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Introduction

Overall muscle strength is conveniently assessed by measuring 
handgrip strength (HGS) with a handgrip dynamometer.1 
Measures of HGS are characterized by completing a maximal 
isometric grip force task, wherein individuals squeeze a hand-
grip dynamometer with maximum effort for a short duration 
(i.e. seconds) and then relax the contracting musculature.2 
Given the relatively low cost and ease of assessment, measures 
of HGS are used in clinical and epidemiological settings for 
determining strength capacity.3 For example, larger popula-
tion-based studies such as the National Health and Nutrition 
Examination Survey,4,5 and UK Biobank have included meas-
ures of HGS in their protocols.6 As such, information from 
HGS measurements have been used in the United States and 
globally for making several health-related inferences,7 creating 
HGS percentiles,8,9 and generating weakness cut-points.10,11

Decreased HGS is particularly associated with poor 
health.12 Specifically, measures of HGS are included in vali-
dated criteria for determining frailty,13 and weakness often 

represents the onset of the frailty phenotype.14 Measures of 
HGS are also associated with more markers of frailty than 
age, thereby suggesting that HGS is a superior health marker 
of frailty relative to chronological age alone.15 Moreover, 
several investigations have revealed that low HGS is associ-
ated with arguably the most impactful health outcome, pre-
mature mortality.16–19 Although low HGS is associated with 
early mortality, the mechanisms connecting HGS with mor-
tality remain relatively unknown. Many have presented a 
sequence of events that may help to explain the systematic 
pathways linking HGS with premature mortality.7,20 Within 
such sequences, decreased HGS has been shown to be 
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associated with a variety of chronic cardiometabolic (e.g. 
type II diabetes mellitus (diabetes)) and neurodegenerative 
diseases (e.g. cognitive impairment).7 The widespread evi-
dence that measures of HGS have in predicting future 
adverse health events demonstrates that HGS is a powerful 
biomarker of aging and “vital sign” of health.21,22

Muscle weakness, as measured by HGS, is associated 
with a wide-range of health conditions, which makes it chal-
lenging to delineate what body system processes are respon-
sible for weakness. Zamboni et al.23 indicated that muscle 
weakness is part of sarcopenia, wherein decreases in muscle 
endurance and increases in muscle fatigability occur primar-
ily at the muscular system level. Others have posited that 
nervous system dysfunction brings structural and functional 
changes to skeletal muscle, subsequently contributing to 
weakness.24 Manini and Clark25 also suggest weakness is a 
product of age-related physiological deficits in both the mus-
cular and nervous systems. Age-related declines to the mus-
cular and nervous systems each factor into reductions in 
HGS, explaining why HGS is associated with health out-
comes that are metabolically and neurologically driven.

As evidence linking low HGS to poor health status con-
tinues to accumulate, measures of HGS will become more 
commonplace in routine health assessments.26 However, 
HGS as a stand-alone measure of strength capacity brings a 
large amount of uncertainty for future health risks because 
the measure is associated with such varying health condi-
tions. For example, healthcare providers that utilize cut-
points for identifying weakness may experience difficulty 
explaining what weakness is a risk factor exactly to their 
patients. Such challenges diminish the clinical meaningful-
ness of HGS and ability for healthcare providers to prescribe 
appropriate prevention and treatment options for weakness. 
Therefore, unraveling how HGS is associated with health 
conditions that are driven by the muscular or nervous sys-
tems will help to provide a better understanding of the risk 
factors for weakness, which in turn, will bolster the interpre-
tation and significance of HGS measurements. The purposes 
of this topical review were to (1) highlight and summarize 
evidence examining the associations of HGS with certain 
health outcomes that tend to be metabolically and neurologi-
cally driven and (2) provide some recommendations for 
future research in this area.

Methods

The PubMed database was used to search for articles. 
PubMed was selected for this review because articles indexed 
in PubMed contain several peer-reviewed studies related to 
HGS and health. Database searches began in August 2019 
and concluded in January 2020. The following MeSH and 
keyword search terms were executed: adult, aged, aged 80 
and over, middle aged, humans, hand strength, handgrip 
strength, grip strength, muscle weakness, muscle strength, 
sarcopenia, frailty, cardiovascular diseases, blood glucose, 

diabetes mellitus, falls, gait, dementia, Alzheimer’s disease, 
Parkinson’s disease, activities of daily living, walking, geri-
atrics, geriatric assessment, exercise test, prevalence, epide-
miology, exercise, physical activity, preventative health. The 
search terms included for our review were selected based on 
the purposes of the review. To be considered for inclusion, 
articles must have been published in English language and 
analyzed HGS with a health condition that was pertinent to 
our review. Articles that were not original research and did 
not assess HGS were not considered.

HGS and chronic cardiometabolic morbidities

Chronic cardiometabolic diseases such as cardiovascular 
disease and diabetes have a large global disease burden.27 
Metabolic syndrome is a strong precursor for both cardiovas-
cular disease and diabetes,28 and HGS is associated with 
each of the components used to diagnosis metabolic syn-
drome. For example, in a cross-sectional study of 2677 
adults aged 59–73 years, Sayer et al.29 found that every 
standard deviation decrease of HGS was associated with a 
0.05 standard deviation increase in fasting triglycerides 
(p = 0.006), 1.13 greater odds for high blood pressure 
(p = 0.004), 0.08 standard deviation unit increase in waist cir-
cumference (p < 0.001), 0.07 standard deviation unit increase 
in 2-h glucose (p = 0.001), and 0.05 standard deviation unit 
increase in homeostatic model assessment (p = 0.008). This 
investigation also found that lower HGS was associated with 
1.18 greater odds (p < 0.001) for metabolic syndrome when 
using Adult Treatment Panel III guidelines and 1.11 greater 
odds (p = 0.03) for metabolic syndrome when utilizing 
International Diabetes Federation guidelines.29 Another 
cross-sectional study of adults aged at least 20 years revealed 
that men (n = 2472) and women (n = 2542) in the strongest 
HGS quartile had 0.22 (p < 0.0001) and 0.16 decreased odds 
(p < 0.0001) for metabolic syndrome, respectively.30 Given 
decreased HGS is associated with metabolic syndrome, and 
that metabolic syndrome is a precursor for cardiovascular 
disease,28 it is plausible that HGS is also associated with 
cardiovascular morbidity.

Cardiovascular disease is a leading cause of death world-
wide.31 Identifying biomarkers that help in the prevention 
and treatment for cardiovascular disease may help to miti-
gate cardiovascular disease mortality. Leong et al.18 revealed 
that every 5-kg decrease in HGS was associated with a 1.17 
higher hazard (p < 0.001) for cardiovascular disease mortal-
ity and 1.07 higher hazard (p = 0.002) for myocardial infarc-
tion at a median 4-year follow-up in 142,861 adults aged 
35–70 years. Interestingly, this investigation also found that 
HGS was a stronger predictor of cardiovascular mortality 
than systolic blood pressure.18 Celis-Morales et al.32 found 
that every 5-kg lower HGS was associated with a 1.11 
(p < 0.001) and 1.15 higher hazard (p < 0.001) for cardio-
vascular disease incidence, and a 1.22 (p < 0.001) and  
1.19 higher hazard (p < 0.001) for cardiovascular disease 
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mortality at 7.1-year follow-up in 217,011 men and 260,063 
women, respectively. This study also revealed that men who 
were classified as weak had a 1.36 higher hazard (p < 0.001) 
for cardiovascular disease incidence and 1.84 higher hazard 
(p < 0.001) for cardiovascular disease mortality, while 
women who were considered weak had a 1.30 higher hazard 
(p < 0.001) for cardiovascular disease incidence and 1.44 
higher hazard (p < 0.001) for cardiovascular mortality.32

A secondary data analysis of 452,931 adults from the UK 
Biobank found that low HGS was associated with cardiovas-
cular disease events (hazard ratios ranged from 1.05 to 1.09) 
at follow-up.33 Another longitudinal-panel study of 17,431 
Americans aged at least 50 years determined that those who 
were weak had a 1.35 higher hazard (p < 0.05) for develop-
ing chronic heart failure compared to persons who were not 
weak at 4.7 ± 2.7 years of follow-up.34 Although there 
appears to be an association between HGS and cardiovascu-
lar disease, measures of HGS may also help to predict other 
prevalent chronic morbidities such as diabetes.

Diabetes is a widespread chronic cardiometabolic dis-
ease in the United States and worldwide.35,36 Weakness may 
factor into the incidence of diabetes. A 19-year longitudinal 
study of adults aged at least 65 years revealed men (n = 801) 
and women (n = 1102) who were considered weak had a 
1.05 (p < 0.001) and 1.38 higher hazard (p < 0.001) for inci-
dent diabetes, respectively.37 Another 16-year longitudinal 
study of 424 adults aged 46.4 ± 2.8 years determined that 
every 0.1 higher body weight normalized HGS was associ-
ated with a 0.81 lower hazard (p = 0.006) for incident diabe-
tes.38 Li et al.39 found that every 5-kg higher HGS was 
associated with 0.87 decreased odds for incident diabetes in 
1632 men aged at least 35 years. While HGS might be useful 
for predicting diabetes risk, measures of HGS may also help 
to determine risk for poor health outcomes in persons 
already living with diabetes.

A retrospective cohort study of 1282 adults aged 
63.8 ± 13.9 years with diabetes demonstrated that every 
1-kg increase in HGS at baseline was associated with 0.89 
decreased odds (p = 0.025) for cardiovascular disease events 
and 0.96 decreased odds (p < 0.001) for hospitalization at 
2.36 ± 0.73 years of follow-up.40 Celis-Morales et al.41 simi-
larly determined that persons with diabetes who also had 
lower HGS were at greater risk for adverse health outcomes 
such as cardiovascular disease incidence (hazard ratio: 1.98; 
p < 0.05), cardiovascular disease mortality (hazard ratio: 
2.88; p < 0.05), and all-cause mortality (hazard ratio: 2.05; 
p < 0.05) compared to those with higher HGS.

Table 1 outlines the studies that were reviewed for the 
associations between HGS and chronic cardiometabolic 
health conditions. There is certainly existing evidence for the 
association of HGS and chronic cardiometabolic diseases 
such as cardiovascular disease and diabetes. Lower HGS may 
also be associated with multimorbidity and other chronic dis-
eases that were not reviewed herein.42 Likewise, measures of 
HGS could be used in those living with a cardiometabolic 

disease to determine risk for a future adverse health event. 
Lifestyle behaviors that are associated with cardiometabolic 
diseases such as sedentary behavior and an unhealthy diet are 
primary contributors to weakness.43 Changing such poor life-
style behaviors, especially earlier in life, may help to preserve 
the muscular system functions that contribute to weakness 
and cardiometabolic morbidities over the lifespan.

HGS and neural morbidities

Previous work has demonstrated that the muscle force gener-
ated during HGS assessments in older adults is around half of 
what would be expected if the skeletal musculature itself 
were fully activated because of age-related neural deficits.44,45 
This finding suggests that diminished nervous system func-
tioning plays an important role in strength capacity and may 
help to explain why HGS is linked to diseases of the nervous 
system. For example, cognitive impairment without dementia 
(i.e. mild cognitive impairment) is more prevalent in the 
United States than dementia,46 and the presence of a mild 
cognitive impairment often leads to more advanced demen-
tias.47 A cross-sectional study of 1366 men and 1616 women 
aged at least 65 years found that men and women in the high-
est HGS quartile had 0.38 (p < 0.001) and 0.51 decreased 
odds (p < 0.001) for mild cognitive impairment compared to 
those in the lowest HGS quartile, respectively.48 Another 
cross-sectional study of 32,715 adults aged 62.0 ± 15.6 years 
revealed that weakness was associated with 1.41 greater odds 
(p < 0.05) for mild cognitive impairment.49 Although cross-
sectional study designs provide insights into the association 
of HGS and cognitive impairment, longitudinal study designs 
will help to reveal temporal inferences.

A mild cognitive impairment is a precursor for Alzheimer’s 
disease and related dementias,47 and strength capacity is 
associated with both mild cognitive impairment and 
Alzheimer’s disease.50 A longitudinal study of 13,828  
adults aged at least 50 years that were followed for 8 years 
determined that every 5-kg lower HGS was associated 
with 1.10 greater odds (p < 0.05) for any cognitive impair-
ment, 1.18 greater odds (p < 0.05) for severe cognitive 
impairment, and 1.10 greater odds (p < 0.05) for poorer  
cognitive functioning.51 Buchman et al.52 revealed that  
each 1-pound decrease in baseline HGS was associated with 
a 1.5% increased risk (p < 0.05) for Alzheimer’s disease. 
Furthermore, Alfaro-Acha et al.53 reported a significant  
time-by-HGS quartile interaction for cognitive impairment 
(Q1: β = –0.18 ± 0.06, p < 0.0001; Q2: β = –0.21 ± 0.06, 
p < 0.001; Q3: β = –0.09 ± 0.05, p > 0.05; Q4 = reference)  
in a 7-year prospective cohort study of 2160 Mexican 
Americans aged 71.9 ± 5.9 years. While an association 
exists between HGS and diseases of the nervous system 
such as cognitive impairment, HGS may also help to identify 
the acceleration of cognitive declines.

Decision making after disease diagnosis is critical for the 
health status of those living with a disease.54 Continuing to 
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utilize measures that detect disease progression may help 
evaluate treatment strategies. For example, HGS decreased in 
220 older women as Alzheimer’s disease advanced from 
“early Alzheimer’s disease” (HGS: 17.4 ± 3.7 kg; p < 0.01) to 
“mild Alzheimer’s disease” (HGS: 16.9 ± 3.7 kg; p < 0.0001) 
to “moderate Alzheimer’s disease” (HGS: 15.8 ± 3.8 kg; 
p < 0.0001) relative to women with normal cognition (HGS: 
20.1 ± 3.3 kg).55 Likewise, a cross-sectional study of 79 adults 
with Parkinson’s diseases revealed that HGS was correlated 
with Unified Parkinson Disease Rating Scale scores (r = –0.36; 
p = 0.006) and Hoehn–Yahr scores (r = –0.37; p = 0.005).56 
Therefore, measures of HGS could be a useful indicator for 
disease progression for certain morbidities that are driven by 
reduced neural function.

Table 2 outlines the studies that were reviewed for the 
associations between HGS and neural health conditions. A 
fair amount of attention has been given to combating muscle 
weakness at the musculoskeletal level; however, treating 
weakness at the neural level may show promise for the pre-
vention and treatment of weakness.45 More acknowledgment 
should be given to the role of motor performance in muscle 
function and strength capacity, as HGS is also a discriminat-
ing measure of neurological functioning.2 For example, the 
cortical and subcortical portions of the brain that control 
hand dexterity are also linked to cognitive function, suggest-
ing that factors which represent neurological declines of 

non-cognitive and cognitive processes may have a shared 
cause.57 Thus, nervous system deficits that contribute to 
muscle weakness could be identified by measures of HGS.

HGS and functional disability

Functional capacity is often measured by questionnaires 
regarding a person’s ability to complete a series of instru-
mental activities of daily living (IADLs) and basic activities 
of daily living (BADLs).58 IADLs require higher neuropsy-
chological functioning and are considered necessary for 
independent living;59 whereas, BADLs are more physically 
driven and are considered necessary for basic self-care.60 
Many working-age and older adults are living with a func-
tional disability,61,62 and the presence of a functional disabil-
ity increases risk for further disabilities,63 morbidities,64 and 
premature mortality.65 Given that IADLs are more neural 
driven and BADLs are more physically driven, it is possible 
that HGS is associated with functional disability.

A cross-sectional study of 947 adults aged at least 65 years 
revealed that every 10-kg increase in HGS was associated 
with 0.61 decreased odds (p < 0.05) for IADL disability.66 
Another cross-sectional investigation of 10,149 adults aged 
71.8 ± 7.7 years revealed that those in the middle and high 
HGS tertile had 0.61 (p < 0.05) and 0.47 lower odds 
(p < 0.05) for an IADL disability compared to individuals in 

Table 2. Outline of reviewed studies for the associations between handgrip strength and neural health conditions.

Article Participants Health 
condition

Key findings

Jang and Kim48 1366 men and 1616 
women aged ⩾ 65 years

Cognitive 
impairment

Men and women in the highest HGS quartile had 0.38 
(p < 0.001) and 0.51 decreased odds (p < 0.001) for mild 
cognitive impairment compared to those in the lowest HGS 
quartile, respectively

Vancampfort et al.49 32,715 adults aged 
62.0 ± 15.6 years

Cognitive 
impairment

Weakness was associated with 1.41 greater odds (p < 0.05) for 
mild cognitive impairment

McGrath et al.51 13,828 adults 
aged ⩾ 50 years

Cognitive 
impairment

Every 5-kg lower HGS was associated with 1.10 greater odds 
(p < 0.05) for any cognitive impairment, 1.18 greater odds 
(p < 0.05) for severe cognitive impairment, and 1.10 greater 
odds (p < 0.05) for poorer cognitive functioning

Buchman et al.52 887 older adults Alzheimer’s 
disease

Each 1-pound decrease in baseline HGS was associated with a 
1.5% increased risk (p < 0.05) for Alzheimer’s disease

Alfaro-Acha et al.53 2160 adults aged 
71.9 ± 5.9 years

Cognitive 
impairment

A significant time-by-HGS quartile interaction existed for 
cognitive impairment (Q1: β = –0.18 ± 0.06, p < 0.0001; Q2: 
β = –0.21 ± 0.06, p < 0.001; Q3: β = –0.09 ± 0.05, p > 0.05; 
Q4 = reference)

Ogawa et al.55 352 older adults Alzheimer’s 
disease

In women, Alzheimer’s disease advanced from “early Alzheimer’s 
disease” (HGS: 17.4 ± 3.7 kg; p < 0.01) to “mild Alzheimer’s 
disease” (HGS: 16.9 ± 3.7 kg; p < 0.0001) to “moderate 
Alzheimer’s disease” (HGS: 15.8 ± 3.8 kg; p < 0.0001) relative to 
women with normal cognition (HGS: 20.1 ± 3.3 kg)

Roberts et al.56 79 adults Parkinson’s 
diseases

HGS was correlated with Unified Parkinson Disease Rating 
Scale scores (r = –0.36; p = 0.006) and Hoehn–Yahr scores 
(r = –0.37; p = 0.005)

HGS: handgrip strength; Q: quartile.
Contents included in this table may have only captured findings from studies that were relevant for our review.
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Table 3. Outline of reviewed studies for the associations between handgrip strength and functional health conditions.

Article Participants Health condition Key findings

Gopinath et al.66 947 adults 
aged ⩾ 65 years

IALD disability Every 10-kg increase in HGS was associated with 0.61 decreased 
odds (p < 0.05) for IADL disability

Germain et al.67 10,149 adults aged 
71.8 ± 7.7 years

IADL disability Those in the middle and high HGS tertile had 0.61 (p < 0.05) and 
0.47 lower odds (p < 0.05) for an IADL disability compared to 
individuals in the lowest HGS tertile, respectively

McGrath et al.68 672 adults aged 
81.7 ± 4.1 years

IADL disability Every 10-kg increase in HGS at baseline was associated with 0.95 
decreased odds (p < 0.05) for losses in IADLs

McGrath et al.69 15,336 adults 
aged ⩾ 50 years

IADL disability Every 5-kg decrease in HGS was associated with 1.11 greater 
odds for an impairment in using a map, 1.07 greater odds for 
an impairment in preparing hot meals, 1.09 greater odds for 
an impairment in taking medications, 1.06 greater odds for an 
impairment in managing money, 1.05 greater odds for an impairment 
in using a telephone, and 1.10 greater odds for an impairment in 
shopping for groceries (all p < 0.05)

Al Snih et al.70 1050 older men and 
1443 older women

BADL disability Men and women in the lowest HGS quartiles had a 1.90 and 2.28 
higher hazard (p < 0.05) for any BADL limitation

McGrath et al.71 2270 older adults 
aged ⩾ 65 years

BADL disability Those who were considered weak had a 1.25 higher hazard 
(p < 0.0001) for incident BADL disability compared to persons who 
were not weak and did not have diabetes

Zhang et al.72 6127 adults 
aged ⩾ 45 years

BADL disability Those who were considered weak had 2.26 greater odds (p < 0.001) 
for BADL disability compared to those who were not weak

McGrath et al.73 17,747 adults 
aged ⩾ 50 years

BADL disability Every 5-kg decrease in HGS was associated with a 1.20 higher hazard 
for an eating limitation, 1.14 higher hazard for a walking limitation, 
1.14 higher hazard for a bathing limitation, 1.09 higher hazard for a 
dressing limitation, 1.08 higher hazard for a transferring limitation, 
and 1.06 higher hazard for a toileting limitation (p < 0.05 for all)

BADLs: basic activities of daily living; HGS: handgrip strength; IADLs: instrumental activities of daily living.
Contents included in this table may have only captured findings from studies that were relevant for our review.

the lowest HGS tertile, respectively.67 A longitudinal investi-
gation of 672 Mexican Americans aged 81.7 ± 4.1 years 
determined that every 10-kg increase in HGS at baseline was 
associated with 0.95 decreased odds (p < 0.05) for losses in 
IADLs at 2-year follow-up.68 When examining individual 
IADLs, a longitudinal study of 15,336 adults aged at least 
50 years who were followed for 8 years uncovered that every 
5-kg decrease in HGS was associated with 1.11 greater  
odds for an impairment in using a map, 1.07 greater odds for 
an impairment in preparing hot meals, 1.09 greater odds for 
an impairment in taking medications, 1.06 greater odds  
for an impairment in managing money, 1.05 greater odds for 
an impairment in using a telephone, and 1.10 greater odds 
for an impairment in shopping for groceries (all p < 0.05).69 
Impairments in IADLs often precede BADL limitations;59 
thus, HGS may also be associated with BADLs.

Al Snih et al.70 revealed that men (n = 1050; age: 
72.5 ± 6.2 years) and women (n = 1443; age: 72.3 ± 6.2 years) 
in the lowest HGS quartiles had a 1.90 and 2.28 higher  
hazard (p < 0.05) for any BADL limitation over the 7-year 
study period. Likewise, another longitudinal study of 2270 
Mexican Americans aged at least 65 years found that those 
who were considered weak had a 1.25 higher hazard 
(p < 0.0001) for incident BADL disability compared to per-
sons who were not weak and did not have diabetes over a 

19-year study period.71 Zhang et al.72 examined the associa-
tion between weakness and BADL disability in 6127 Chinese 
adults aged at least 45 years and found that those who were 
considered weak had 2.26 greater odds (p < 0.001) for 
BADL disability compared to those who were not weak. 
McGrath et al.73 investigated the association between HGS 
and individual BADLs in 17,747 Americans aged at least 
50 years during an 8-year study period and found every 5-kg 
decrease in HGS was associated with a 1.20 higher hazard 
for an eating limitation, 1.14 higher hazard for a walking 
limitation, 1.14 higher hazard for a bathing limitation, 1.09 
higher hazard for a dressing limitation, 1.08 higher hazard 
for a transferring limitation, and 1.06 higher hazard for a toi-
leting limitation (p < 0.05 for all).

An outline of studies that were reviewed for the associa-
tions between HGS and functional health conditions is pre-
sented in Table 3. Measures of HGS are unique in that they 
are associated with performance in functional tasks that are 
both neuropsychologically (i.e. IADL) and physically driven 
(i.e. BADL). Clark and Manini74 suggest that muscular and 
nervous system impairments each contribute to the decreased 
skeletal muscle activation and force generation that charac-
terizes muscle weakness, which subsequently leads to func-
tional disability. IADL and BADL tasks indirectly reflect 
neural and muscular system functioning, which are also 
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mechanisms for strength capacity. Therefore, decreased 
HGS may signify not only impairments of the muscular and 
neural systems that contribute to muscle weakness but also 
the impairments of the muscular and neural systems that fac-
tor into functional disability.

HGS and dynamic assessments of function

The muscular and neural systems are important for physical 
functions that are dynamic in nature such as the timed-up-
and-go, 6-min walk, gait speed, and balance tests.75,76 
Deficits in such physical functions can carry pronounced 
health consequences. For example, slower gait speed is 
strongly associated with mortality.77 Moreover, slow gait 
speed is a characteristic of individuals with a chronic cardio-
metabolic disease such as diabetes and neural morbidities 
such as cognitive impairment.78,79 HGS, which can be con-
sidered a measure of muscle function, may also be associated 
with dynamic, physical functions.80

Cross-sectional evidence from 110 women aged 
67.4 ± 5.9 years indicated that HGS on the dominant 
(r = –0.20; p = 0.03) and non-dominant hand (r = –0.20; 
p = 0.03) is correlated with the timed-up-and-go test.81 The 
6-min walk test is a popular method for assessing physical 
functioning and fitness.82 Martín-Ponce et al.83 found that 
adults aged at least 60 years who were in the lower HGS 
category walked a shorter distance (84.3 ± 12.0 m) on the 
6-min walk test than those in the higher HGS category 
(178.0 ± 14.0 m; p < 0.001). Furthermore, Zhang et al.84 
revealed that HGS was correlated with 6-min walk test 

distance (r = 0.221; p = 0.029) and also predicted 6-min walk 
distance (β = 3.162; p < 0.001) in cross-sectional study of 
106 adults aged 62.0 ± 10.0 years.

HGS is an important factor for gait speed, and both HGS 
and gait speed are part of frailty assessments.13 Cut-points 
for determining clinically relevant weakness have also been 
created from the association between HGS and gait speed.10,11 
Harris-Love et al.85 demonstrated that HGS is related to gait 
speed (r = 0.42; p = 0.021) in a cross-sectional study of 30 
men aged 62.5 ± 9.2 years. Balance is important for the pre-
vention of falls, and Arvandi et al.86 examined the associa-
tion between HGS and fall history in 808 adults aged at least 
65 years, revealing that every 1-kg increase in HGS was 
associated with 0.97 decreased odds (p = 0.26) for falls.

Measures of HGS are associated with deficits in several 
physical functions. Stevens et al.87 assessed the associations 
between HGS and components of the Short Physical 
Performance Battery in 349 men and 280 women aged 63–
73 years and determined that every 1-kg increase in HGS 
was associated with a 0.07-s decrease in the timed-up-and-
go test, 0.02-s decrease in 3-m walk time, and 1% decrease 
in chair rises time for men (all p < 0.001). This study also 
found that every 1-kg increase in HGS was associated with 
a 0.13-s decrease in the timed-up-and-go test, 0.03-s 
decrease in 3-m walking time, and 1% decrease in chair 
rises time for women (all p < 0.001).87 Table 4 outlines stud-
ies that were reviewed for the associations between HGS 
and dynamic functional assessments. With HGS being asso-
ciated with mobility and other dynamic measures of physi-
cal function, overlap in the muscular and neural system 

Table 4. Outline of reviewed studies for the associations between handgrip strength and dynamic functional assessments.

Article Participants Assessment Key findings

Alonso et al.81 110 women aged 
67.4 ± 5.9

Timed-up-and-go HGS on the dominant (r = –0.20; p = 0.03) and non-
dominant hand (r = –0.20; p = 0.03) is correlated with the 
timed-up-and-go test

Martin-Ponce et al.83 310 adults aged ⩾ 60 years 6-min walk Those who were in the lower HGS category walked a 
shorter distance (84.3 ± 12.0 m) on the 6-min walk test 
than those in the higher HGS category (178.0 ± 14.0 m; 
p < 0.001)

Zhang et al.84 106 adults aged 
62.0 ± 10.0 years

6-min walk HGS was correlated with 6-min walk test distance 
(r = 0.221; p = 0.029) and also predicted 6-min walk 
distance (β = 3.162; p < 0.001)

Harris-Love et al.85 30 adults aged 
62.5 ± 9.2 years

Gait speed HGS is correlated with gait speed (r = 0.42; p = 0.021)

Arvandi et al.86 808 adults aged ⩾ 65 years Fall history Every 1-kg increase in HGS was associated with 0.97 
decreased odds (p = 0.26) for falls

Stevens et al.87 349 men and 280 women 
aged 63–73 years

Short physical 
performance 
battery

Every 1-kg increase in HGS was associated with a 0.07-s 
decrease in the timed-up-and-go test, 0.02-s decrease 
in 3-m walk time, and 1% decrease in chair rises time 
for men (all p < 0.001). Every 1-kg increase in HGS was 
associated with a 0.13-s decrease in the timed-up-and-
go test, 0.03-s decrease in 3-m walking time, and 1% 
decrease in chair rises time for women (all p < 0.001)

HGS: handgrip strength.
Contents included in this table may have only captured findings from studies that were relevant for our review.
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processes that are needed to properly complete measures of 
HGS and dynamic physical functioning may exist.

Discussion

This review presented and summarized evidence for HGS 
being associated with a wide-range of health conditions, 
thereby supporting sentiments that suggest HGS is a power-
ful biomarker of aging and “vital sign” of health.21,22 
Muscular strength, as often measured by HGS, is also an 
important part of intrinsic capacity.88 Although decreased 
HGS and being considered clinically weak is a risk factor for 
morbidity,18 disability,73 and early mortality,16 measures of 
maximal HGS alone may not provide enough information to 
determine the specific health risks from low HGS. Therefore, 
we recommend that measures of HGS be included in routine 
health assessments (especially for older adults); however, we 
also suggest that HGS be considered an umbrella assessment 
of the body system processes that contribute to strength 
capacity, and a panoptic measurement of muscle strength 
that is representative of overall health status.

While there is a strong body of evidence that shows HGS 
is associated with several health conditions,7,22,26 some have 
posited that HGS alone cannot be assumed a proxy for overall 
muscle strength89 and that other physical measures such as 
knee extension strength may provide additional value in 
assessments of strength capacity.90 Accordingly, HGS has 
been included, as part, in decision algorithms for defining sar-
copenia and dynapenia.25,91 Although HGS alone provides 
robust health information that is feasible to measure,92 we 
postulate that HGS could be an incomplete measure of over-
all strength capacity. The inclusion of HGS as part of decision 
algorithms and criteria for determining sarcopenia,91 dynap-
enia,25 and frailty13 support that other measures should be 
considered for improving precision in the diagnoses of health 
conditions. Future research should attempt to distinguish the 
etiology of weakness from the muscular and neural systems, 
which in turn, may help in determining how weakness is a 
risk factor for morbidities that are metabolically or neurologi-
cally driven. This may include reevaluating HGS measures 
and methods, the inclusion of additional HGS measures that 
reflect other aspects of muscle function, and further refining 
decision algorithms. Avoiding physical measures that share 
common constructs with HGS, and that are more burdensome 
to participants such as maximal knee extension strength, may 
help to avoid overlap in assessing body system processes 
that contribute to weakness.93 Furthermore, maintaining uni-
formity in methods for how strength capacity data (including 
HGS) are collected will help to develop consistencies in 
protocols, comparisons across studies, and simplicity for 
healthcare providers and their patients.

To determine the role of the muscular and neural systems 
within the etiology of weakness, examining potential third 
factors (mediators) may help to reveal new insights into the 
associations of strength capacity on metabolic and neural 

diseases. This might be especially helpful because it is chal-
lenging trying to separate the contribution of the muscular 
and neural systems in strength capacity. For example, previ-
ous research has revealed that a temporal, bidirectional asso-
ciation exists for HGS and cognitive function.94,95 Similarly, 
a longitudinal, bidirectional association may exist between 
HGS and metabolic diseases such as diabetes.96,97 Such find-
ings indicate that when paralleling associations exist, losses 
of function in one factor could lead to losses in the other. 
Figure 1 provides a conceptual model for identifying third 
factors for paralleling associations between HGS and dis-
eases that are metabolically or neurologically driven, while 
Figure 2 postulates how such mediators may influence 
strength capacity and health through the muscular and nerv-
ous systems. Identifying these mediating factors may help 
not only in distinguishing how the muscular and neural 
systems contribute to weakness but also in uncovering new 
prevention and treatment strategies for weakness.

Some limitations of this review should be acknowledged. 
While this topical review highlighted evidence for the asso-
ciation between HGS and several clinically relevant health 
conditions, this work is not intended to be an all-encompass-
ing review that used systematic methods. Thus, the articles 
included in the narrative portion of this topical review share 
common limitations with other similar types of reviews.98 
Articles that did not meet our criteria for the narrative por-
tion of this review could have been used to support relevant 
text and directions for future research in HGS. Nonetheless, 
all the included articles were germane to the overarching 
premise of this review, thereby allowing for a detailed 
description of published articles on HGS and health, and 
rational for future HGS research.99

Conclusion

This review highlighted evidence for the associations of 
HGS and outcomes that are metabolically and neurologi-
cally driven. There were several studies that found low HGS 
was associated with chronic cardiometabolic diseases, neu-
ral morbidities, functional declines, and mobility limita-
tions. The wide-range of conditions linked to low HGS 
suggests that the muscular and neural systems may both fac-
tor into strength declines. Although stand-alone measures of 
HGS are feasible to complete and provide robust health 
information, the clinical meaningfulness, interpretability, 
and treatment options for low HGS are currently limited 
because the mechanistic processes that may contribute to 
weakness remains unclear and associated outcomes are 
broad. As such, we suggest that HGS as a stand-alone 
measure be considered an umbrella assessment of the body 
system processes that contribute to strength capacity, and  
a measurement of muscle strength that is representative  
of overall health status, not a specific health condition. 
Nevertheless, measures of HGS should be included in rou-
tine health assessments in clinical and epidemiological 
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settings. Continuing to distinguish the etiology of lower 
HGS from the muscular and neural systems may provide 
insights into how deficiencies in these systems contribute to 

weakness, which subsequently can help in providing speci-
ficity in future risk, prevention, and treatment for health 
conditions associated with low HGS.

Figure 1. Conceptual model for identifying third factors for paralleling associations between muscle strength capacity and morbidities 
that are metabolically or neural driven.

Figure 2. Conceptual model for evaluating how strength capacity and health could be influenced through the muscular and nervous 
systems by different categories of mediating factors.
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