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Abstract

Objective: To investigate whether IL-1R-associated kinase (IRAK)-M is associated with predia-

betes and type 2 diabetes (T2D).

Methods: In this cross-sectional study, enrolled subjects were assigned to different groups

according to their fasting plasma glucose (FPG) values. IRAK-M and metabolic parameters, includ-

ing fasting insulin (FINS), glycosylated hemoglobin (HbA1c), homeostasis model assessment of

insulin resistance (HOMA-IR) and beta-cell function (HOMA-b), and thioredoxin-interacting

protein (TXNIP), were evaluated. The area under the receiver operating characteristic curve

of IRAK-M and TXNIP for prediabetes and T2D was determined.

Results: IRAK-M decreased significantly with increasing FPG levels. IRAK-M was negatively

correlated with TXNIP, FPG, FINS, HbA1c, and HOMA-IR and positively correlated with

HOMA-b. The diagnostic cutoff value of IRAK-M was 3.76 ng/mL for prediabetes and

3.45 ng/mL for T2D. After stratifying by IRAK-M (<3.76 and �3.76 ng/mL), patients with a

higher TXNIP level showed a greater risk of prediabetes or T2D in the subgroup with low

IRAK-M (<3.76 ng/mL).

Conclusions: IRAK-M is independently and positively associated with prediabetes and T2D,

while TXNIP is independently and negatively associated with prediabetes and T2D. IRAK-M

and TXNIP serve as diagnostic factors for prediabetes.
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Introduction

Type 2 diabetes (T2D) is a metabolic dis-
ease associated with insulin resistance and
pancreatic islet b-cell dysfunction. The
development of T2D involves the chronic
activation of inflammatory pathways.1

Toll-like receptors (TLRs), the most
upstream pattern-recognition receptors in
immune cells, recruit intracellular signaling
molecules, including myeloid differentiation
primary response gene 88 (MyD88),
members of interleukin (IL)-1 receptor-
associated kinases (IRAKs), and tumor
necrosis factor (TNF) receptor-associated
factor 6 (TRAF-6), leading to the activation
of c-Jun N-terminal kinase, p38, and nuclear
factor-kappa B (NF-jB)-dependent inflam-
matory responses.1 TLRs are activated by
exogenous infectious ligands and respond
to endogenous autoantigens released upon
cell death or injury, inducing inflammation
and leading to the development of autoim-
mune diseases and self-tissue damage.1

TLRs have been suggested to play a role
in b-cell dysfunction and glucose homeosta-
sis, priming the pathogenesis of T2D.2,3 The
stimulation of TLRs triggers downstream
pathways involving modulatory molecules
and induces the production of the inflam-
matory cytokines IL-1b and IL-18.4 IL-1b
levels are elevated upon exposure to high
glucose, leading to sustained inflammation
and diabetic cell damage/cell death.5,6

Increased serum levels of IL-18 were also
observed in patients with T2D.7 The activa-
tion of TLR2 and TLR4 was shown to have
negative effects on insulin resistance.8

A recent study using a T2D mouse model

revealed that TLR4/MyD88/NF-jB signal-
ing induces the production of IL-6, TNF-a,
and monocyte chemoattractant protein,
leading to the heart- and liver-related
complications of T2DM.9 Inflammatory
responses induced by TLR4 activation in
human islets lead to b-cell failure.10 In an
in vivo study, saturated fatty acids were
shown to induce b-cell dysfunction by
recruiting M1 macrophages to islets via the
TLR4/MyD88 pathway.11 Macrophage-
mediated TLR signaling may alter the islet
cytokine secretome and increase immunore-
activity in islets, suggesting that TLR signal-
ing provides a target for the treatment of
islet inflammation in T2D.12 In vivo, b-cell
death and its sensing via TLR2 may be an
initial event for the stimulation of antigen-
presenting cells and development of autoim-
mune diabetes.13 Additional studies revealed
that the expression levels of TLR2 and
TLR4 proteins in monocytes in the periph-
eral blood of patients with T2D are signifi-
cantly higher than those in healthy
people.14–16

IRAKs play important roles in TLR/
IL-1R signaling. IRAK family members
consisting of IRAK1, IRAK2, IRAK3
(IRAK-M), and IRAK4 mediate the activa-
tion of TLR and IL-1R signals and have a
positive or negative regulatory effect on
innate immunity, adaptive immunity, and
inflammation.17 Current studies suggest a
negative regulatory role of IRAK-M in
TLR/IL-1R signaling through several
mechanisms14,15,18–21 The expression of
thioredoxin-interacting protein (TXNIP),
which activates inflammatory pathways
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during the immune response, is also increased

in patients with T2D.22,23 The TLR4/

MyD88-mediated NF-jB pathway may also

interact with components of inflammation in

a TXNIP-associated manner.24

Inflammation is an important compo-

nent underlying the pathogenesis of predia-

betes and T2D. IRAK-M may mediate

glucose homeostasis, directly or indirectly.

IRAK-M-deficient mice are more prone to

the development of type 1 diabetes (T1D)

and glucose intolerance.25 In addition,

IRAK-M was shown to be involved in

obesity-induced metabolic inflammation26

and atherogenesis.27 IRAK-M inhibits

IRAK-1-mediated production of proin-

flammatory cytokines by preventing the

phosphorylation of IRAK-1 and dissocia-

tion of phosphorylated IRAK-1 from the

MyD88 complex, and the deletion of

IRAK-1 improves muscle insulin sensitivi-

ty.28 TXNIP also regulates glucose and

lipid metabolism by mediating b-cell func-
tion.29 As such, the downstream regulators

of TLR signaling IRAK-M and TXNIP are

suggested to be involved in T2D.
There are limited studies on the changes

in IRAK-M levels in patients with predia-

betes, and its relationship with related met-

abolic indexes, including indicators of b-cell
function and insulin resistance, is unclear.

In addition, although TXNIP was sug-

gested to be highly increased in patients

with T2D, it is unclear whether TXNIP is

increased in the prediabetes stages. To

investigate the association of IRAK-M

and TXNIP changes with the development

of prediabetes and T2D and assess the use

of IRAK-M and TXNIP as additional indi-

cators of prediabetes and T2D, we mea-

sured IRAK-M and TXNIP in patients

with various fasting plasma glucose (FPG)

levels and determined the cutoff values of

IRAK-M and TXNIP for prediabetes and

T2D with receiver operating characteristic

curve (ROC) analysis.

Materials and methods

Study design and patients

In this cross-sectional study, consecutive

subjects undergoing routine physical health

examination in the Second Affiliated

Hospital of Ningxia Medical University,

China, between August 2020 and

November 2020 were enrolled. Patients

were excluded if they 1) were previously

diagnosed with prediabetes, T1D, or T2D;

(2) had acute or chronic infections; (3) had

autoimmune diseases; (4) had a history of

cardiovascular or cerebrovascular diseases;

(5) had chronic kidney disease, liver disease,

blood disease, or cancer; (6) had thyroid dys-

function; or (7) had alcohol or drug abuse.

Women who were taking hormone replace-

ment therapy were also excluded. Included

subjects were classified into four groups

according to their FPG values: 1) normal

control (NGT), FPG< 5.6mmol/L; 2) pre-

diabetes A (PD-A), 5.6mmol/L�FPG<
6.1mmol/L; 3) prediabetes B (PD-B),

6.1mmol/L�FPG< 7.0mmol/L; and 4)

T2D, FPG� 7.0mmol/L. The diagnosis of

prediabetes and T2D was based on the

2021 American Diabetes Association stand-

ards.30 All patients were newly diagnosed

with prediabetes or T2D, and none had

received diabetes medications or dietary sup-

plement interventions.
This study conformed to the principles of

the Declaration of Helsinki and was

approved by the Ethics Committee of The

First People’s Hospital of Yinchuan (No.

2021029). Written informed consent was

provided by all subjects before they partic-

ipated in the study.

Data collection

Family history of T2D, personal history of

complications, and individual past medical

history were obtained with a unified ques-

tionnaire. Baseline characteristics, including
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systolic blood pressure (SBP), diastolic
blood pressure (DBP), height, weight,
waist circumference (WC), hip circumfer-
ence, body mass index (BMI), and waist-
to-hip ratio (WHR), were measured.
Peripheral venous blood was collected
after an 8- to 12-hour fast for laboratory
tests, which included FPG, total cholesterol
(TC), low-density lipoprotein (LDL), high-
density lipoprotein (HDL), triglycerides
(TG), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), creati-
nine (Cr), and uric acid (UA) (AU5821
automatic biochemical analyzer, Beckman
Coulter, Brea, California, USA). Fasting
insulin (FINS) and glycosylated hemoglo-
bin (HbA1c) were detected by an enzyme-
linked immunosorbent assay (ELISA) with
a fluorescence microplate reader (Promega-
GloMax, Madison, WI, USA), and the con-
centrations of IRAK-M and TXNIP were
measured with an ELISA kit (JL46021,
Jianglai Biological Co., Ltd., Shanghai,
China). Homeostasis model assessment of
insulin resistance (HOMA-IR) and beta-
cell function (HOMA-b) were calculated
as HOMA-IR¼FPG�FINS/22 and
HOMA-b¼ 20�FINS/(FPG�3.5). The
estimated glomerular filtration rate (eGFR)
was calculated with the Chronic Kidney
Disease Epidemiology Collaboration
(CKD-EPI) equation.31

Statistical analysis

Based on a preliminary estimation of a
�15% incidence of diabetes and 40% inci-
dence of prediabetes in a local community,
a power analysis suggested a sample size of
at least 370 participants would be neces-
sary, with a power of 0.8 and a type I
error (a) of 0.05. Data are expressed as a
number (percentage) or mean� standard
deviation. Comparisons among different
groups were performed by the one-way
analysis of variance, and comparisons
between two groups were performed with

student’s t-test. Pearson’s correlation test
and multivariate stepwise linear regression
analysis were used to assess the correlation
and impact between parameters, respective-
ly. Logistic regression analysis was used to
assess the odds ratio of IRAK-M and
TXNIP in predicting prediabetes and
T2D. A ROC curve was used to calculate
the specificity and sensitivity of IRAK-M and
TXNIP for the diagnosis of prediabetes and
T2D. All data analyses were conducted using
GraphPad Prism 8.0 software (GraphPad
Software, La Jolla, CA, USA) and IBM
SPSS Statistics for Windows, Version 25.0
software (IBM Corp., Armonk, NY, USA).
P< 0.05 was considered to indicate a statisti-
cally significant difference.

Results

Demographic characteristics

Four hundred thirty subjects, including 281
men and 149 women, were included in this
study and classified into the NGT (n¼ 119),
PD-A (n¼ 75), PD-B (n¼ 123), and T2D
(n¼ 113) groups according to their FPG.
Among all included subjects, 50% had
hypertension, and 30% were receiving med-
ications (angiotensin-converting enzyme
inhibitors, calcium channel blockers, or
other antihypertensive drugs). The mean
age, sex, and proportion of patients with
hypertension were similar between the four
groups (Table 1). However, there were sig-
nificant differences in SBP, DBP, BMI, WC,
WHR, TG, LDL, ALT, AST, HbA1c, FPG,
FINS, HOMA-IR, and HOMA-b between
the four groups (all p< 0.05, Table 1).

In addition, SBP, DBP, BMI, WC,
WHR, TG, LDL, ALT, AST, HbA1c,
FPG, FINS, and HOMA-IR increased
significantly with higher FPG values,
whereas HOMA-b significantly decreased
(all p< 0.05, Table 1). LDL, ALT, AST,
UA, and eGFR were not linearly associated
with the FPG level; they were highest in the
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PD-B group but lowest in the T2D group

(Table 1). In the comparison of these four

groups, there was an increasing trend in the

levels of FPG, HbA1c, FINS, HOMA-IR,

and TG and a decreasing trend in HOMA-b
levels (Table 1).

IRAK-M and TXNIP are associated with

the severity of diabetes

There were highly significant differences in

the levels of IRAK-M and TXNIP between

these four groups (all p< 0.001, Table 1).
Compared with that in the NGT group, the
IRAK-M level was significantly decreased in
PD-A, PD-B, or T2D groups, whereas the
TXNIP level was significantly increased in
these three groups (all p< 0.05, Figure 1a
and 1b). There was a decreased trend in
IRAK-M levels and an increased trend in
TXNIP levels with the severity of diabetes.
Moreover, the IRAK-M level was negatively
correlated with the TXNIP level in all sub-
jects (r¼�0.766, p< 0.001, Figure 1c).

Table 1. Main metabolic indexes among groups.

NGT (n¼ 119) PD-A (n¼ 75) PD-B (n¼ 123) T2D (n¼ 113) p-value

Age (years) 45.29� 8.93 45.39� 10.00 46.55� 7.74 46.57� 8.21 0.535

Men, n (%) 80 (67.23) 48 (64.00) 80 (65.04) 73 (64.60) 0.968

SBP (mmHg) 125.86� 14.08 135.99� 17.82 136.07� 19.11 137.00� 19.43 <0.001*

DBP (mmHg) 79.64� 11.21 85.89� 12.66 86.54� 12.66 85.19� 11.76 <0.001*

BMI (kg/m2) 24.55� 3.66 25.94� 3.23 26.35� 4.23 27.39� 8.7 0.001*

WC (cm) 81.96� 10.64 88.61� 10.50 88.77� 10.32 89.79� 9.02 <0.001*

WHR (cm/cm) 0.84� 0.07 0.89� 0.07 0.88� 0.10 0.90� 0.06 <0.001*

Hypertension, n (%) 63 (52.90) 36 (48.00) 63 (51.20) 53 (46.90) 0.792

Laboratory index

FPG (mmol/L) 5.02� 0.35 5.78� 0.13 6.45� 0.24 9.36� 2.50 <0.001*

HbA1c (ng/mL) 165.06� 23.17 188.78� 23.54 221.06� 23.54 246.67� 23.70 <0.001*

FINS (mIU/L) 4.96� 0.54 5.51� 0.66 6.00� 0.48 6.76� 0.50 <0.001*

HOMA-IR 1.11� 0.15 1.42� 0.17 1.72� 0.15 2.82� 0.79 <0.001*

HOMA-b 69.26� 19.26 48.61� 6.27 41.01� 4.72 26.56� 8.98 <0.001*

TG (mmol/L) 1.84� 1.06 2.27� 1.50 2.48� 1.40 2.61� 1.60 <0.001*

TC (mmol/L) 4.82� 0.87 5.07� 1.15 5.18� 1.23 5.09� 0.94 0.057

HDL (mmol/L) 1.34� 0.24 1.35� 0.24 1.31� 0.26 1.29� 0.24 0.242

LDL (mmol/L) 2.64� 0.57 2.91� 0.70 3.00� 0.88 2.90� 0.61 0.001*

ALT (mmol/L) 21.97� 12.60 29.54� 21.20 36.11� 26.34 34.26� 28.65 <0.001*

AST (mmol/L) 25.49� 6.56 27.54� 8.68 32.84� 20.97 28.08� 13.13 0.001*

Cr (mmol/L) 67.91� 11.89 69.01� 11.57 66.79� 12.57 65.34� 15.87 0.268

eGFR (mL/min/1.73m2) 103.64� 11.06 100.55� 10.54 102.89� 12.22 99.25� 13.32 0.350

UA (mmol/L) 338.08� 99.26 371.45� 85.68 372.58� 98.79 328.51� 97.89 0.001*

Biomarker

IRAK-M (ng/mL) 4.74� 0.93 3.31� 0.77 3.11� 1.10 2.27� 0.67 <0.001*

TXNIP (ng/mL) 2.92� 0.73 4.32� 0.97 4.77� 1.18 6.33� 1.06 <0.001*

*p< 0.05.

NGT, normal control; PD-A, prediabetes A; PD-B, prediabetes B; T2D, type 2 diabetes; SBP, systolic blood pressure; DBP,

diastolic blood pressure; BMI, body mass index; WC, waist circumference; WHR, waist-to-hip ratio; TG, triglycerides;

TC, total cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALT, alanine aminotransferase; AST,

aspartate aminotransferase; Cr, creatinine; eGFR, estimated glomerular filtration rate; UA, uric acid; HbA1c, glycosylated

hemoglobin; FPG, fasting plasma glucose; FINS, fasting insulin; HOMA-IR, homeostasis model assessment of insulin

resistance; HOMA-b, homeostasis model assessment of b-cell function; IRAK-M, interleukin-1 receptor-associated kinase

M; TXNIP, thioredoxin-interacting protein.
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Association of metabolic parameters

with IRAK-M

By Pearson correlation analysis, IRAK-M

was negatively correlated with FPG, FINS,

HbA1c, and HOMA-IR and positively

correlated with HOMA-b (all p< 0.001,

Figure S1). Subsequent multiple stepwise

linear regression analysis showed that the

IRAK-M level was significantly associated

with TXNIP, HbA1c, TG, HOMA-b,
FINS, and UA in all subjects (all p< 0.05,

Table 2). TXNIP was significantly associat-

ed with HbA1c, TG, FINS, HOMA-IR,

IRAK-M, and AST in these subjects

(all p< 0.05, Table 2).

IRAK-M or TXNIP is an independent

indicator of diabetes

In the logistic regression analysis with or

without adjustments for confounding fac-

tors, subjects with higher IRAK-M levels

had a lower risk of prediabetes and T2D

(all p< 0.05, Table 3). In addition, subjects

with higher TXNIP levels had a higher

risk of prediabetes and T2D (all p< 0.05,

Table 3). Furthermore, we performed

ROC curve analysis of IRAK-M or

TXNIP for prediabetes and T2D. As

shown in Figure 2a, the diagnostic cutoff

value of the IRAK-M level for prediabetes

was 3.76 ng/mL, yielding an area under the

Figure 1. Serum IRAK-M and TXNIP levels in the four groups. Comparison of IRAK-M (a) or TXNIP levels
(b) in NGT, PD-A, PD-B, and T2D groups. The red lines represent the mean� standard deviation and
(c) The correlation between IRAK-M and TXNIP was assessed by Pearson correlation analysis, *p< 0.05.
IRAK-M, interleukin-1 receptor-associated kinase M; TXNIP, thioredoxin-interacting protein; NGT, normal
control; PD-A, prediabetes A; PD-B, prediabetes B; T2D, type 2 diabetes.
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curve (AUC) of 0.877, sensitivity of 80.3%,
and specificity of 81.5% (p< 0.001). The
diagnostic cutoff value of the IRAK-M
level for T2D was 3.45 ng/mL, yielding an
AUC of 0.983, sensitivity of 93.8%, and
specificity of 94.1% (p< 0.001, Figure 2b).
In addition, the diagnostic cutoff value of
the TXNIP level for prediabetes was
3.45 ng/mL, yielding an AUC of 0.872, sen-
sitivity of 80.3%, and specificity of 80.7%
(p< 0.001, Figure 2c). The diagnostic cutoff
value of the TXNIP level for T2D was
4.30 ng/mL, yielding an AUC of 0.991, sen-
sitivity of 99.1%, and specificity of 95.8%
(p< 0.001, Figure 2d).

After stratifying by IRAK-M (<3.76 and
�3.76 ng/mL) according to the data shown
in Figure 2a, we further assessed whether
IRAK is associated with TXNIP-related
diabetes. As shown in Table S1, logistic
regression analysis revealed that patients

Table 2. Multivariate stepwise linear regression
analysis.

IRAK-M TXNIP

Predictors b p-value b p-value

TXNIP �0.301 <0.001* – –

HbA1c �0.254 <0.001* �0.363 <0.001*

TG 0.210 <0.001* 0.120 <0.001*

HOMA-b 0.211 <0.001* – –

FINS �0.110 0.005* 0.112 0.020*

UA �0.074 0.021* – –

HOMA-IR – – 0.178 <0.001*

IRAK-M – – �0.257 <0.001*

AST – – �0.071 0.016*

*p< 0.05.

TG, triglycerides; AST, aspartate aminotransferase; UA,

uric acid; HbA1c, glycosylated hemoglobin; FINS, fasting

insulin; HOMA-IR, homeostasis model assessment of

insulin resistance; HOMA-b, homeostasis model

assessment of b-cell function; IRAK-M, interleukin-1

receptor-associated kinase M; TXNIP, thioredoxin-

interacting protein.

Table 3. Logistic regression analysis of predictors and diabetes.

PD-A PD-B T2D

Model NGT aOR (95% CI) p-value aOR (95% CI) p-value aOR (95% CI) p-value

IRAK-M

Unadjusted Ref. 0.15 (0.09,0.26) <0.001* 0.28 (0.18,0.35) <0.001* 0.02 (0.01,0.06) <0.001*

Model 1 Ref. 0.16 (0.08,0.27) <0.001* 0.27 (0.19,0.39) <0.001* 0.01 (0.01,0.04) <0.001*

Model 2 Ref. 0.15 (0.07,0.31) <0.001* 0.46 (0.28,0.77) 0.003* 0.05 (0.01,0.50) 0.010*

TXNIP

Unadjusted Ref. 5.02 (3.12,8.07) <0.001* 4.83 (3.36,6.94) <0.001* 22.16 (8.40,58.49) <0.001*

Model 1 Ref. 4.46 (2.75,7.23) <0.001* 4.89 (3.25,7.35) <0.001* 51.75 (9.43,283.99) <0.001*

Model 2 Ref. 4.35 (2.22,8.53) <0.001* 2.94 (1.76,4.90) <0.003* 8.64 (1.31,56.90) 0.025*

Logistic model 1: adjustment for age, sex, SBP, DBP, BMI, WC, WHR, and hypertension.

Logistic model 2: adjustment for age, sex, SBP, DBP, BMI, WC, WHR, hypertension, TG, LDL, ALT, AST, UA, and

IRAK-M/or TXNIP.

*p< 0.05.

NGT, normal control; PD-A, prediabetes A; PD-B, prediabetes B; T2D, type 2 diabetes; aOR, adjusted odds ratio; CI,

confidence interval; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; WC, waist

circumference; WHR, waist-to-hip ratio; TG, triglycerides; LDL, low-density lipoprotein; ALT, alanine aminotransferase;

AST, aspartate aminotransferase; UA, uric acid; IRAK-M, interleukin-1 receptor-associated kinase M; TXNIP, thioredoxin-

interacting protein.
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with a higher TXNIP level had a greater
risk of PD-A, PD-B, or T2D in the sub-
group with low IRAK-M (<3.76 ng/mL),
before and after adjusting for confounding
factors (all p< 0.05). However, those with a
higher TXNIP level only had a greater risk
of PD-A in the subgroup with high IRAK-
M (�3.76 ng/mL), before and after adjust-
ing for confounding factors (all p< 0.05).

Discussion

In this study, we found that the plasma level

of IRAK-M was significantly lower in

patients with newly diagnosed prediabetes

or T2D. IRAK-M was significantly posi-

tively correlated with HOMA-b and signif-

icantly negatively correlated with FPG,

FINS, HbA1c, and HOMA-IR. These

results suggest that decreased IRAK-M is

Figure 2. ROC curve for IRAK-M and TXNIP for the prediction of prediabetes or T2D. The ROC analysis
showed that the optimal cutoff values of IRAK-M for prediabetes (a) and T2D (b) were 3.76 ng/mL and
3.45 ng/mL, respectively. The AUCs for prediabetes and T2D were 0.877 and 0.983, respectively. The ROC
analysis showed that the optimal cutoff values of TXNIP for prediabetes (c) and T2D (d) were 3.45 ng/mL
and 4.30 ng/mL, respectively. The AUCs for prediabetes and T2D were 0.872 and 0.991, respectively.
*p< 0.05.
ROC, receiver operating characteristic; IRAK-M, interleukin-1 receptor-associated kinase M; TXNIP,
thioredoxin-interacting protein; T2D, type 2 diabetes; AUC, area under the curve.
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associated with prediabetes and T2D.
Moreover, the plasma level of TXNIP was
significantly higher in patients with newly
diagnosed prediabetes or T2D. TXNIP
was also negatively correlated with
IRAK-M, suggesting that increased
TXNIP is associated with prediabetes and
T2D. These results revealed a reduced trend
in IRAK-M and an elevated trend in
TXNIP with increasing FPG levels.
Logistic regression analysis indicated that
IRAK-M is an independent negative pre-
dictor of prediabetes and T2D, while
TXNIP is an independent positive predictor
of prediabetes and T2D. The high AUC
values for IRAK-M (0.877) and TXNIP
(0.872) in prediabetes and IRAK-M
(0.983) and TXNIP (0.991) in T2D further
suggested that IRAK-M and TXNIP are
reliable markers of early T2D development.
T2D is a metabolic disorder associated with
uncontrolled hyperglycemia and chronic
inflammation that can lead to islet b-cell
injuries. Under normal physiological condi-
tions, insulin secreted by b-cells lowers
blood glucose by activating insulin
receptors on the surface of various cells,
including adipocytes, cardiocytes, and hep-
atocytes, and increases glucose uptake.
However, insulin resistance affects the
metabolism of several cell types, resulting
in endoplasmic reticulum stress, oxidative
stress, lipid homeostasis dysregulation,
and mitochondrial dysfunction, which fur-
ther leads to the development of T2D and
its complications.32,33 The development of
T2D and its complications is also associated
with abnormal immune responses and
chronic inflammation,34 and innate immu-
nity is highly associated with T2D.35 The
functions of innate immune cells involved
in T2D are mainly mediated via TLRs, par-
ticularly TLR2 and TLR4.36 TLRs recog-
nize exogenous and endogenous antigens
and produce pro-inflammatory cytokines
and chemokines, resulting in chronic
inflammation that may damage b-cells and

lead to T2D.1,36 Several molecules are
involved in TLR signaling.37 Among
them, IRAK-M mainly restricted to mono-
cytes/macrophages is a negative regulator
of TLR signaling pathways.21 IARK-M is
induced upon TLR stimulation and then
prevents the dissociation of IRAK-1 and
IRAK-4 from MyD88 and the formation
of the IRAK-1-TRAF-6 complex.21 A pre-
vious study with nonobese diabetic mice
found that IRAK-M deficiency (IRAK-
M�/�) led to the early onset and rapid pro-
gression of T1D, accompanied by more
severe insulitis and elevated anti-insulin
autoantibodies.25 In our cross-sectional
study with human subjects classified
according to FPG, the level of IRAK-M
was significantly decreased in patients with
T2D and also during the prediabetes stages
(PD-A and PD-B groups). Therefore, we
speculate that before T2D develops, abnor-
malities in TLR signaling occur in an
IRAK-M-associated manner.

TXNIP is another chronic inflammation-
related factor that may cause islet b-cell dys-
function.38 TXNIP is an activator of the
NOD-, LRR- and pyrin domain-containing
protein 3 (NLRP3) inflammasome, mediat-
ing oxidative stress by interacting with and
inhibiting thioredoxin.38,39 Under high glu-
cose conditions, the gene expression of
TXNIP is upregulated in islet cells. In addi-
tion, reactive oxygen species (ROS) are
induced under hyperglycemia, subsequently
triggering the release of TXNIP from thio-
redoxin, activating TXNIP/NLRP3 and a
series of related inflammatory reactions,
and leading to b-cell apoptosis.40–42

Recently, NADPH oxidase 5 (NOX5) was
identified as a downstream target of the
TLR pathway, and NOX5-derived ROS
may be modulated by IRAK.43

Furthermore, ROS activate NLRP3 by pro-
moting TXNIP and NIMA-related kinase 7
interactions with NLRP3. The ROS produc-
tion induced by IRAK may contribute to
NLRP3 activation initiated by the activation
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of these kinases.41,44,45 In addition, TXNIP
was shown to be highly positively correlated
with NLRP3, caspase-1, and IL-1b, and
TXNIP was abnormally expressed as the
FPG level increased, suggesting that
TXNIP augments the body’s inflammatory
response to oxidative stress.46 TXNIP inhib-
its insulin expression and glucose uptake,
and insulin resistance can lead to elevated
TXNIP levels in islet b-cells.40,47

Accordingly, we speculate that IRAK-M/
TLR-related diabetes may be associated
with the ROS/TXNIP signaling pathway.

The pathogenesis of T2D involving
TLR-mediated chronic inflammation is
complex. In addition to IRAK-M and
TXNIP suggested in the present study,
other downstream mediators of TLRs
(TLR2 and TLR4) may play a role.
A recent study revealed the novel regulation
of TLR4 in a mouse model whereby
the ribosome biosynthesis protein NOC4
binds to and inhibits the endocytosis of
TLR4 and blocks the TRIF pathway. This
consequently inhibits the production of
inflammatory cytokines, subsequently
improving local and systemic inflammation
and reducing insulin resistance.48 Another
study revealed that TLR4 knockout activat-
ed TRIF/IRF3 signaling, induced inflam-
mation, and increased the spleen index.49

Studies with TLR2 knockout (Tlr2�/�)
mice revealed other possible mechanisms
leading to diabetic and obese phenotypes.
For example, the bone morphogenic
protein-induced binding between TLR2
and NOX1 or NOXO1 was abrogated,
and the high-fat diet-induced increases in
FPG and insulin levels in wild-type mice
were restored in Tlr2 �/� mice.50

An association between IRAK-M reduc-
tion and the development of diabetes has
also been suggested in other studies. In a
study that used a dendritic cell modulator
for the treatment of T1D in nonobese dia-
betic mice, the induction of IRAK-M was
found to be accompanied by the increased

efficacy of this drug (i.e., delaying the onset
of insulitis and preventing the onset of
hyperglycemia).51 Another study revealed
that IRAK-M�/� nonobese diabetic mice
had early onset and rapid progression of
T1DM and impaired glucose tolerance.52

However, the upregulation of IRAK-M
may also imply a harmful condition. In a
mouse model with hypoxia-inducible
factor-1a overexpression in macrophages,
a high-fat diet increased the expression of
IRAK-M, leading to macrophage infiltra-
tion, inflammation, and fibrosis in adipose
tissue. Moreover, global Irak-M deficiency
was associated with reduced fibrosis and
improved glucose tolerance, suggesting an
IRAK-M-dependent mechanism in
obesity-related adipose tissue dysfunction.53

Previously, we reported changes in the
level of various metabolic parameters and
several physical characteristics with
increasing FBG levels.46 Here, with newly
enrolled subjects, we showed similar trends
in SBP, DBP, BMI, WC, WHR, TG, LDL,
FPG, FINS, HOMA-IR, and HOMA-b. In
addition, to further classify the subjects
with prediabetes into the PD-A (5.6mmol/
L�FPG< 6.1mmol/L) and PD-B
(6.1mmol/L�FPG< 7.0mmol/L) groups,
we examined HbA1c, Cr, ALT, and AST
in this study. When comparing the PD-A
group with the PD-B group, only HbA1c,
FINS, HOMA-IR, and HOMA-b showed
significant differences, and there were no
significant differences in blood pressure,
body weight, BMI, WC, WHR, TG, TC,
HDL, LDL, ALT, AST, UA, and Cr.
These results suggested that during the
early development of T2D, only character-
istics directly related to the plasma glucose
level were affected. The decreasing HOMA-
b values with increasing FPG levels indicate
more severe b-cell dysfunction, as expected
in people with T2D. However, the values of
ALT, AST, and UA, which are indicators
of liver dysfunction and cardiovascular dis-
ease, were the highest in the PD-B group
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but lowest in the T2D group. The liver is
one of the main organs responsible for gly-
cogen synthesis and glucose homeostasis
maintenance, and elevated levels of liver
enzymes are clinical indicators of liver dys-
function. The plasma levels of liver enzymes
have been shown to be positively correlated
with FPG, and patients with T2D often
have liver dysfunction.54–56 Our results
showed that the levels of ALT and AST
were highest in the PD-B group rather
than in the T2D group; therefore, liver
function might have deteriorated before
the FPG level reached the diagnostic
threshold for T2D. Similarly, the level of
UA increased as the FPG level increased
but was highest in the PD-B group and
decreased in the T2D group. UA has been
suggested to be a risk factor for cardiovas-
cular disease57 and dynamically associated
with the level of HbA1c. In addition, the
UA level might be higher in patients with
prediabetes than in those with T2D.58 Our
results suggested that liver and cardiovascu-
lar diseases might have developed during
the early stages of T2D.

Glucose homeostasis or diabetes is usu-
ally assessed or identified with the surrogate
biomarkers FPG and HbA1c in clinical
practice.59,60 However, as suggested by the
Diabetes Control and Complications
Trial,61 using a single measurement for
FPG may be misleading. Previous studies
have shown that for patients with chronic
kidney disease or microangiopathy or elder-
ly patients, glycated albumin is a more reli-
able indicator of the glycemic status than
HbA1c because of the reduced survival of
erythrocytes and consequent decrease in the
time available for glucose to attach to
hemoglobin.60,62 In addition, because sub-
jects with impaired FPG usually have other
metabolic syndromes, cardiovascular dis-
ease, or cerebrovascular disease, additional
surrogate biomarkers, including galectin-3,
high sensitivity cardiac troponin I, hyper-
homocysteinemia, and heart-type fatty

acid binding protein, may be considered

for a more comprehensive interpretation

of the underlying pathological mecha-

nisms.59,63–65

This study has several limitations. First,

the unequal numbers of subjects among the

four groups may lead to heteroscedasticity

during analysis. Second, the physiological

effects of IRAK-M and TXNIP are exerted

intracellularly, but only IRAK-M and

TXNIP levels outside the cells were estimat-

ed. Third, the mechanism of T2D develop-

ment is complicated; factors other than

IRAK-M, TXNIP, and metabolic indica-

tors revealed in this study may also play a

role. Fourth, albuminuria values were not

examined in the present study, and a possi-

ble effect of early kidney dysfunction on

IRAK-M and TXNIP changes cannot be

ruled out. Further studies are warranted

to elucidate these issues.
In conclusion, our results provide evi-

dence that IRAK-M is independently and

positively associated with prediabetes

and T2D, while TXNIP is independently

and negatively associated with

prediabetes and T2D. IRAK-M and

TXNIP showed high AUC values for

patients with prediabetes. Therefore, the

combination of low IRAK-M and high

TXNIP might be diagnostic for prediabetes.
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