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Abstract: Microfluidic devices utilizing spheroids play important roles in in vitro experimental
systems to closely simulate morphological and biochemical characteristics of the in vivo tumor
microenvironment. For the observation and analysis of the inner structure of spheroids, sectioning
is an efficient approach. However, conventional microfluidic devices are difficult for sectioning,
and therefore, spheroids inside the microfluidic channels have not been sliced well. We proposed a
microfluidic device created from embedding resin for sectioning. Spheroids were cultured, embedded
by resin, and sectioned in the microfluidic device. Slices of the sectioned spheroids yielded clear
images at the cellular level. According to morphological and immunohistochemical analyses of the
slices of the spheroid, specific protein distribution was observed.
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1. Introduction

Spheroids are scaffold-free spherical cell aggregates that are widely used as models that can
reproduce the characteristics of various tumors in vivo [1–3]. The cells within a given spheroid form
cell-to-cell and cell-to-extra-cellular matrix structures that also exist in vivo, while monolayer cultured
cells do not form these structures [1,2]. These structures work as chemical or physical barriers against
treatments using anticancer drugs or nanoparticles, respectively [4,5]. By utilizing spheroids, relevant
data regarding the in vivo environment can be acquired in vitro. However, conventional experimental
methods using culture dishes or well plates cannot apply flow to the spheroids and cannot insert
blood vessels into the spheroid, and they are therefore not sufficient to mimic the environment of real
tumors. Based on the recent advances in microfluidic techniques, a vascularized spheroid was formed
in a microchannel by generating a concentration gradient of vascular endothelial growth factor [6].
Dynamic flow behaviors, including sheer stress that is important for drug delivery efficacy and cellular
responses [7], can be applied to the cells within the spheroids through vascularized vessels [6].

Optical microscopy is utilized for the analysis of spheroids. The surface structures and molecular
distributions are analyzed using bright-field and fluorescent images, respectively. However, dense
cellular structures within the spheroids scatter and absorb incident and fluorescent lights. The inner
structures of the spheroids are difficult to visualize [8,9]. To visualize the inner structures, tissue-clearing
methods such as CLARITY are applied [9]. These clearing methods can be combined with a wide
variety of optical microscope technologies (e.g., two-photon excitation microscope, adaptive selective
plane illumination microscope, confocal laser scanning microscope, and laser sheet fluorescent
microscope) [10] to yield immunohistochemical images of the inner structures of the spheroids [11,12].
However, these clearing methods result in the loss of cellular or acellular morphological information
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that is important for cancer therapeutic strategies [7,13]. This is due to the loss of cellular or acellular
substances such as cell membrane and lipid components that occurs as a result of these clearing
methods. To obtain the cellular or acellular morphological information of the inner structures of the
spheroids at the cellular level, sectioning is preferable [14–18]. For sectioning, clouded paraffin is
typically used as an embedding resin for biological samples [19–21]. In addition to the morphological
and immunohistochemical information, cross-sections of the spheroids provide mass spectra data
regarding peptides and proteins that are often related to tumor behavior or etiologies underlying
idiopathic diseases [22].

Conventional microfluidic devices are not suitable for sectioning. The typical material for
microfluidic devices is polydimethylsiloxane (PDMS). PDMS is suitable for microfluidic devices
due to its high processing accuracy, transparency, and gas permeability. However, the softness and
elasticity of PDMS make the sectioning procedure difficult. During sectioning, PDMS is distorted
due to its soft and elastic characteristics, and this distortion results in low accuracy of slice thickness
and poor cross-sectional surface characteristics. Therefore, sectioning cannot be directly applied to
the microfluidic devices created from PDMS. For in vitro experiments utilizing microfluidic devices,
spheroids possessing blood vessels [6] or perfusing capillaries [23] were developed for use as more
advanced in vitro experimental spheroid systems. Although these systems mimic the environment
of real tumors, spheroids must be removed from microchannels using a biopsy punch [6]. This step
destroys surrounding microstructures such as blood vessels. Therefore, there are potential requirements
that must be met for the effective sectioning of spheroids used in microfluidic devices.

Here, we propose a microfluidic device created from embedding resin that enables us to section
both the microfluidic device and the spheroids inside the device after the completion of in vitro
experiments. The entire procedure, including the introduction, culture, embedding, and sectioning
of spheroids in the microchannel, has been demonstrated. The sectioned slices were analyzed by
acquiring bright-field and fluorescent images. To address both sectioning and transparency, we chose
a kind of epoxy-based embedding resin with high transparency (EPOX), as the material used for the
microfluidic devices. Through the use of an EPOX microfluidic device, spheroids were effectively
cultured, embedded, and sectioned inside a microchannel to allow for the visualization of the inner
structures and protein distributions of the spheroids.

2. Materials and Methods

2.1. EPOX Microfluidic Device

Design of the EPOX Microfluidic Device

A schematic illustration of the EPOX microfluidic device is shown in Figure 1a. The EPOX
microfluidic device consisted of two layers that included an EPOX layer that possessed a channel
with three trenches, and a PDMS layer has two ports connecting to the channel in the EPOX layer.
The dimensions of the channel and trench were 1.4 mm × 600 µm (width, depth) and 1.4 mm × 400 µm
(width, depth), respectively. These trenches functioned as traps for spheroids. The PDMS layer did not
possess any microchannels and had only two ports (4 mm × 4 mm× 3 mm, length ×width × height)
that functioned as traps for bubbles in the medium. One port with one hole of 3 mm in diameter
was used for the introduction of spheroids and the injection of EPOX to embed spheroids inside the
device. The other port with two holes of 1 mm in diameter was used for the introduction of a variety of
reagents (described in Section 2.3.2). The PDMS and EPOX layers should be separated to allow for the
sectioning of spheroids after experiments using the microfluidic devices. A temporal seal is preferable
to permanent bonding by the surface treatments such as oxygen plasma and vacuum ultra-violet light.
For the temporal seal, a mechanical method using a clamp and screw was used.
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Figure 1. Design and Fabrication of the epoxy-based embedding resin with high transparency (EPOX)
microfluidic device. (a) Schematic illustration and dimensions of the EPOX microfluidic device.
A microchannel with trenches of the EPOX layer are used for traps of the spheroid. Two ports of
the polydimethylsiloxane (PDMS) layer are used for the introducing of liquid, embedding resin and
spheroids. (b) Fabrication process of the EPOX microfluidic device. Molding of PDMS and EPOX layers.

The fabrication process is shown in Figure 1b. Briefly, PDMS (Silpot 184 W/C, Dow Corning Toray,
Tokyo, Japan. Base polymer to curing agent ratio was 10:1 by weight) and EPOX (Technovit® EPOX,
Kulzer, Hanau, Germany. Base EPOX to curing agent ratio was 2:1 by weight) were casted on molds
for the PDMS and EPOX layers and cured for 3 h at approximately 100 ◦C and 40 ◦C, respectively,
in an air-vented oven. The cured PDMS and EPOX layers were then peeled from the molds. For the
peeling of the EPOX layer, it was peeled off at approximately 100 ◦C. Holes for the inlet and outlet were
punched on the PDMS layer. To enhance the adherence of spheroids onto the channel surface of the
EPOX layer, 10% type-IC collagen (Wako, Osaka, Japan) was coated at 37 ◦C for 30 min. All components
were assembled with holders using screws (Figure S1).

The polyacetal plate was milled to fabricate the molds and holders. The molds were polished
using an abrasive compound (PiKAL Nihon Maryo-Kogyo, Tokyo, Japan) to remove the residual trace
of milling. They were designed by three-dimensional computer-aided design software.

2.2. Spheroids and Reagents

2.2.1. Formation of Spheroids

The human gastric carcinoma cell line N87 was purchased from the American Type Culture
Collection (Manassas, VA, USA) to prepare the tumor spheroid. Suspensions of N87 cells were seeded in
U-shaped bottom wells of a 96-well plate (Costar, Washington, DC, USA) to gather the cells at the bottom
of the wells. Each well was filled with 150 µL of culture medium. Culture medium was prepared with
500 mL of Dulbecco’s Modified Eagle Medium (DMEM (High Glucose with L-Glutamine, phenol-red,
and sodium pyruvate), Wako), 10% fetal bovine serum (Wako), and 100 UI/mL penicillin-streptomycin
(Wako). The cell seeding number was 1.5 × 104 cells/well. After cell seeding, the 96-well plate was
stored in an incubator at 37 ◦C and 5% CO2 concentration for 9 days, with changing of the culture
medium once every 3 days.
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2.2.2. Reagents

To evaluate cell viability, spheroids cultured both in the microfluidic device and in a 96-well plate
were fluorescently stained using calcein-AM (Invitrogen) and propidium iodide (PI, Wako) at 37 ◦C
and 5% CO2 for 2 h. Calcein-AM and PI were dissolved in phosphate-buffered solution (PBS, Wako) to
adjust their concentrations to 0.5 and 1 mg/mL, respectively.

To embed spheroids, 4% paraformaldehyde (Nacalai Tesque, Inc., Kyoto, Japan) and 99.5% ethanol
(Wako) were used for chemical fixation and dehydration, respectively.

To evaluate protein distribution within the cross-sections of spheroids, the spheroid slices were
stained using fluorescent dye-labeled antibodies. In this report, HER2 and integrin were visualized.
HER2 is a protein that expresses strongly on the N87 cell surface [23]. Anti-HER2 antibody conjugated
to AF488 (Alexa Fluor® 488 anti-human CD340 (erbB2/HER2) Antibodies, BioLegend, San Diego, CA,
USA) and anti-integrin antibodies conjugated to AF555 (Anti-integrin αvβ5 Antibody, Alexa Fluor®

555 Conjugated, Bioss, Woburn, MA, USA) were used. The concentrations of anti-HER2 antibody and
anti-integrin antibody were 5.0 and 3.0 µg/mL, respectively. Slices of a sectioned spheroid were soaked
in a mixed solution of the antibodies at 37 ◦C for 2 h. Dyed slices were placed between the slide and
cover glasses.

2.3. Experimental Procedure

2.3.1. Image Acquisition and Quantification

Bright-field images were captured using a digital camera (EOS 6D, Canon, Tokyo, Japan) mounted
onto an inverted microscope (IX73, Olympus, Tokyo, Japan). Confocal fluorescence images were
captured using an electron multiplying charge coupled device camera (EMCCD, iXon Ultra, Andor,
Tokyo, Japan) mounted onto an inverted microscope (IX83, Olympus). For the excitation light source
used for the confocal microscopy, solid-state lasers (wavelength: 488 and 561 nm, TAC, Saitama, Japan)
were chosen. The confocal fluorescence images were saved in 16-bit TiFF format, and fluorescence
intensity was quantified using a capture software (iQ3, Andor).

To evaluate the EPOX biocompatibility, cell viability was examined. Green (indicating live cells)
and red (indicating dead cells) fluorescence pixels were counted. The percentage of live cells compared
to all cells of each spheroid was calculated using the following equation:

Viability (%) =
Pixels of green fluorescence

pixels of green fluorescence + pixels of red fluorescence
× 100 (1)

To evaluate the immunohistochemistry, HER2 and integrin were stained. The distributions
of green fluorescence (indicating HER2) and red fluorescence (indicating integrin) intensities were
measured for each pixel. Both fluorescent intensities were normalized to the maximum intensities for
comparisons among spheroids.

2.3.2. Operation of EPOX Device from Embedding to Sectioning of Spheroids

The entire procedure describing the use of the EPOX device is shown in Figure 2. DMEM
was introduced into the microchannel using a syringe pump (KDS200, kd Scientific, Holliston, MA,
USA) (Figure 2a). Spheroids cultured in 96-well plates were transferred to the microchannel through
a 3-mm-diameter hole (Figure 2b). The spheroids were moved toward the microchannel using
gravitational force through manual tilting of the microfluidic device and dropped into the trenches.
The microfluidic device was horizontally placed into an incubator to maintain it at 37 ◦C and 5%
CO2 overnight. During this incubation, the spheroids adhered onto the surface of the microchannel.
DMEM was flushed out of the system using PBS at the flow rate of 50 µL/min for 10 min using the
syringe pump. To fix the spheroids inside the microchannel, 4% paraformaldehyde was introduced
at a flow rate of 50 µL/min for 10 min and this was followed by storage at room temperature for 1
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h (Figure 2c). To dehydrate the fixed spheroids, ethanol and deionized (DI) water were introduced.
By controlling the ratio of the ethanol and DI water, a graded series of ethanol was prepared in the
channel (e.g., 50%, 70%, 90%, 99.5% ethanol). For example, 50% ethanol was prepared when the flow
rates of both ethanol and DI water were 50 µL/min. The flow rate of ethanol and the duration of
the dehydration were 50 µL/min and 5 min at each concentration, respectively (Figure 2d). Ethanol
is usually used for dehydration but too strong without any dilution. Biological samples should be
gradually dehydrated by graded series of ethanol to prevent the sample from collapsing. The residual
ethanol was removed by the introduction of air using a syringe pump, and the ethanol was evaporated
in the air-vent oven at 37 ◦C for 3 min prior to embedding the spheroids in EPOX (Figure 2e). Without
this complete evaporation, EPOX cannot be fully cured in the following steps. EPOX was manually
introduced through the large hole using a syringe (Figure 2f). After the addition of EPOX into the
microchannel, the microfluidic device was placed in the air-vent oven and cured at 37 ◦C for 4 h
(Figure 2g). The EPOX layer was separated from the PDMS layer (Figure 2h) and was cut into a square
5 × 5 mm chip (Figure 2i). The chip was glued onto a specimen holder of a cryostat (HM550, Thermo
Fischer) using EPOX. The glued chip was sectioned to a 10–20 µm thickness at room temperature
(Figure 2j). Slices of the spheroid were collected on the slide glass (Figure 2k).
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Figure 2. The operation of the EPOX device from embedding to sectioning of the spheroids. (a) DMEM
filling. (b) Introduction of the spheroids using gravitational force by tilting. (c) Chemical fixation of the
spheroids. (d) Dehydration of the spheroids using a graded series of ethanol. (e) Evaporation of the
residual ethanol. (f) Injection of EPOX. (g) Curing of EPOX. (h) Device disassembly. (i) Cutting of the
EPOX layer. (j) Slicing of the EPOX device by cryostat. (k) Slice collection.

3. Results and Discussion

3.1. EPOX Biocompatibility

The biocompatibility of EPOX is important for performing biological experiments using spheroids
within EPOX microfluidic devices. To analyze the toxicity of EPOX with regard to spheroids, the viability
of cells in the spheroids was measured.
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The viability of cells in the spheroids cultured in the EPOX device for 1 day after introduction was
92.4 ± 1.3% (N = 3), where N is the sample number and errors are standard deviation. In contrast,
the viability of the cells in the spheroids cultured in the 96-well plate for 1 day after introduction was
94.0 ± 2.3% (N = 3). There was no appreciable difference between the viability of cells in the spheroids
in the EPOX device and that in the 96-well plate.

3.2. Whole Slice Imaging of Sectioned Spheroids

Figure 3 shows the slices of a sectioned spheroid embedded in the EPOX microfluidic device.
The embedded spheroid was sectioned from slices 1 to 16 in the order indicated in Figure 3a. The shape
of the cross-section of the spheroid is elliptical rather than circular (Figure 3b). This is due to the
adherence of the spheroid onto the surface of the microchannel covered by collagen as a scaffold to
promote the adhesion of spheroids. The width of the spheroid was approximately 300 µm. All the slices
were visualized by a bright-field microscope (Figure 3c). A white dotted line shows the outline of the
shape of the trench (slice 1 in Figure 3c). The thickness of the slices was 18 µm and the total thickness
was 288 µm. The diameter of the spheroid before sectioning and the total thickness of the sectioned
spheroid were comparable. This result suggests that the spheroid embedded in the microchannel was
well sectioned without removal from the microchannel. From the analysis of all the slices, we could
obtain precise three-dimensional information for the spheroid.
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Figure 3. Images of slices of the sectioned spheroid. (a) Schematic illustration of the embedded
spheroid. Slice orders and positions are described. (b) Image of the embedded spheroid. (c) All the
slices of the sectioned spheroid embedded in the EPOX microchannel. The dark area corresponds to
the spheroid in slices surrounded by white dash lines. Scale bar; 100 µm.

3.3. Immunohistochemistry of Spheroids

To immunohistochemically analyze the distribution of the HER2 and integrin proteins throughout
the spheroid, the slices of 10 µm in thickness were dyed in the mixed solution of HER2 and integrin



Micromachines 2020, 11, 480 7 of 9

antibodies. Figure 4 shows the distribution of HER2 and integrin within the cross-section of the
spheroid. The slice was obtained from the center of the spheroid (white dash line in Figure 4a).
In Figure 4b, no specific structures were observed. Strong expression of HER2 and integrin was
observed near the surface (Figure 4c,d). Furthermore, high HER2 and integrin expression was also
observed in proximity to the core. The expression level of HER2 and integrin outside the core was low
with the exception of the surface of the spheroid. These features correspond to the protein distributions
in N87 spheroids [24,25], and they suggest that the inner information of the spheroid was obtained.
We believe that these structures within the spheroid may correspond to proliferative, dormant, and
necrotic core regions [26]. The structure in the spheroid over 300 µm in diameter was difficult to
visualize using the conventional analysis method involving the combination of a PDMS microfluidic
device and a confocal microscope.
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Figure 4. Immunohistochemical analysis of a slice of the sectioned spheroid. (a) Image of an embedded
spheroid. White dash line indicates the location of the obtained slice. Scale bar: 300 µm. (b) Bright-field
image of the slice of the sectioned spheroid. (c) Distribution of HER2 inside the spheroid. (c) Distribution
of integrin inside the spheroid. Scale bar: 100 µm. (e) Normalized fluorescent intensity against the
position along the white line of (c,d). Black arrows indicate the peak of fluorescent intensity and
correspond to the white arrows of (c,d).

Structures and functions retained in conventional microfluidic devices (e.g., micro-pillar [6],
valve [27], concentration gradient generator [28] etc.,) can be constructed thanks to the high
processability of EPOX. We expect that the EPOX microfluidic device will achieve advanced in vitro
experiments to spheroids such as angiogenesis with spheroids and high-throughput drug screening.
The spheroids tested in the EPOX microfluidic devices can be sectioned, and then, the internal structures,
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especially hypoxia region in cancer [29,30], will be morphologically and immunohistochemically
analyzed, which is difficult in the conventional methods using microfluidic devices and considerably
important for biological and medical studies.

4. Conclusions

We developed the EPOX microfluidic device to perform in vitro experiments using a spheroid in
a microchannel and to morphologically and immunohistochemically analyze the sectioned spheroid
inside the microchannel. We achieved the embedding and the sectioning of the spheroids inside
the microchannel. Using this microfluidic device, we obtained and observed slices of the spheroids.
The inner structure and protein distribution of thick biological samples (over 300 µm) such as spheroids,
organoids, and even tissues can be analyzed. The inner structures often include key information that is
critical for understanding many vital phenomena and diseases. Thus, we believe that this microfluidic
device will become a powerful tool that can be used to study thick biological samples.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/5/480/s1,
Figure S1: Fabricated EPOX microfluidic device.
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