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Background: Bladder cancer is one of the most commonly diagnosed urinary cancers worldwide. 
Although muscle-invasive bladder cancer (MIBC) accounts for only 25% of bladder cancer cases, it has a 
high recurrence rate and poor prognosis, especially among high-grade cases. Despite the existence of some 
molecular markers, there is a clear clinical need for a robust recurrence prediction model that can assist 
in patient management and therapeutic decision-making. Therefore, we aimed to use public databases to 
develop such an effective assessment model.
Methods: We developed a recurrence risk assessment model for high-grade bladder cancer based on the 
clinical information of 217 cases from The Cancer Genome Atlas (TCGA) and profiles of 87 samples from 
GSE31684 in the Gene Expression Omnibus (GEO) database. Edge R was used to analyze differences 
between RNAs of bladder cancer in the TCGA database, with thresholds of P<0.05 and |log2(fold change)| 
>1; least absolute shrinkage and selection operator (LASSO) Cox regression models were used to screen the 
RNAs significantly related to recurrence with minimum λ. Survival receiver operating characteristic (ROC) 
and area under the curve (AUC) was used to assess the predictive accuracy of the model in the training and 
validation sets of GSE31684.
Results: There were 2,876 differential RNAs obtained from TCGA data. Among a total of 284 RNAs 
identified as significantly related to recurrence of bladder cancer, 49 were obtained by LASSO regression, 
and 30 were finally obtained by multifactor risk regression to construct a risk assessment model. The model 
was found to predict the prognosis of bladder cancer recurrence well, with an AUC of 0.911 in the TCGA 
training set and an adjusted AUC value of 0.839 in the GEO validation set.
Conclusions: The recurrence assessment model is a relatively accurate recurrence prediction tool for 
high-grade bladder cancer and could provide a guidance for the treatment of bladder cancer.
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Introduction

Bladder cancer is one of the most commonly diagnosed 
urinary cancers worldwide. It was reported that there were 
an estimated minimum of 82,290 new cases of and 16,710 
deaths from bladder cancer in America in 2023 (1). Muscle-
invasive bladder cancer (MIBC) accounts for only 25% of 
patients with bladder cancer, but it has high rate of invasion 
and distant metastasis, and results in a poor prognosis, 
especially among those with high-grade disease (2). The 
overall incidence of bladder cancer is increasing year by 
year, which might be associated with the potential influence 
of tobacco abuse, industrial carcinogens, and population 
aging (3). However, very few studies have addressed valuable 
molecular prognostic markers for recurrence in clinical 
practice; there is an urgent need to discover recurrence 
assessment markers for high-grade bladder cancer.

Recently, gene microarray and RNA sequencing have 
been applied to identify novel diagnostic and prognostic 
signatures for multiple diseases. Schuettfort et al. created 
a model using a panel of systemic inflammatory response 
biomarkers to predict tumor-specific survival and 
recurrence-free survival (RFS) in patients with urothelial 
carcinoma treated with radical cystectomy, but the 
effectiveness of selected inflammatory response biomarkers 
in improving the model’s discrimination ability was  
limited (4). Another study revealed that extracellular matrix 

genes could predict survival and recurrence of bladder 
cancer; the combination of follistatin-like 1 (FSTL1), stage, 
age, and gender achieved an area under the curve (AUC) 
value of 0.76 in predicting bladder cancer recurrence (5). 
Lucas et al. (6) trained a network of digital histopathology 
slides and clinical data to predict RFS for non-MIBC 
patients using deep learning. Their results showed that 
AUC was 0.76 for 5-year recurrence predictions. The 
abovementioned assessment models focus on clinical data 
or specific functional genes; they are limited in gene types, 
sample sizes, and efficiency. A recurrence assessment model 
with a high prediction efficiency is conducive to early 
clinical treatment decision-making, and vital for optimizing 
the prognosis of bladder cancer. Besides, as gene expression 
detection is convenient and stable, a predictive model 
constructed by multiple genes is more reliable. Thus, a new 
model including various gene types and large screening data 
and presenting a high efficiency in recurrence prediction 
is required for high-grade bladder cancer. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-256/rc).

Methods

Data download and preprocessing

We downloaded The Cancer Genome Atlas (TCGA) 
RNA expression profile data of bladder cancer in the form 
of count value from Xena (https://xena.ucsc.edu/). The 
corresponding clinical information files including gender, 
age, tumor differentiation, and tumor stage were also 
downloaded. Only files containing recurrence-free time 
and recurrence status were included in further data analysis. 
The information of 413 bladder cancer patients including 
77 recurrences was obtained from TCGA. The selected 
TCGA data were standardized in the form of transcripts 
per million (TPM), then, according to the distance between 
different samples in a cluster, Pearson correlation matrix 
was used to evaluate the microarray quality. We also 
downloaded the raw gene microarray expression profiles in 
the form of original files and clinical information from the 
Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/). We set the criteria that sample 
sizes were larger than 80 and clinical information was in the 
same form as TCGA data. Finally, GSE5479, GSE57933, 
and GSE120736 were excluded, and only GSE31684 was 
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suitable for analysis. GSE31684 included 39 recurrences out 
of 94 bladder cancer patients. All the data were updated as 
of December 2023. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Screening differentially expressed RNAs and preparation 
of single factor risk regression input RNAs

Patients included in this study were divided into two 
groups according to tumor status. RNA count value in the 
different groups were extracted with clinical data, and Edge 
R (version 3.3.0; https://www.r-project.org/) was used to 
analyze the difference between the two groups; P<0.05 
and |log2(fold change)| >1 were selected as the thresholds. 
Gene Ontology (GO) (http://www.geneontology.org) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were performed to predict the function 
and interactions among differentially expressed RNAs. For 
GSE31684 data, Affy package was used to merge the matrix, 
robust multiarray average (RMA) method was used to 
standardize the data, and the probe names were transformed 
to gene names (7).

Evaluation of the model and risk analysis of recurrence

The expression matrix of differently expressed RNAs and 
the clinical recurrence status were used for single factor 
Cox analysis. R survival package was used for Cox analysis. 
RNAs related to bladder cancer recurrence with P<0.05 
were obtained for further analysis. The glmnet and survival 
packages in R were used for least absolute shrinkage and 
selection operator (LASSO) analysis (8). After removing 
redundant RNAs, the remaining RNAs were used for 
multi-factor risk analysis. Finally, the recurrence risk-
associated RNAs were used to construct a disease-free or 
recurrence evaluation model. A risk score was calculated, 
and according to the maximum Youden value, patients with 
high-grade bladder cancer in TCGA were divided into 
high- and low-risk groups. Then, the difference between 
the two groups in disease-free recurrence and survival was 
calculated to evaluate the effect of the model. The survival 
receiver operating characteristic (ROC) package of R was 
used to evaluate the prediction ability of the model based 
on the expression of screened RNAs. Finally, the model 
was verified in GSE31684. The tumor-node-metastasis 
(TNM) stages of the patients were horizontally compared 
with those of the model to evaluate the prediction ability in 
recurrence of bladder cancer. An AUC larger than 0.7 was 

identified as having a good prediction.

Immune assessment and drug sensitivity prediction

KEGG pathway analysis of selected genes was performed 
with R package. The enrichment factor was the value ratio 
between genes and all annotated genes enriched in the 
pathway. Oncopredict package of R was used to predict 
sensitivity to chemotherapy drugs (9). ImmuneCellAI 
(https://guolab.wchscu.cn/ImmuCellAI/#!/) was used to 
estimate the proportion of 18 types of T cells and 6 other 
types of immune cells [B cells, natural killer (NK) cells, 
monocytes, macrophages, neutrophils, and dendritic cells 
(DCs)], and predict the patient’s response to immune 
checkpoint inhibitor therapy.

Statistical analysis

Statistical analysis of different RNAs was performed 
with the analysis of variance (ANOVA) and P<0.05 was 
considered statistically significant. In comparison, P<0.05 
between the two sample groups signaled the existence of 
differences.

Results

Characteristics of selected data

As shown in Table 1, 217 cases of clinical information 
of high-grade bladder cancer were selected in TCGA 
expression spectrum, which included 79 cases of recurrence 
or progression and 138 cases of complete remission 
(CR). In Table 2, 87 samples including 38 cases of bladder 
cancer recurrence and 49 cases of CR were screened from 
GSE31684 profiles.

Characteristic and function prediction of included 
differently expressed RNAs

The screening process and results are presented in Figure 1.  
Clustering analysis showed the characteristics of the 
selectively included data of TCGA. A total of 2,876 
differentially expressed RNAs including 905 up-regulated 
RNAs and 1,971 down-regulated RNAs were obtained 
between tumor and normal tissues (table available at 
https://cdn.amegroups.cn/static/public/tcr-24-256-1.xlsx). 
The Volcano map well distinguished tumor and normal 
tissues (Figure 2A). The heatmap analysis demonstrated no 

https://cdn.amegroups.cn/static/public/tcr-24-256-1.xlsx
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Table 1 Clinical pathological characteristic of patients with high 
grade bladder cancer in the TCGA database

Parameters Patients, n (%)

Recurrence

Recurrent/progressive 79 (36.41)

Disease-free 138 (63.59)

Age (years)

>67 112 (51.61)

≤67 105 (48.39)

Gender

Male 159 (73.27)

Female 58 (26.73)

Pathologic stage

Stage I 1 (0.46)

Stage II 68 (31.34)

Stage III 73 (33.64)

Stage IV 75 (34.56)

Pathologic M

M0 95 (43.78)

M1 8 (3.69)

Mx 113 (52.07)

Pathologic N

N0 120 (55.30)

N1 24 (11.06)

N2 42 (19.35)

N3 4 (1.84)

Nx 27 (12.44)

Pathologic T

T1 7 (3.23)

T2 105 (48.39)

T3 76 (35.02)

T4 24 (11.06)

Tx 5 (2.30)

Mx, Nx, Tx: data that had not been thoroughly evaluated. TCGA, 
The Cancer Genome Atlas; M, metastasis; N, node; T, tumor.

Table 2 Clinical pathological characteristic of patients with high 
grade bladder cancer in GSE31684

Parameters Patients, n (%)

Recurrence

Recurrent/progressive 57 (65.52)

Disease-free 30 (34.48)

Age (years)

≥67 63 (72.41)

<67 24 (27.59)

Gender

Male 5 (5.75)

Female 17 (19.54)

Pathologic T

Ta 54 (62.07)

T1 10 (11.49)

T2 1 (1.15)

T3 38 (43.68)

T4 49 (56.32)

Metastasis

M1 51 (58.62)

M0 36 (41.38)

T, tumor; M, metastasis.

Figure 1 Schematic representation of screening process for 
recurrence assessment model. TCGA, The Cancer Genome Atlas; 
GEO, Gene Expression Omnibus; TNM, tumor-node-metastasis; 
LASSO, least absolute shrinkage and selection operator.

High-grade bladder cancer in TCGA and GEO database

Age, gender, TNM stage, recurrence stage

Recurrence and  
completed remission stage

Cox risk regression and 
LASSO regression analysis

2,876 differentially expressed RNAs in TCGA
217 cases in TCGA, 87 cases in GSE31684

30 RNAs to establish a recurrence assessment model
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Figure 2 Characteristic and function prediction of differently expressed RNAs. (A) Volcano plots show differently expressed RNAs between 
tumor group and normal group. Red points, upregulated RNAs; blue points, downregulated RNAs; Red or blue points correspond to RNAs 
with two-fold changes between the two groups. (B) Clustering analysis of top 100 of significant differentially expressed RNAs between 
recurrent/progressive group and disease-free group. These dysregulated RNAs showed no difference between recurrent/progressive and 
disease-free groups. (C) KEGG analysis for differently expressed RNAs. Enrichment factor represents the ratio between the differentially 
expressed RNAs and all annotated genes enriched in the pathway. Bubble scale represents the number of different RNAs; depth of bubble 
color represents P value. (D-F) GO analysis for differently expressed RNAs. Different lines refer to different terms and size of bubble 
represents enriched genes. All enriched terms with P value <0.05. ECM, extracellular matrix; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.

significant differences between patients who had achieved 
CR and those with disease recurrence (Figure 2B). KEGG 
pathway analysis showed that the dysregulated RNAs 
mainly enriched in focal adhesion, calcium signaling 
pathway, and cell cycle pathway (Figure 2C). GO analysis 
revealed that regulation of mitotic cell cycle, extracellular 
matrix organization, and cell-substrate adhesion were 
mainly enriched in biological process; actin binding, 
microtubule binding and cell-cell adhesion mediator activity 
were mainly enriched molecular function; cell-cell junction, 
endoplasmic reticulum lumen, and actin cytoskeleton were 
main enriched cellular component (Figure 2D-2F).

Cox risk regression and LASSO regression analysis

At last, 284 RNAs related to bladder cancer recurrence were 
obtained (P<0.05) in Cox risk regression (table available 
at https://cdn.amegroups.cn/static/public/tcr-24-256-2.
xlsx). Some 49 from 284 redundant RNAs were obtained 
in LASSO regression analysis with minimum λ of 0.061. 
We performed multifactor risk analysis and obtained 30 
recurrence-associated RNAs (Figure 3A). We used these 
30 RNAs to establish a RFS model for bladder cancer. The 
risk score in the model for each patient was calculated based 
on expression levels of these RNAs and weighted by their 

https://cdn.amegroups.cn/static/public/tcr-24-256-2.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-256-2.xlsx
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regression coefficients (Table S1). This risk model presents 
a higher ability than gender, stage, and age in predicting 
recurrence of high-grade bladder cancer (Figure 3B).

Prognostic analysis of the recurrence risk model

A total of 30 RNAs were used to construct an assessment 
model for recurrence prediction of high-grade bladder 
cancer. The results showed that the prediction model 

obvious distinguish disease-free or recurrence status in 
TCGA, with an AUC of 0.911, sensitivity of 0.81 and 
specificity of 0.89, compared to stage with an AUC of 0.641 
(Figure 4A). The prediction ability to differentiate disease-
free or recurrence status in GSE31684 was low, with an 
AUC of only 0.533. However, these selected RNAs can 
construct an adjusted prediction model with an AUC of 
0.837 (Figure 4B), whereas tumor stage in prediction of 
recurrence can reach an AUC of 0.694 in TCGA and 0.617 
in GSE31684.

Evaluation and validation for recurrence risk model

The maximum Youden as a cutoff point was used to divide 
the included patients into high- and low-risk groups 
for the training set and the verification set. As shown in  
Figure 5A, the AUC of the prediction model for 3-year 
recurrence of bladder cancer in TCGA was 0.95. To further 
evaluate the predictive power of the model risk score, we 
confirmed its ability in GSE31684 with an AUC of 0.63 
for 3-year recurrence (Figure 5B). The prognosis model 
predicted obvious lower disease-free recurrence time in 
the high-risk group in the training set (Figure 5C) and the 
validation set (Figure 5D).

Functional prediction of model genes and efficacy 
evaluation of adjuvant therapy

We conducted pathway prediction on the included genes 
of the risk model, and the results showed that these genes 
were mainly enriched in the glutathione metabolism 
and peroxisome proliferators-activated receptor (PPAR) 
signaling pathway (Figure 6A). We used the oncoPredict 
R package to predict drug sensitivity in the two groups of 
the risk model, and found that the high-risk group had no 
difference in sensitivity to traditional chemotherapy drugs 
such as gemcitabine, paclitaxel, and carboplatin compared 
to the low-risk group. However, the high-risk group 
may be more sensitive to chemotherapy with ifosfamide  
(Figure 6B). At the same time, we analyzed the immune 
responses of the two groups and found no difference in 
the expression of immune genes programmed cell death 
protein ligand 1 (PD-L1) and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), and there was no difference 
in immune scores, but the high-risk group had a higher 
immune response rate (Figure 6C). In addition, we found 
that the target genes of the PPAR signaling pathway were 
dysregulated. Poly ADP-ribose polymerase 2 (PARP2) was 
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CI, confidence interval; ref, reference.

https://cdn.amegroups.cn/static/public/TCR-24-256-Supplementary.pdf


Translational Cancer Research, Vol 13, No 9 September 2024 4979

© AME Publishing Company.   Transl Cancer Res 2024;13(9):4973-4984 | https://dx.doi.org/10.21037/tcr-24-256

highly expressed in the high-risk group, whereas the PARP3 
gene was lowly expressed in the high-risk group, and PARP1 
gene was of no significant difference between these two 
groups, indicating that the high-risk group might benefit 
from PARP inhibitors. Besides, antibody-drug conjugate 
(ADC) of human epidermal growth factor receptor 2 
(HER2) revealed no significant differences between the two 
groups, but the overall expression level of HER2 was higher 
in the high-risk group (Figure 6D), suggesting that the high-
risk group may benefit from HER2 ADC drugs.

Discussion

In our study, we analyzed the significantly dysregulated 
RNAs in the TCGA database, and used LASSO Cox 
regression to construct a risk assessment model to predict 
the recurrence for bladder cancer. Through the training 
set in the TCGA database and validation sets in the GEO 
database, we found that the risk model was accurate in 
recurrence prediction, and it was more accurate than the 
gender, age, and stage model. From function prediction 
of genes in the risk model, we found that the high-risk 
group of the risk model may benefit from chemotherapy of 
ifosfamide, immunotherapy, target drug of PARP inhibitor, 
and HER2-ADC drugs.

Although a statistically significant difference is vital to 

obtain more reliable results, a high level of criteria limits 
the study sample size (10). Thus, we set a moderate level 
of criteria with P<0.05 and |log2(fold change)| >1 for 
difference selection. Differentially expressed genes present 
significant function in disease progression (11), so we 
chose differentially expressed RNAs from tumor tissues 
and normal tissues rather than directly comparing samples 
from recurrence and disease-free patients. Our study firstly 
analyzed differently expressed RNAs in the TCGA data 
rather than GEO data or other previous studies to construct 
a risk assessment model to predict tumor recurrence; 
because TCGA included a sufficient number of patients with 
bladder cancer, we also selected GSE31684 with 93 patients 
to construct a model with high reliability. We obtained 
the risk assessment model with 30 RNAs through Cox and 
LASSO regression, which presented an AUC of 0.911 in 
TCGA and 0.533 in GSE31684. However, with the same 
RNAs, the adjusted risk model reached an AUC of 0.839. 
We speculated that the differences in diagnostic efficacy 
between databases were mainly related to the differences in 
data results caused by detection methods. Even though the 
original AUC of the validation set GSE31684 was low, the 
diagnostic model with adjusted coefficients still had high 
diagnostic effectiveness. This indicated that the screening 
results had a good ability to distinguish disease status.

Tumor prognosis is often related to stage (12,13). 
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Figure 4 ROC curves of recurrent/progressive group and disease-free survival analysis for 30 RNAs. (A) ROC curves of TCGA showed risk 
assessment model constructed by 30 RNAs significantly distinguish recurrence status of high-grade bladder cancer. The AUC represents 
the identification ability of risk assessment model and stage. (B) ROC curves of GSE31684 showed risk assessment model constructed by 
30 RNAs had a lower distinguishing ability in prediction of recurrence status of high-grade bladder cancer. The adjusted ROC curve was 
also constructed by 30 RNAs but with new coefficients, its AUC can reach 0.839. AUC, area under the curve; ROC, receiver operating 
characteristic; TCGA, The Cancer Genome Atlas.
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Figure 5 Accuracy of risk assessment model in recurrence prediction of high-grade bladder cancer. (A) Time-ROC curves of TCGA showed 
high accuracy of risk assessment model in predicting recurrence of bladder cancer, with an AUC of 0.95 in 3-year. (B) Time-ROC curves 
of risk assessment model in GSE31684 showed a lower accuracy of in predicting recurrence of bladder cancer. (C) Risk assessment model 
constructed by 30 RNAs significantly distinguish recurrence status of high-grade bladder cancer in TCGA. (D) Risk assessment model has 
a lower accuracy in distinguishing recurrence status of high-grade bladder cancer in GSE31684. AUC, area under the curve; ROC, receiver 
operating characteristic; TCGA, The Cancer Genome Atlas.
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Figure 6 Functional prediction of model genes and efficacy evaluation of adjuvant therapy. (A) KEGG pathway of included genes of risk 
assessment model. Enrichment factor represents the ratio between the differentially expressed RNAs and all annotated genes enriched in 
the pathway. Bubble scale represents the number of different RNAs; depth of bubble color represents P value. (B) Predicted drug sensitivity 
on two groups of risk model. P value <0.05 presents significance between high- and low-risk models. (C) Difference of PD-L1 and CTLA-4 
expression, immunity score and in response ratio between high- and low-risk model. (D) Difference of PARP1, PARP2, PARP3, and HER2 
expression between high- and low-risk model group. IC50, half maximal inhibitory concentration; PD-L1, programmed cell death protein 
ligand 1; NS, no significance; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; R, responsive; NR, no responsive; PARP, poly ADP-
ribose polymerase; TPM, transcripts per million; HER2, human epidermal growth factor receptor 2; KEGG, Kyoto Encyclopedia of Genes 
and Genomes.
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Bladder cancer with later stage is more likely to recur, 
but the prognosis prediction accuracy of stage has been 
limited (5). Besides stage, other clinical information as well 
as parts of RNA detection have been reported as effective 
tools for predicting recurrence of bladder cancer (14-16). 
However, these assessment tools or models have also had 
their limitations in sample sizes or efficiency. Our research 
based on TCGA and GEO databases showed that the AUC 
of stage prediction for high-risk bladder cancer was only 
0.69. In contrast, the AUC of tumor model prediction of 
3-year no-recurrence could reach 0.95, and the RFS rate 
of low-risk group was significantly lower than that of high-
risk group. We also found that the median RFS time of 
the high-risk group was less than 1.5 years, so accurate 
grouping and early intervention are extremely important for 
prognosis.

The first-line treatment for advanced bladder cancer is 
chemotherapy (17), the main drugs of which are platinum 
combined with gemcitabine or paclitaxel (18). However, 
through chemotherapy sensitivity prediction, we found there 
was no difference in the chemosensitivity of the high- and 
low-risk groups to platinum, paclitaxel, and gemcitabine, 
whereas the high-risk group was more sensitive to 
ifosfamide, a second-line chemotherapy drug for advanced 
bladder cancer (19), suggesting that ifosfamide may benefit 
high-risk group. According to the pathway analysis of the 
included risk-related genes, we found that the PARP pathway 
was the main enrichment pathway, and PARP inhibitors 
were also targeted drugs for bladder cancer. Research has 
shown that combination treatment with PARP inhibitors 
to MIBC reached 50% of pathological CR rate (20).  
We found that PARP2, a main target of PARP, was 
significantly overexpressed in the high-risk group, indicating 
that the high-risk group may be more limited in the targeted 
therapeutic effect of PARP inhibitors. Immunotherapy 
has also represented a main treatment for advanced 
bladder cancer (21). We analyzed the immune score, 
immune response, and the expression of commonly used 
immunosuppressive targets in different groups. The results 
showed that although there was no difference in immune 
scores between the two groups, and there was no difference 
in the expression levels of PD-L1 and CTLA-4, but the high-
risk group had a higher proportion of immune responses, 
which also suggested that the high-risk group would benefit 
more from immunotherapy. A previous study showed that 
ADC drugs were an important means of treatment for 
advanced bladder cancer. The objective response rate of 
an ADC drug of HER2 for advanced bladder cancer was 

51.2%, the disease control rate was 90.7%, and the adverse 
reactions were mild (22). We found that the expression level 
of HER2 was higher in the high-risk group, although there 
was no statistically significant difference between the two 
groups, which suggested that the high-risk group might 
benefit more from HER2-ADC drugs.

There were some limitations in our studies. Although 
datasets GSE5479, GSE57933, and GSE120736 were also 
associated with recurrence of bladder cancer, they had no 
clinical information about recurrence or had small sample 
sizes, thus they were excluded for validation. The included 
GSE31684 dataset contained incompletely inconsistent 
clinical information with TCGA, lymph metastasis or 
distal metastasis were not detailed in this dataset, thus 
more detailed analysis was unable to proceed. Unlike an 
accuracy serum prediction model, our model, constructed 
from solid tumor data, was obviously high in the TCGA 
database but slightly less effective in the GEO database, 
but with promotion and popularization of accurate genetic 
sequencing, the recurrence risk assessment model would 
present a significant value in clinical practice.

Conclusions

The recurrence risk assessment model is accurate in 
predicting recurrence of high-grade bladder cancer and can 
provide guidance for treatment of bladder cancer.
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