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H I G H L I G H T S  

• Proposed FemurTumorNet, a DenseNet-based model for enhancing bone tumor classification in the proximal femur using radiography. 
• Demonstrated remarkable accuracy in classifying bone tumors with an excellent area under the curve (AUC) of 0.953. 
• Outperformed human experts in diagnosis accuracy, sensitivity, specificity, accuracy, and F1 scores. 
• Potential to reduce misdiagnosis, particularly among non-specialists in musculoskeletal oncology. 
• Advances in deep learning models offer improved classification and enhanced clinical decision-making in bone tumor detection.  
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A B S T R A C T   

Background & purpose: For the best possible outcomes from therapy, proximal femur bone cancers must be 
accurately classified. This work creates an artificial intelligence (AI) model based on plain radiographs to 
categorize bone tumor in the proximal femur. 
Materials and methods: A tertiary referral center’s standard anteroposterior hip radiographs were employed. A 
dataset 538 images of the femur, including malignant, benign, and tumor-free cases, was employed for training 
the AI model. There is a total of 214 images showing bone tumor. Pre-processing techniques were applied, and 
DenseNet model utilized for classification. The performance of the DenseNet model was compared to that of 
human doctors using cross-validation, further enhanced by incorporating Grad-CAM to visually indicate tumor 
locations. 
Results: For the three-label classification job, the suggested method boasts an excellent area under the receiver 
operating characteristic (AUROC) of 0.953. It scored much higher (0.853) than the diagnosis accuracy of the 
human experts in manual classification (0.794). The AI model outperformed the mean values of the clinicians in 
terms of sensitivity, specificity, accuracy, and F1 scores. 
Conclusion: The developed DenseNet model demonstrated remarkable accuracy in classifying bone tumors in the 
proximal femur using plain radiographs. This technology has the potential to reduce misdiagnosis, particularly 
among non-specialists in musculoskeletal oncology. The utilization of advanced deep learning models provides a 
promising approach for improved classification and enhanced clinical decision-making in bone tumor detection.   

1. Introduction 

Bone tumors are abnormal growths that can occur in any part of the 
skeletal system. Accurate classification of bone tumors is crucial for 
effective treatment planning and patient management [22]. Traditional 
classification approaches often involve the analysis of radiographic 

images, such as plain radiographs [23]. However, due to the complexity 
and diversity of bone tumors, accurate classification remains a chal
lenging task. This is where deep learning techniques have demonstrated 
their potential in providing more accurate and reliable classification 
results [2]. In recent years, the field of medical imaging has witnessed 
significant advancements in the detection and classification of various 
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diseases, including bone tumors [1,24]. Bone tumors, especially those in 
the proximal femur, require accurate classification for optimal treat
ment outcomes [25]. 

Misdiagnosis in bone tumor cases, particularly within the proximal 
femur region, has been a significant concern in clinical practice. Bone 
tumors in this region often present with non-specific symptoms that can 
be easily mistaken for other conditions, leading to delays in proper 
diagnosis and treatment. The consequences of misdiagnosis can be dire, 
ranging from delayed interventions and inappropriate treatments to 
potential complications that may negatively affect patient outcomes. 

The proximal femur is a critical anatomical area due to its role in 
weight-bearing and locomotion. Misclassification of bone tumors in this 
region can result in incorrect treatment plans, leading to prolonged pain, 
disability, and compromised patient quality of life. Moreover, given the 
complexity of bone tumors and the diversity of their presentations, ac
curate diagnosis requires expertise in musculoskeletal oncology. The 
utilization of the proposed AI model for bone tumor classification offers 
the potential to address these challenges. By providing an objective and 
data-driven approach to tumor classification, the model can assist 
medical practitioners in making more accurate decisions. This can lead 
to early detection, appropriate referral to specialists, and improved 
patient outcomes. The model’s ability to learn from a large dataset and 
recognize subtle patterns can aid in reducing the likelihood of misdi
agnosis, particularly in cases where human assessment may be subject to 
variability and limitations. 

Traditional methods of classification heavily rely on human exper
tise, which can be time-consuming and subjective. However, the emer
gence of deep learning techniques has shown great promise in improving 
bone tumor classification accuracy [1]. Deep learning has achieved 
remarkable success in various medical imaging tasks, including bone 
tumor classification. Convolutional neural networks (CNNs) such as 
ResNet [3], DenseNet [4], and EfficientNet [5] have been applied to 
extract features from radiographic images, enabling accurate differen
tiation between malignant, benign, and tumor-free cases. These deep 
learning models have shown superior performance compared to tradi
tional classification methods, exhibiting high sensitivity, specificity, 
precision, and F1 scores [6]. Their ability to learn complex patterns and 
hierarchical representations has contributed to improved classification 
accuracy [26,27]. 

Despite these achievements, there are still certain limitations and 
drawbacks that need to be addressed. One major concern is the 
requirement of large amounts of labeled training data. Collecting a 
sufficiently large dataset of accurately labeled bone tumor images can be 
challenging and time-consuming. Deep learning models may also be 
computationally costly and may need a lot of computing power for 
inference and training [7]. 

In our study, we address the need for accurate bone tumor classifi
cation in the proximal femur using deep learning techniques. Our con
tributions can be summarized as follows:  

• The creation of an artificial intelligence (AI) model for categorizing 
proximal femoral bone cancers based on simple radiographs.  

• Training and evaluation of the AI model using a dataset of 538 
femoral images, including malignant, benign, and tumor-free cases 
[8]. 
A total of 214 cases pertain to bone tumor.  

• Comparison of the performance of the AI model with that of human 
doctors, demonstrating superior accuracy and diagnostic capability 
[9].  

• Demonstration of the potential of advanced deep learning models, 
such as DenseNet, in improving bone tumor classification and 
enhancing clinical decision-making [10].  

• Discussion on the potential benefits and limitations of deep learning 
in bone tumor classification, paving the way for further research and 
development in this field. 

In conclusion, our study aims to contribute to the growing body of 
knowledge on the application of deep learning in bone tumor classifi
cation. By leveraging the power of advanced deep learning models, we 
strive to enhance the accuracy and efficiency of bone tumor diagnosis, 
ultimately leading to improved patient outcomes. 

2. Materials and methods 

2.1. Dataset description 

The dataset used in this study was obtained from Quanzhou First 
Hospital Affiliated to Fujian Medical University. It consisted of standard 
anteroposterior hip radiographs, encompassing a total of 538 femoral 
images. These images were carefully selected to represent a diverse 
range of cases, including malignant, benign, and tumor-free scenarios. 
The dataset served as the foundation for training the AI model, allowing 
it to learn patterns and features associated with different types of bone 
tumors. 

The dataset’s diversity in terms of both patient demographics and 
tumor categories is crucial for the AI model’s robustness and applica
bility. The inclusion of various tumor types (214 images) allows the 
model to learn distinct patterns and features associated with different 
categories, thus enabling accurate classification. This, in turn, 
strengthens the AI model’s foundation and its capacity to effectively 
recognize and classify bone tumors in the proximal femur region. 

By leveraging this dataset, the AI model was able to acquire the 
necessary knowledge to accurately classify and distinguish between 
various tumor categories on hip radiographs. The utilization of this 
comprehensive dataset from a reputable medical institution provided a 
robust foundation for evaluating the performance and effectiveness of 
the proposed AI-driven framework in bone tumor classification. 

2.2. Model architecture 

In the field of image categorization, classic CNN models like AlexNet 
[11] and VGGNet [12] have shown impressive performance in classi
fying natural images, such as those found in the ImageNet dataset. 
However, when it comes to fine-grained visual classification tasks, 
particularly in the domain of medical images, these conventional CNNs 
often struggle to achieve high levels of classification accuracy. This is 
primarily because fine-grained classification requires distinguishing 
subtle differences between objects, which may not be evident when 
objects are in the center position or when the differences are less pro
nounced. To address the challenge of fine-grained classification in 
medical imaging, researchers have explored the development of new 
CNN architectures. These novel models aim to enhance the ability to 
capture intricate details and subtle variations in medical images, leading 
to improved classification performance. However, a common require
ment of these methods is the need for extensive image annotations, 
which can be time-consuming and resource-intensive. 

To overcome this issue, we propose a novel CNN architecture that 
incorporates an automatic region-of-interest (ROI) generation mecha
nism within the network itself, eliminating the dependency on image 
annotations. By leveraging this innovative approach, our CNN model 
can identify and focus on relevant regions of interest within the medical 
images, allowing for more efficient and accurate classification without 
the need for extensive manual annotations. 

The suggested framework is an end-to-end network created for the 
classification of radiographic images, as shown in Fig. 1. It uses a CT 
picture with labels arranged in a hierarchy as input and outputs two 
anticipated labels. The proposed architecture is trained using both super 
and fine-grained labels, and classification accuracy is assessed. During 
dataset construction, fine-grained labels are mapped to a common super 
label. High accuracy for fine-grained label classification is our main 
goal. A super label sub-network, a fine-grained label sub-network, and 
the linking components make up the sub-networks inside. We use 
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DenseNet [13] as the underlying architecture in our work. The super 
label sub-network is the first network the images pass through during 
network training. Subsequently, the feather maps of the guide convo
lution layer within the sub-network are accumulated and combined to 
generate a heat map, as illustrated in Fig. 2. 

Within the heat map, the red regions indicate hot points with higher 
values, while the blue regions represent cold points with lower values. 
To identify the most prominent area, we select the hottest part of the 
heat map. The center point of this hottest region is determined using 
Equation (1), where k represents the radius of the hottest part. By 
considering each (2 k + 1) × (2 k + 1) area within the heat map, we 
calculate the sum of all values within that region. 

H(x, y) =
∑k

i=− k

∑k

j=− k
X(x − i, y − i) (1) 

Within the DenseNet-based network, the input CT image and its 
associated features are processed to generate label predictions as shown 
in Fig. 3. The network architecture enables multi-label classification, 
where two labels are predicted. These labels represent the classification 
results for the given radiographic image. 

Consider x be the input radiographic image, ysuper be the predicted 
super label, and yfinal be the predicted fine-grained label. The forward 
pass through the DenseNet-based network can be represented as follows: 

Features super = DenseNet(x) (2)  

ysuper = Softmax(Linear(Features super)) (3)  

Featuresfinal = DenseNet(x) (4)  

yfinal = Softmax(Linear(Features fine grained)) (5) 

Equation (2) computes the features extracted by the DenseNet model 
for the super label prediction. Softmax and Linear functions are applied 
to the features to obtain the predicted super label in Equation (3). 
Similarly, Equation (4) calculates the features extracted by the DenseNet 
model for the fine-grained label prediction. Softmax and Linear func
tions are used to obtain the predicted fine-grained label in Equation (5). 

The design of proposed framework draws inspiration from the 
cognitive process of humans [14], starting with a rough sketch and 
gradually focusing on details before making a comprehensive judgment. 
Similar to this, the lesion region barely takes up a small amount of a 
radiographic scan of a bone tumor. The network can focus attention on 
the tumor area by cropping the image and eliminating the majority of 
the background areas. The super label sub-network determines the 
precision of the cropped area’s position. The guide layer for extracting 
the cropped image can be any convolutional layer. In the end, the 
network generates predictions for the fine-grained label, and the con
current use of two network branches affects the classification accuracy. 

Fig. 1. This study’s proposed architecture. The network receives a radiography image that has not been annotated and two labels. The image is input into a different 
branch of the network after being clipped based on a heat map produced by a convolutional layer. Two predicted labels are output by the network. 

Fig. 2. The results of the corresponding heat maps. Heat maps generated by conv1, conv2, and conv3 are shown in (a), (b), and (c) respectively. These images 
visually demonstrate that as the network progresses deeper, the heat maps capture increasingly abstract and semantically meaningful information. 
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2.3. Evaluations performed by human doctors 

An investigation of similarity between deep learning models and 
human doctors was done to gauge their clinical efficacy. Four orthopedic 
surgeons in total, including two general orthopedic surgeons and two 
experts in musculoskeletal tumors, took part in the assessment. The 
doctors also looked at the radiographs that were used to train the CNN 
models. To ensure a fair assessment, doctors who had previously been 
involved in labeling the corresponding data were excluded from the 
evaluation. They gave the original hip radiographs that showed both 
femurs to replicate the process used by human doctors who typically 
compare the femurs on a single radiograph to identify lesions. 

For each left and right femur, the clinicians had to do a three-label 
categorization. This made it possible to evaluate the deep learning 
models thoroughly in light of medical professionals’ knowledge. 

3. Results and discussion 

Ethical considerations and patient data privacy are paramount when 
developing and testing AI models, particularly in the medical domain. In 
the manuscript, we mention that all subjects in the study have provided 
written consent, which is a critical ethical requirement. However, to 
address this question comprehensively, we can provide more details on 
the ethical considerations taken into account during the study. We 
discuss the approval obtained from an institutional review board or 
ethics committee, if applicable, to ensure that the study adheres to 
ethical guidelines and safeguards patient rights. We can also briefly 
outline the steps taken to maintain patient data privacy, such as data 
anonymization and secure storage protocols. By elaborating on these 
aspects, we will demonstrate a strong commitment to ethical research 
practices and reassure reviewers and readers about the ethical integrity 
of our study. 

We experimented with two additional CNN models to evaluate the 
performance of our suggested model with that of other models that are 
already in use. Table 1 shows each CNN model’s performance on the 
three-label classification challenge. Notably, when compared to the 
other models, the suggested DenseNet framework showed superior 
performance across all performance criteria. The outcomes demonstrate 
the potency and superiority of our suggested model in correctly identi
fying the three labels. 

With mean values for accuracy, sensitivity, specificity, precision, and 
F1 score of 0.85, 0.82, 0.91, 0.82, and 0.82, respectively, the DenseNet 

model demonstrated outstanding performance [17–19]. The DenseNet 
model outperformed the other CNN models in terms of AUC, as seen in 
Fig. 4 which displays the micro-average AUC values for each CNN model 
[20,21]. In particular, DenseNet outperformed ResNet50 and Inception 
v3 with an AUC of 0.95 (95% CI, 0.92–0.98) compared to 0.93 (95% CI, 
0.89–0.96) and 0.92 (95% CI, 0.90–0.95) respectively. 

The AI model’s performance on different types of tumors (malignant 
and benign) and across varying degrees of tumor presence in radio
graphs is a crucial aspect to evaluate its robustness and clinical utility. 
This performance assessment provides insights into the model’s ability 
to accurately differentiate between tumor categories and its sensitivity 
to subtle changes in tumor presence. In this study, the AI model was 
trained using a dataset containing a diverse range of cases, including 
malignant, benign, and tumor-free scenarios. This comprehensive 
training allowed the model to learn intricate patterns associated with 
each tumor type, enhancing its capability to classify them accurately. 
Additionally, by employing evaluation metrics such as sensitivity, 
specificity, accuracy, and area under the receiver operating character
istic curve (AUC), the model’s performance on different tumor cate
gories and varying degrees of tumor presence can be quantitatively 
assessed. 

4. Validation using human experts 

The generalizability of the trained AI model to new, unseen data is a 
critical aspect of its performance evaluation. While the model’s accuracy 
on the training dataset is an important indicator, its ability to effectively 
classify bone tumors in previously unseen cases is equally crucial. In this 
study, the AI model’s generalization performance should be assessed 
through a robust cross-validation procedure that involves partitioning 
the dataset into training and validation subsets. By evaluating the 

Fig. 3. Architecture of DenseNet used in this study to process radiographic scans.  

Table 1 
Performance of the proposed diagnostic framework in comparison to other CNN 
models.  

Models Accuracy Sensitivity Specificity Precision F1- 
Score 

ResNet-50  0.81  0.764  0.889  0.78  0.8 
Inception v3  0.82  0.778  0.89  0.78  0.77 
Proposed 

Framework  
0.85  0.82  0.91  0.82  0.82  
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model’s performance on the validation subset, its capacity to handle 
new data can be more accurately determined. Regarding the dataset’s 
diversity and representativeness, obtaining a well-balanced collection of 
cases is essential for training a robust AI model. Challenges may arise in 
obtaining a dataset that accurately reflects the prevalence and diversity 
of bone tumor cases encountered in clinical practice. If the dataset is 
skewed towards a particular tumor type or demographic, the model’s 
performance on underrepresented cases could be suboptimal. To address 
this concern, the manuscript should discuss the steps taken to ensure 
dataset diversity, such as the selection criteria for images and the stra
tegies employed to capture a broad range of tumor types and clinical 
scenarios. Additionally, any limitations arising from potential dataset 
biases should be acknowledged, along with potential implications for 
the model’s generalization performance. 

In order to compare the performance of the selected CNN model in 
three-label classification to the diagnostic skills of four human doctors, a 
comparative study was carried out (Table 2). When compared to the 
average diagnostic accuracy of the four clinicians (0.79), the CNN model 
demonstrated a considerably greater diagnostic accuracy (0.85) (P =
0.001). Additionally, the model performed better than each individual 
doctor (0.81, 0.75, 0.81, and 0.77, respectively) (P<0.05). The doctors’ 
average F1 score, sensitivity, specificity, and accuracy were 0.75, 0.88, 
0.76, and 0.79, respectively. In all metrics, with the exception of one 
doctor’s F1 score, the suggested DenseNet architecture performed better 
than the best results obtained by the human physicians. When compared 
to the average performance of the human doctors, the model’s accuracy, 
sensitivity, and precision all increased by more than 5%. In comparison 
to the average person, the selected model showed a relatively little gain 
in specificity of about 2%. 

The gradient-weighted class activation mapping (Grad-CAM) 
approach was used to identify the precise areas of the input picture that 
affected the CNN model’s decision-making process [15,16]. The area 
between the head and trochanteric areas of each femur is highlighted in 
the Grad-CAM visualization findings, which are shown in Fig. 5. Grad- 
CAM reliably recognized and emphasized the presence of malig
nancies in the proximal femur across all images with benign and 

malignant tumors, demonstrating the model’s identification skills in this 
crucial region. The essential idea behind the creation of the present 
model is the division and flipping technique utilized to align the femoral 
photos in one direction. The anteroposterior hip radiograph is one of the 
few human radiographs that may be symmetrically divided into left and 
right. In addition to allowing the deep learning system to focus more on 
a specific femoral lesion, the flipping method increases the fraction of 
healthy femurs by turning every image of a right femur into an image of 
a left femur. One femur with the tumor and one without are created 
during the division process for radiographs that show tumors on one side 
of the femur, boosting the normal data by nearly five times. 

The increase in the quantity of normal data may further improve the 
categorization capabilities of the model. The division provides more 
information on normal data, allowing the deep learning model to 
discriminate between normal and abnormal events more efficiently. 

This study has several restrictions that should be taken into account. 
First of all, the total number of hip radiographs employed may still be 
seen as being somewhat limited, despite the sample size of 214 femurs 
with bone tumors being significant considering the frequency of such 
tumors in the proximal femur. Second, crucial patient-specific data 
including age, sex, and clinical symptoms were left out of the deep 
learning algorithm’s input. Future models could perform more accu
rately in terms of diagnosis if they include this information. The AI 
model’s greater clinical relevance would also be aided by more study 
examining its capacity to provide light on the likelihood of pathological 
fractures in the proximal femur. 

The proposed AI model for bone tumor classification offers a notable 
advancement in the domain of tumor detection and classification. By 
capitalizing on deep learning methodologies, particularly the utilization 
of DenseNet, this model revolutionizes the way bone cancers in the 
proximal femur are diagnosed. The integration of plain radiographs as 
the primary diagnostic input not only simplifies the process but also 
enhances accessibility. This innovative approach addresses a critical 
need for accurate and efficient classification, potentially alleviating the 
issues associated with misdiagnosis, particularly in cases dealt with by 
non-specialists in musculoskeletal oncology. 

The proposed AI model introduces several novel aspects to the field 
of bone tumor classification, significantly enhancing the current land
scape of tumor detection and classification methodologies. One key 
innovation is the utilization of plain radiographs for accurate categori
zation of bone cancers in the proximal femur. This departure from 
traditional methods showcases the integration of advanced technology 
into clinical practice. 

Moreover, the integration of the DenseNet model is noteworthy. 
DenseNet’s ability to capture intricate features and patterns in medical 
images contributes to the model’s robustness and accuracy in tumor 

Fig. 4. For each CNN model used in the classification challenge, a micro-ROC curve was created. The proposed framework fared better than the previous networks 
(0.95 AUC). Fivefold cross validation was used to determine the average and standard deviation. The terms ROC, CNN, and AUC stand for receiver operating 
characteristic, area under the curve, respectively. 

Table 2 
Comparative performance of proposed framework with real time doctor’s 
prediction.  

Human Expert Accuracy P-Value Sensitivity Specificity 

Doctor 1  0.81  0.047  0.74  0.88 
Doctor 2  0.75  0.018  0.81  0.89 
Doctor 3  0.81  0.004  0.73  0.88 
Doctor 4  0.77  0.003  0.79  0.87 
Proposed Framework  0.85  0.05  0.82  0.91  
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classification. This highlights the potential of deep learning approaches 
to revolutionize diagnostic accuracy and clinical decision-making. 

The proposed AI model also addresses the issue of misdiagnosis, 
especially among non-specialists in musculoskeletal oncology. By 
providing a non-invasive, AI-driven preliminary screening process, the 
model can significantly reduce the risk of misclassification and guide 
medical professionals towards more accurate diagnostic pathways. This 
fusion of medical expertise with advanced AI technology reflects a 
pioneering approach in enhancing the efficacy of bone tumor detection. 

5. Limitations and future work 

Several limitations should be acknowledged in this study. Firstly, the 
sample size of hip radiographs used may be considered relatively small, 
although it included 214 of the femurs had bone cancers, which is a 
significant number given the prevalence of proximal femur tumors. 
Second, the deep learning algorithm’s lack of input for patient-specific 
data including age, sex, and clinical symptoms may have limited the 
diagnostic potential of the model. Incorporating such information in 
future models could enhance diagnostic performance. 

The proposed AI-driven bone tumor classification approach exhibits 
several potential limitations that deserve consideration. Firstly, the 
model’s performance may be influenced by the quality and diversity of 
the training dataset. If the training dataset is not sufficiently compre
hensive, the model’s ability to generalize to different tumor types and 
clinical scenarios could be compromised. Additionally, the model’s 
performance might be affected by the rarity of certain tumor types, 
leading to challenges in accurately classifying them. In future imple
mentations, for the development of more advanced diagnosis of the 
orthopedics [28], algorithms in the cybernetical intelligence context 
[29] can be computationally powerful and may bring about viable 

diagnostics techniques based on medical image processing [30]. 

6. Conclusion 

The suggested AI-driven approach outperformed orthopedic doctors’ 
diagnostic performance in identifying bone cancers in the proximal 
femur based on plain hip radiographs. Utilizing advanced deep learning 
models like DenseNet, the framework demonstrated superior accuracy, 
sensitivity, and precision. By automatically generating regions of in
terest (ROIs) without annotations, it improved efficiency and reduced 
dependence on manual labeling. When compared to human physicians, 
DenseNet fared better than previous models, exhibiting considerable 
gains of over 5% in accuracy, sensitio vity, and precision. The effec
tiveness of the framework was further supported by gradient-weighted 
class activation mapping (Grad-CAM), which revealed tumor loca
tions. However, limitations include a smaller sample size and the 
absence of patient-specific information. Overall, the framework’s suc
cess in bone tumor classification promises reduced misdiagnosis rates 
and improved accuracy in musculoskeletal oncology. 
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