentrations) in the cancer patient is higher 
and appears to be oscillating in the same pattern as IP-10 compared to the presented 
healthy volunteer (Fig. 4). For the same two study participants, both similarities and dif-
ferences for their Occurrence Counts are observed for these biomarkers in the specific 
sample of Quads provided in Table 1. Here IP-10 is modulating CD3 + which is targeting 
CD3 + and IL-8 across several biomarkers’ LSV. The cancer patient in this example has a 
much higher level of activity for this IP-10/CD3+/IL-8 Triplet and IP-10/CD3 + Doublet 
generated from various supporting biomarker LSVs as compared to this specific healthy 
volunteer. Therefore, according to CICD analysis the relationship IP-10/CD3 + is affect-
ing multiple cell and cytokine biomarkers more intensely in this cancer patient as com-
pared to the healthy volunteer. Also, IL-8 is acting as a non-modulator source on several 
cellular targets but only for the cancer patient. These specific Knowledge Model rela-
tionships are now quantified by CICD result data. The Triplets and Doublets compared 
here are only a few of the thousands of observable comparisons found between the study 
participants and clinical groups (cancer vs. healthy) with CICD, illustrating that varia-
tions observed in the biomarker blood data can have many underlying causes that can 
be mathematically uncovered. This summation process is repeated for all Quads and 
additional software has been developed specifically tailored to explore CICD data both 
within and across patients.

CICD modeling of biologic interactions

CICD begins to reveal the subtle differences that are masked by the commonalities 
in all donors (cancer and healthy). A main goal of CICD is to uncover the specific 
networks of active interactions in cancer patients that contribute to their clinical sta-
tus, relative to healthy donors. The presented flow diagrams visualize the Modulator/
Source Doublets and their total Occurrence Counts for both the Doublet and Singlet 
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summations (Fig. 6). Each flow diagram begins with a Quad dataset that is reduced 
to Doublets (edges) and Singlets (nodes). As explained previously with Table  1, the 
patterns of Occurrence Counts repeat for all Targets and LSVs across a specific Dou-
blet. Therefore, it can be inferred that active Doublets affect all biomarker Targets to 
varying degrees, the larger the total Doublet Occurrence Count value the greater the 
effects on all its biomarkers Targets. The Targets and LSVs of each Doublet provides 
additional insight and is an area of continued analysis however, is beyond the scope of 
this paper.

To provide an initial comprehensive view of the CICD resultant data, two cohorts, 
Healthy or Cancer were averaged across each unique active Quad (133,000 total) gen-
erating an average Cancer and an average Healthy CICD Quad dataset. These two 
representative datasets are compared to highlight the information obtained via CICD 
modeling (Fig. 6). Both complete Quad datasets Fig. 6a, b and three Quad comparison 
datasets Fig.  6c, d, e are portrayed (note, dominant signals of MCP-1 [CCL2], IP-10 
[CXCL10], IL-8 and CD11c +). For each cancer patient and healthy volunteer, the same 
complete flow diagrams are generated and found in Additional file 2.

The prominent Doublet activity levels (edges) are emphasized in Fig.  7. The biggest 
differences found between cancer patients and healthy volunteers were modulated by 
MCP-1, IP-10, and IL-8, seen amongst the top 10 modulator-source doublets enhanced 
in cancer depicted in Fig. 7a. These chemokines were found to modulate several types of 
immune cells, including T cells, natural killer (NK) cells, monocytes, and dendritic cells 
(DC) (Fig. 7b).

The CICD model’s Quad dataset and resultant flow diagrams portray many of the biol-
ogy’s accepted fundamental truths. The immune regulatory system is highly redundant 
and tends toward a relatively stable equilibrium among these multiple interdependent 
elements as seen through the multiple CICD defined relationships driving specific bio-
markers activity. This homeostasis is maintained by numerous underlying physiologi-
cal processes, many that can be possibly defined through CICD. The homogenous and 
heterogeneous characteristics of the system is modeled through the multiple identical 
relationships, yet different values found in the CICD datasets between both cancer and 
healthy cohorts as well as among individuals. This is first observed when examining the 
full Quad and Triplet data, the same relationship yet difference values are found across 
patients and cohorts that is then visualized by the Modulator-Source Doublets flow 

(See figure on next page.)
Fig. 6  Average Healthy versus Average Cancer flow diagrams. Each flow diagram begins with a Quad dataset 
that is reduced to Doublets (edges) and Singlets (nodes). The biomarkers shown were chosen because of 
their high activity across patients. Modulator Singlets are octagon nodes (cytokines, and n.a.) and Source 
Singlets are circle nodes (cells). The magnitude of edges and nodes are sized according Doublet and Singlet 
total Occurrence Count values. The Singlet value for each is included at its node. The same scale is used for 
all flow diagrams. The highest valued cellular Source (10) and cytokine Modulator (15) biomarkers as well as 
one node, “n.a.” representing the linear, non-modulated Quad relationships are included in each flow diagram. 
“All counts” include all 133,000 Quad relationships for biomarkers in the dataset summed. Green edges and 
positive values are the cancer values that are greater (more active) than healthy. Red edges and negative 
numbers represent Doublets and Singlets that are higher in the Healthy group. a Average Healthy Cohort 
with all Quad Occurrence Counts, b Average Cancer Cohort with all Quad Occurrence Counts, c Healthy 
greater than Cancer, The difference between the Quads that are greater in Healthy as compared to Cancer, 
d Cancer greater than Healthy, The difference between the Quads that are greater in Cancer as compared to 
Healthy, e Cancer minus Healthy, the overall Quad difference by subtracting the data of healthy volunteers 
from cancer patients across all counts
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diagrams. The calculations of the subtle differences underneath the seemly similar raw 
data found with CICD provides the individualized modeling needed to unlock clinical 
pathways to tailor treatment to a patient’s specific immune status.
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Discussion
The main premise of this work is that singular biomarker discriminators (single meas-
urement at a single time) have not been successful in describing the interconnected 
nature of different regulators of immune function in peripheral blood of humans with 
cancer. One of the main challenges in clinical cancer immunology is that, despite mul-
tiple efforts, it has been difficult to define a single measurement/predictor of immune 
cell function that encompasses the state of immunity in a patient with cancer. This has 
been particularly challenging in efforts of developing predictive biomarkers for cancer 
immunotherapy, where the only biomarker of outcomes for anti-PD1 therapy (tumor 
associated PDL1 expression) continues to be highly debated and remains of notable 
but limited clinical value. Part of the reason for this challenge is the acknowledged 
complexity of the numerous interacting components of human immune system regu-
lation, not all of which play the exact same role in different patients. Thus, we under-
took an effort to collectively examine the multitude of commonly used biomarkers 
of the state of systemic immunity, analyze their interactive properties based on their 
temporal variability and mathematically define (CICD) the overall state of systemic 
immunity, shared by cohorts of individuals, but, attained via similar but not identi-
cal pathways. Herein we present an integrated analysis of a multitude of pre-selected 

Table 2  Comparison of current math models versus CICD model

A side-by-side comparison highlights the advantages of the flexible CICD approach. These advantages include one simple 
expandable equation, no estimated parametrization, large numbers of biomarkers and multi-dimensional relationships 
can be included, and an individualized model of their own immune system generated directly from their own data. As 
compared to the generalized, parameter dependent modeling found in the current literature

Current modeling approaches CICD modeling

Modeling equations Ordinary differential equations Ordinary differential equation

Delayed differential equations

Partial differential equations

Stochastic differential equations

Agent based models

Cellular automata

Multiscale/hybrid

Equations Multiple combinations One large matrix equation

Parameters Multiple, limited by availability Unlimited

Measured experimentally and/or 
estimated theoretically

All are computed

All possible time varying parameters 
are contained within the unknown 
value in the Kolmogorov–Gabor 
Polynomial

Biomarkers Limited, most less than 10 Expandable, currently 50

Data Measurement Measured experimentally and/or 
estimated theoretically

Sequential daily blood draw

Number of Biomarker Relationships Limited by current knowledge Currently 28,605 including all bio-
logically possible relationships

Biomarker Relationships Used Only known relationships are 
modeled

All biologically possible relationships 
can be included

Results Deterministic or Probabilistic Deterministic

Generalized and/or Individualize 
relative to parameter and patient 
data availability

Individualize to patient data meas-
urements
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“biomarkers” of immunity that describe the difference between the state of systemic 
immunity in cancer patients, versus that of healthy volunteers.

The data reveals a dominant signal by two chemokines MCP-1 (CCL2) and IP-10 
(CXCL10) that are known to affect multiple cell types, as suggested by our data, with 
a somewhat more prominent impact on CD11c + cells in peripheral blood. These data 
are consistent with our appreciation of the role of chemokines in advanced cancer 
[27] as well as the putative role of CD11c + immune cells in maintenance of chronic 
inflammation [28]. When looking at the biggest differences between cancer patients 
versus healthy controls, we noticed that MCP-1, IP-10, and IL-8 were amongst the top 
modulators in cancer, acting on several types of immune cells, shown in Fig. 7. These 
results suggest that the main mechanisms of immunologic homeostasis of cancer 
are driven by a subset of chemokines for which there is published data demonstrat-
ing their role in cancer immunity. MCP-1 (CCL2) and IL-8 (CXCL8) are chemokines 
known to allow tumor progression by promoting tumor angiogenesis [29, 30]. How-
ever, MCP-1 is also known to attract monocytes, NK cells, and T cells [31, 32]. Fur-
thermore, IL-8 may also modulate the immune system in a favorable manner, as it 
has been shown to act as a chemoattractant for T cells [33]. In contrast to MCP-1 
and IL-8, IP-10 (CXCL10) is able to inhibit angiogenesis [34, 35]. IP-10 is secreted by 

Fig. 7  Top modulator-source doublets enhanced in cancer patients compared to healthy controls. a From 
CICD analysis, the ten modulator-source doublets with the greatest difference between cancer patients and 
healthy controls are shown. b The top modulator chemokines in cancer patient peripheral blood are IL-8, 
IP-10, and MCP-1, which play a role in cancer immunity
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cells in the context if inflammation and promotes a Th1 immune response involving T 
cells, NK cells, and DCs [36–39]. Thus, the modulator-source interactions that CICD 
associated from peripheral blood samples aligns with observations in the literature.

Hence, in a purely mathematical way, the current analyses have identified a plausible 
network of cells/cytokines (Modulator/Source) that play a role in sustaining the state 
of immunity in advanced cancer. This provides a starting point to a more focused anal-
yses regarding the role of these dominant immune mediators in patients with cancer, 
and offers an analytical tool that may be used to test additional biomarkers, relevant to 
MCP-1 (CCL2) and IP-10 (CXCL10) and in more detail describe the network of inter-
actions in the absence or presence of therapeutic interventions, and resultant clinical 
outcomes, possibly identifying novel therapeutic targets and/or prognostic/predictive 
biomarkers.

At the current juncture, the CICD model is only asking what biomarkers (measured 
in peripheral blood only) are working together regardless of previous knowledge of their 
function. CICD observes the interaction behaviors of the immune system, without con-
sidering the many possible underlying mechanisms that combine to produce an active 
interaction. Identification of the sub-groups (sub systems) of interacting biomarkers 
that discriminate cancer patients from healthy volunteers, elucidate critical differences 
in the states of immune homeostasis that may be relevant to the natural history of the 
malignancy as some of these elements of homeostasis (PD1 + immune cells) are targets 
of modern cancer immunotherapy.

A fundamental feature of CICD is the Knowledge Model. Unlike common approaches 
that focus on a limited number of biomarker interactions, CICD’s goal was to include 
all possible immune biomarker interactions to begin to unravel the immune regulatory 
complexity. The plasticity of the Knowledge Model allows future studies to expand and/
or modify its interactions and biomarkers to assist in revealing biological interactions 
thru mathematics. The Knowledge Model is the unique feature of CICD that allows a 
flexible analysis of biomarkers’ interaction network without any experimental con-
straints based on previously investigated interactions. The innovative Knowledge Model 
lists all biologically possible causes or relationships between the biomarkers studied, 
whether or not they have previously been studied. Future studies look to modify the 
Knowledge Model by either narrowing or expanding the number and/or type of relation-
ships to further explore the immune interaction network are currently under way. The 
flexibility of the Knowledge Model is fundamental in uncovering the complexity of the 
system.

The second essential requirement for CICD is the sequential collection of peripheral 
blood samples. This provides the necessary information to specifically assess an indi-
vidual without any theoretical estimation of parameters. As seen reflected in the CICD 
results data, the raw data also contains similarities and differences among participants. 
Through CICD, the specific underlying causes that manifest in these observed bio-
marker oscillations can be quantified. Future studies will focus on determining the num-
ber blood draw data points required for optimal analysis reliability.

It is well established that biological systems are complex and redundant systems that 
will effectively maintain functionality if a failure occurs within the system. The human 
immune system illustrates this concept through numerous immunological mediators 
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(biomarkers) working side by side to protect the body from disease. This presents a 
most interesting math modeling challenge to engineers that expect laws of behavior to 
be known exactly and solutions to be predictable, unique and verifiable. Rather than 
hypothesize ODEs to solve, a Knowledge Model is used to specify equations for all pos-
sible biomarker interaction response, and a set of characterization parameters defined 
as a vector of unknowns. The net result is an underdetermined system with far fewer 
equations than unknowns [40]. Such systems have an infinite number of equally valid 
solutions, solvable via SVD methods and the pseudo-inverse. It is well-known that for 
this class of SVD problems, singular values are unique while singular vectors are not. 
Recent work [41–43] is enhancing SVD capability to compute one solution that is least 
effort and which satisfies additional modeling objectives and application needs. Through 
the SVD algorithm, one of an infinite number of equally valid and least effort solutions is 
computed, inherently providing a model of the redundant, regulatory/system homeosta-
sis mechanisms of the human immune system. The redundancy and robustness utilized 
by the immune system to maintain functionality despite changes in the system due to 
disease can now be mathematically modeled via the power of SVD.

A comprehensive literature review of current biological math modeling techniques 
was completed to assess CICD’s approach [2–7, 13–18, 44–57]. A side-by-side compari-
son of several aspects of current techniques vs. the alternative CICD methodology is 
presented in Table  2 to elaborate the advantages of CICD. Most current models tend 
to speculate on a limited subset of potential interactions and attempt to recover model 
parameters to match a set of observed data, a predicative forward modeling strategy. 
CICD exploits the uncommon reverse modeling strategy to determine underlying cau-
salities that is expressed in the clinical data to understand the complexity of the immune 
system. Overall CICD does not assume a postulated mathematical model; instead it 
measures outcomes in the sample data which provide critical insights into the gener-
ally unknown internal working of the immune system response. Mathematical mode-
ling converts assumptions into conclusions with certainty always relative to choice of 
assumptions [44]. To have coincidence in conclusions it has been necessary for cur-
rent models to keep to simple and limited number of assumptions. These low-resolu-
tion models provide limited descriptions of the immune system and the need to shift to 
dynamic comprehensive modeling is apparent [45].

Current math models utilized multiple mathematical approaches such as various dif-
ferential equations and agent-based modeling to model a limited number of specific bio-
logical assumptions by measurable or estimated parameters. CICD revises this current 
structure by allowing thousands of assumptions, both known and unknown relation-
ships to be quantified using one generalized ODE equation with only clinical data and 
without parameterization. Current models’ results are highly reliant on multiple param-
eter values. A major advantage of CICD is that its algorithms and thereby its results are 
not dependent on the accuracy of estimated or theorized parameters. CICD allows all 
underlying parameters to be represented by the unknown value. By isolating the val-
ues for all parameters, the computational burden of the model is dramatically reduced, 
and the system of equations simplified, thereby enabling CICD analysis to focus on the 



Page 22 of 25Frisch et al. BMC Bioinformatics          (2021) 22:197 

information obtained via SVD. This vector of calculated parameter values is another ave-
nue for investigation in future studies. An additional unique and superior characteristic 
of CICD modeling is the ability to change how many and which specific biomarkers will 
be analyzed without an assumed knowledge of a biomarker’s mechanism in the immune 
system. The flexibility of CICD is boundless and enables the ability to tailor the biomark-
ers and relationships to the focus of the study. CICD results are based on a patient’s 
blood draw measurements alone. This individualized immune math model can poten-
tially unlock tailored treatment plans for a person’s specific clinical status and the ability 
to monitor their immune system over the course of treatment as well as beyond. CICD’s 
application of the SVD algorithm in this unique way is the foundation of its approach. 
The SVD algorithm has enabled considerable advances in the modern world, such as 
facial recognition [58]. Now CICD uses the power of SVD to continue to advance under-
standing of the biological world.

Conclusions
CICD equations expose underlying causes, previously imperceptible nonlinear coupling 
biomarker interactions that together affect the observed populations of the biomark-
ers in the blood, thereby providing an insight rich snapshot of an individual’s state of 
immune homeostasis. Its main objective is discovery, to help lead to improvements in 
the efficacy of existing immune therapies (patient selection; drug combinations) and 
insight into new therapeutic targets that may significantly reduce the time to discover 
new therapeutics capable of meaningful clinical impacts.

This new perspective of biological modeling from the current predictive approach to 
the CICD descriptive approach unleashes vast potentials not only in understanding of 
the complexity of the immune system but continues the pathway to individual treatment 
plans. Possible applications of CICD are many, not only in other cancers but in other dis-
eases as well, utilizing this model of complex, redundant, ill-defined, biological systems. 
This collaboration between biology and engineering disciplines exemplifies how “the 
purpose of computation is insight, not numbers” is pivotal in the quest for a cure [59].
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