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Abstract: Stilbenes are plant phenolic secondary metabolites that show beneficial effects on human
health and possess high antifungal activity against plant pathogens. Currently, a search for plant
sources with high stilbene levels is relevant, since stilbene content in various plant species can vary
substantially and is often at a low level. In this paper, the bark and wood of Picea jezoensis were
analyzed for the content and composition of stilbenes and compared with other known stilbene
sources. The HPLC-MS analysis of P. jezoensis bark and wood extracted with different solvents
and at different temperatures revealed the presence of 11 and 5 stilbenes, respectively. The highest
number of stilbenes of 171 and 229 mg per g of the dry weight (mg/g DW) was extracted from the
bark of P. jezoensis using methanol or ethanol at 60 ◦C for 2 h. Trans-astringin, trans-piceid, and
trans-isorhapontin prevailed over other stilbenoids (99% of all detected stilbenes). The most abundant
stilbene was trans-isorhapontin, reaching 217 mg/g DW or 87% of all stilbenes. An increase in the
extraction time from 2 to 6 h did not considerably increase the detected level of stilbenes, while
lower extraction temperatures (20 and 40 ◦C) significantly lowered stilbene yield. The content of
stilbenes in the P. jezoensis bark considerably exceeded stilbene levels in other stilbene-producing
plant species. The present data revealed that the bark of P. jezoensis is a rich source of stilbenes
(primarily trans-isorhapontin) and provided effective stilbene extraction procedures.
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1. Introduction

Plant secondary metabolites possess valuable biologically active properties and are
applied directly as drugs or as raw materials for further modifications [1,2]. The most
valuable metabolites are actively used in modern medicine and have significant appli-
cations in the food and cosmetic industries. Studying the composition and content of
secondary metabolites in the plant material promotes the discovery of new rich sources of
valuable biologically active compounds and the development of new effective metabolite
production methods [2,3]. The spectrum of plant secondary metabolites includes tens of
thousands of substances that are divided into several major classes, including alkaloids
(mainly heterocyclic compounds), terpenoids or isoprenoids, natural phenols, and sev-
eral thousands of other minor compounds, e.g., some non-protein amino acids, amines,
betalains, allicins, cyanolipids, etc. [1,2].

Stilbenes are natural compounds occurring in a number of unrelated plant families,
including Vitaceae (grape), Fabaceae (peanut), or Pinaceae (pine). Stilbenes, with the most-
studied compound resveratrol (3,5,4′-trihydroxy-trans-stilbene), occupy a special place
among the secondary metabolites of plants due to their well-known beneficial biological
activities, including antioxidant, anticancer, antiviral, anti-inflammatory, anti-microbial,
cardio-protective, neuroprotective, phytoestrogenic, and radioprotective properties [4–8].

Stilbene structures are based on the structure of pinosylvin (3,5-dihydroxy-trans-
stilbene), resveratrol (3,5,4′-trihydro’xy-trans-stilbene), and piceatannol (3,4,3′,5′-tetrahydroxy-

Metabolites 2021, 11, 714. https://doi.org/10.3390/metabo11110714 https://www.mdpi.com/journal/metabolites

https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-1036-680X
https://orcid.org/0000-0002-0516-6144
https://orcid.org/0000-0002-2549-8568
https://doi.org/10.3390/metabo11110714
https://doi.org/10.3390/metabo11110714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/metabo11110714
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo11110714?type=check_update&version=1


Metabolites 2021, 11, 714 2 of 11

trans-stilbene), which are the key precursors in the stilbene biosynthesis [9]. The monomeric
stilbenes may be metabolized to form other stilbenes, such as pterostilbene or isorhaponti-
genin via methylation by an O-methyltransferase [9,10], astringin or piceid via glycosy-
lation by glucosyltransferases [9,11], or viniferins via oxidation by polyphenol oxidase
(PPO) [12–15].

Stilbenes are inducible compounds in grapes and many other plant families: while
stilbenes are normally detected in trace amounts, their content sharply increases by 2–
30 times 12–24 h after induction with ultraviolet, salicylic acid, or methyl jasmonate [16–22].
However, this increase is transient, i.e., 24–48 h after the stimulating effect, the content of
stilbenes again returns to trace amounts. In contrast to Vitaceae species, spruce and other
Pinaceae plants constitutively accumulate stilbenes [23], while the content of stilbenes in
spruce or pine is weakly induced, and it does not fall to trace amounts 24–48 h after a
treatment [24–26]. Therefore, Pinaceae species can represent a valuable stable source of
stilbenes. Pinaceae species mainly produce such stilbenes as trans-astringin, trans-piceid,
and trans-isorhapontin [6], and their content varied depending on the used tissues, season,
and plant age [25]. A search for rich sources of stilbenes is an important task in modern
plant biotechnology.

The highest content of stilbenes among analyzed plant families was reported in the
bark of Pinaceae plants, including the bark of Norway spruce Picea abies and Black pine
Pinus nigra with the stilbene content reaching 58–60 mg/g DW [27,28]. To the best of our
knowledge, other spruce species besides Picea abies were not analyzed for stilbene contents
in the bark and wood. The aim of this study was to characterize stilbene content and
repertoire in the bark of spruce Picea jezoensis and compare it with that in the wood and
needles of P. jezoensis. We also aimed to find the most efficient conditions for the stilbene
extraction procedure from the bark of P. jezoensis. Thus, this paper firstly reported the
content and composition of stilbenes in the bark of P. jezoensis. Using different extraction
procedures, we were able to isolate up to 251 mg/g DW of total stilbenes from the bark,
which considerably exceeds stilbene levels reported for other plant materials.

2. Results
2.1. Stilbene Identification and Quantification in the Bark and Wood of P. jezoensis by
HPLC-MS-UV

When processing spruce wood for logging, the main final products include lumber
and, in addition, a lot of by-products that are not included into the main production:
small branches, needles, and bark. Thus, we decided to analyze the content of stilbenes in
the bark, needles, and wood of P. jezoensis using HPLC-MS-UV after ethanol extraction,
which is a standard extraction procedure for stilbenes from the plant material. The results
obtained showed that the spruce bark contained considerably higher levels of stilbenes
(165 mg/g DW) than the needles and wood of P. jezoensis (Table 1). In turn, the needles of
P. jezoensis contained considerably higher levels of stilbenes (8 mg/g DW) than the wood
of P. jezoensis. Stilbenes were present only in trace amounts in the wood of P. jezoensis (only
0.07 mg/g DW, Table 1).

The HPLC-MS-UV analysis showed the presence of 11 stilbenes in the P. jezoensis
ethanol extracts (Figures 1 and 2). The stilbenes included trans-astringin (retention time
18.0 min), cis-astringin (20.2 min), trans-piceid (20.8 min), trans-isorhapontin (21.9 min),
trans-piceatanol (22.6 min), cis-piceid (23.9 min), cis-isorhapontin (24.5 min), trans-resveratrol
(26.5 min), trans-isorhapontigenin (28.8 min), cis-resveratrol (29.7 min), and cis-isorhapontigenin
(20.2 min). We presented HPLC-MS-UV chromatographic profiles of the probes with the
highest stilbene content (bark and needles, Figure 1a,b). Notably, in the spruce bark
extract, cis-astringin and trans-piceatanol came out as a part of the trans-piceid and trans-
isorhapontin peaks, respectively (Figure 1a), since there were high amounts of trans-piceid
and trans-isorhapontin in these probes. In order to measure these substances, it was nec-
essary to prepare highly diluted extracts of the spruce bark. In other probes with lower
levels of stilbenes, the separation of all detected stilbenes was clearer (needles, Figure 1b).
Trans-astringin, trans-piceid, and trans-isorhapontin prevailed over other stilbenes reaching
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65–99.9% of all detected stilbenoids (Table 1). The most abundant stilbene was trans-
isorhapontin in the bark (144.3 mg/g DW), which constituted 14.4% of the used bark mass
and about 87.5% of all stilbenes in the bark (Table 1).

Table 1. Stilbene content and repertoire in the bark, wood, and needles of Picea jezoensis (mg per g of
the dry weight (DW)) collected in winter. The data were obtained from a representative HPLC profile
for the 96% ethanol extracts (60 ◦C, 2 h) recorded at 310 nm. Means followed by the same letter (a,
b, c, or ab) in one row were not different using Student’s t-test (three independent experiments).
p < 0.05 was considered statistically significant.

Stilbenes Bark, mg/g DW Needles, mg/g DW Wood, mg/g DW

trans-astringin 16.32 ± 2.20 a 6.49 ± 1.01 b 0.02 ± 0.01 c

cis-astringin 0.02 ± 0.01 a 0.02 ± 0.01 a 0.01 ± 0.01 a

trans-piceid 4.14 ± 0.30 a 1.36 ± 0.62 b 0.01 ± 0.01 c

trans-isorhapontin 144.28 ± 11.38 a 0 b 0 b

trans-piceatannol 0.01 ± 0.01 b 0.04 ± 0.01 a 0.02 ± 0.01 ab

cis-piceid 0.01 ± 0.01 a 0.02 ± 0.01 a 0 a

cis-isorhapontin 0.32 ± 0.09 a 0 b 0 b

trans-resveratrol 0.14 ± 0.01 a 0.24 ± 0.07 a 0.01 ± 0.01 b

trans-isorhapontigenin 0.02 ± 0.01 a 0.01 ± 0.01 ab 0 b

cis-resveratrol 0.02 ± 0.01 a 0.01 ± 0.01 ab 0 b

cis-isorhapontigenin 0.01 ± 0.01 a 0 a 0 a

Total 165.29 ± 14.49 a 8.19 ± 1.71 b 0.07 ± 0.02 c
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Figure 1. Comparison of HPLC-UV chromatographic profiles for the methanolic extracts of spruce
bark (a) and needles (b) recorded at 310 nm. Spruce bark and needles were collected in winter.
Trans-astringin (1, retention time 18.0 min), cis-astringin (2, 20.2 min), trans-piceid (3, 20.8 min),
trans-isorhapontin (4, 21.9 min), trans-piceatanol (5, 22.6 min), cis-piceid (6, 23.9 min), cis-isorhapontin
(7, 24.5 min), trans-resveratrol (8, 26.5 min), trans-isorhapontigenin (9, 28.8 min), cis-resveratrol (10,
29.7 min), cis-isorhapontigenin (11, 20.2 min).
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Figure 2. Hypothetical biosynthetic pathway for stilbene formation in Pinaceae [25]. Circles with
dotted lines depict 11 stilbenes detected in the needles of spruce Picea jezoensis: trans- and cis-
astringin [1,2], trans- and cis-piceid [3,6], trans- and cis-isorhapontin [4,7], trans-piceatannol [5],
trans- and cis-resveratrol [8,10], and trans- and cis-isorhapontigenin [9,11]. Trans-astringin [1], trans-
piceid [3], and trans-isorhapontin [4] marked with thick dotted lines because the content of these
compounds is much higher than the other stilbenes. The peak numbers for detected stilbenes in
square brackets are shown as in Figure 1.

2.2. The Effect of Different Solvents on Stilbene Extraction from the Bark of P. jezoensis

Different solvents, such as ethanol, methanol, or ethyl acetate, were previously applied
to optimize stilbene extraction protocol [20,29–31]. In this study, we compared the ability of
different solvents, including methanol (MeOH), ethanol (EtOH), water (H2O), hexane, ethyl
acetate, and acetone, to extract stilbenes from the bark of P. jezoensis. The data presented in
Table 2 demonstrated that extraction of the bark probes with 100% methanol and 96–100%
ethanol yielded the highest stilbene levels (152.1–229.1 mg/g DW). Stilbene levels extracted
with water, ethyl acetate, and acetone (54.4–87.3 mg/g DW) were 2.4–2.9 times lower
than that after methanol or ethanol extraction (Table 2). The lowest level of stilbenes was
released using hexane, only 7.7 mg/g DW (Table 2).
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Table 2. Stilbene content in the bark of Picea jezoensis collected in winter after extraction with different solvents for 2 h at
60 ◦C (mg per g of the dry weight (mg/g DW)). Means followed by the same letter (a, b, c, d, e, f, g, h, i, ab, bc, or cd) in
one row were not different using Student’s t-test (three independent experiments). p < 0.05 was considered statistically
significant.

Stilbenes, mg/g
DW

MeOH
(100%)

MeOH
(70%) EtOH (96%) EtOH (70%) H2O Hexane Ethyl Acetate Acetone

t-astringin 26.46 ± 2.75 a 20.78 ± 1.88 ab 16.72 ± 0.94 b 16.17 ± 1.43 bc 7.11 ± 0.56 e 0.87 ± 0.22 f 5.91 ± 0.55 e 10.09 ± 0.74 d

cis-astringin 0.71 ± 0.22 a 0.59 ± 0.18 ab 0.14 ± 0.06 c 0.17 ± 0.08 c 0.38 ± 0.10 b 0 d 0 d 0 d

t-piceid 6.73 ± 0.78 a 5.95 ± 0.79 ab 4.91 ± 0.67 b 4.08 ± 0.59 b 2.14 ± 0.33 c 0.21 ± 0.06 e 1.47 ± 0.12 d 2.40 ± 0.32 c

t-isorhapontin 193.16 ± 2.21 a 174.46 ± 1.98 b 148.5 ± 1.77 c 130.79 ± 5.04 d 64.71 ± 2.89 g 6.62 ± 1.16 i 46.80 ± 1.32 h 74.52 ± 1.16 f

t-piceatannol 0 b 0.01 ± 0.01 b 0.01 ± 0.01 b 0.01 ± 0.01 b 0.27 ± 0.05 a 0 b 0.01 ± 0.01 b 0 b

cis-piceid 0.09 ± 0.04 b 0.12 ± 0.05 ab 0.02 ± 0.01 c 0.06 ± 0.02 b 0.26 ± 0.08 a 0 c 0.01 ± 0.01 c 0 c

cis-isorhapontin 1.58 ± 0.11 a 1.59 ± 0.21 a 0.41 ± 0.09 c 0.59 ± 0.09 c 1.04 ± 0.10 b 0 e 0.13 ± 0.07 d 0.27 ± 0.08 cd

t-resveratrol 0.16 ± 0.04 b 0.16 ± 0.03 b 0.16 ± 0.05 b 0.20 ± 0.06 ab 0.42 ± 0.12 a 0.01 ± 0.01 c 0.02 ± 0.01 c 0.03 ± 0.02 c

t-isorhapontigenin 0.13 ± 0.03 a 0 b 0.02 ± 0.01 b 0.03 ± 0.02 b 0.03 ± 0.02 b 0 b 0 b 0 b

cis-resveratrol 0.05 ± 0.03 a 0.05 ± 0.02 a 0.04 ± 0.02 ab 0.02 ± 0.01 ab 0.02 ± 0.01 ab 0 b 0.01 ± 0.01 ab 0.01 ± 0.01 ab

cis-
isorhapontigenin 0.01 ± 0.01 a 0.01 ± 0.01 a 0.01 ± 0.01 a 0 a 0 a 0 a 0 a 0 a

Total 229.08 ± 6.57 a 203.72 ± 4.12 b 170.94 ± 6.68 c 152.12 ± 7.54 c 76.38 ± 3.70 f 7.71 ± 0.92 h 54.36 ± 2.44 g 87.32 ± 2.87 e

2.3. The Effect of Different Extraction Temperatures and Extraction Time on Stilbene Yields from
the P. jezoensis Bark

Then, we analyzed whether the temperatures of drying the plant material or extraction
time could affect stilbene composition and yield. We extracted stilbenes at 20, 40, and
60 ◦C (temperatures above 60 ◦C were not used as this could lead to the methanol boiling).
Application of lower extraction temperatures (20 and 40 ◦C) significantly lowered the yield
of extracted stilbenes as compared with the incubation at 60 ◦C (Table 3). Thus, 60 ◦C
was the most suitable temperature for stilbene extraction from the bark of P. jezoensis.
To analyze whether stilbenes degrade at 60 ◦C, we increased the extraction time from
2 h to 4 h and 6 h. As shown in Table 3, the content of most stilbenes increased after
4 h and 6 h of incubation compared with the incubation for 2 h at 60 ◦C, although all
these improvements were not statistically significant. The data show that incubation at
60 ◦C for 4 h did not lead to the destruction of stilbenes. On the contrary, there was a
slight increase in stilbene yield, which could be explained by a better extraction efficiency.
Additionally, to analyze whether high temperatures could lead to degradation of stilbenes,
we heated the commercial standard of t-resveratrol at 60 ◦C for 2 h. The additional data
were presented in the supplementary Figure S1 and Table S2. We did not detect any new
peaks of substances after a comparison of the HPLC-UV chromatographic profiles for the
stilbene standard before and after treatment at 60 ◦C for 2 h (Figure S1). The amount of
the original substance remained approximately at the same level (Table S1). The content of
resveratrol only slightly decreased (from 0.901 to 0.898 mg/mL), which is less than 0.4% of
the initial amount. The result shows that stilbenes are heat-resistant substances.

2.4. Seasonal Variation in Stilbene Content in the Bark of P. jezoensis

It has been shown that stilbene levels in the needles of P. jezoensis considerably varied
depending on the season [25]. Therefore, we analyzed stilbene repertoire and content in the
P. jezoensis bark collected at different seasons to assess what time is the most appropriate
for sample collection and further stilbene extraction. The bark samples of P. jezoensis were
collected and extracted in spring, summer, autumn, and winter. The data obtained revealed
a considerably higher total content of stilbenes in the winter probes and the lowest—in the
summer probes (Table 4). The results confirmed the previously obtained data on seasonal
variation of stilbene levels in the needles of P. jezoensis, demonstrating that stilbene level
was significantly reduced in the P. jezoensis material collected in summer [25,26]. The
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decrease in the total stilbene content in the summer probes was caused by a decrease in
the content of two major spruce stilbenes, t-astringin and t-isorhapontin (Table 4). At the
same time, the content of cis-isorhapontin sharply increased (up to 6.8 mg/DW) in the
summer probes, but this increase was slight in comparison with the decrease in the levels
of t-astringin and t-isorhapontin (Table 4). The data obtained indicate that winter is the
most appropriate season for stilbene extraction from the bark of P. jezoensis.

Table 3. Stilbene content in the bark of Picea jezoensis (mg per g of the dry weight (mg/g DW)) after using different extraction
temperatures and times for stilbene analysis. Means followed by the same letter (a, b, c, d, ab, bc) in one row were not
different using Student’s t-test (three independent experiments). Stilbenes were extracted using methanol from the bark of P.
jezoensis harvested in winter. p < 0.05 was considered statistically significant.

Stilbenes, mg/g
DW

2 h,
20 ◦C

2 h,
40 ◦C

2 h,
60 ◦C

4h,
20 ◦C

4 h,
40 ◦C

4 h,
60 ◦C

6 h,
20 ◦C

6 h,
40 ◦C

6 h,
60 ◦C

t-astringin 22.92 ±
1.20 b

24.79 ±
0.69 ab

27.46 ±
0.57 a

25.54 ±
1.51 ab

25.93 ±
0.59 ab

28.76 ±
2.07 a

24.94 ±
2.43 ab

25.21 ±
0.96 ab

25.54 ±
3.04 ab

cis-astringin 0.61 ±
0.03 a

0.60 ±
0.03 a

0.71 ±
0.05 a

0.64 ±
0.06 a

0.65 ±
0.03 a

0.69 ±
0.04 a

0.68 ±
0.05 a

0.67 ±
0.06 a

0.73 ±
0.08 a

t-piceid 5.87 ±
0.31 b

6.09 ±
0.11 ab

6.73 ±
0.32 ab

6.48 ±
0.34 ab

6.49 ±
0.07 ab

7.14 ±
0.26 a

6.13 ±
0.35 ab

6.30 ±
0.18 ab

6.59 ±
0.63 ab

t-isorhapontin 175.78 ±
2.64 c

183.31 ±
3.72 bc

204.16 ±
1.27 ab

196.53 ±
4.95 b

199.35 ±
2.38 b

204.14 ±
2.97 ab

207.6 ±
3.92 b

217.06 ±
3.57 ab

214.78
± 2.75 a

t-piceatannol 0 a 0.01 ±
0.01 a

0.01 ±
0.01 a

0.01 ±
0.01 a

0.01 ±
0.01 a

0.01 ±
0.01 a

0.01 ±
0.01 a

0.01 ±
0.01 a

0.01 ±
0.01 a

cis-piceid 0.04 ±
0.02 b

0.07 ±
0.01 ab

0.09 ±
0.01 a

0.06 ±
0.02 ab

0.08 ±
0.01 ab

0.09 ±
0.02 a

0.06 ±
0.01 ab

0.08 ±
0.01 ab

0.09 ±
0.01 a

cis-isorhapontin 0.82 ±
0.07 b

1.06 ±
0.14 b

1.58 ±
0.11 ab

0.91 ±
0.35 b

1.33 ±
0.58 ab

1.56 ±
0.12 ab

0.91 ±
0.10 b

1.4 ±
0.07 ab

1.79 ±
0.25 a

t-resveratrol 0.08 ±
0.02 b

0.09 ±
0.01 b

0.16 ±
0.02 a

0.09 ±
0.04 b

0.12 ±
0.01 ab

0.15 ±
0.04 a

0.10 ±
0.01 b

0.13 ±
0.01 a

0.17 ±
0.02 a

t-isorhapontigenin 0.10 ±
0.03 ab

0.08 ±
0.01 b

0.13 ±
0.02 a

0.08 ±
0.01 b

0.10 ±
0.02 ab

0.12 ±
0.02 a

0.08 ±
0.02 ab

0.09 ±
0.02 ab

0.11 ±
0.02 ab

cis-resveratrol 0.03 ±
0.01 a

0.03 ±
0.01 a

0.05 ±
0.01 a

0.03 ±
0.01 a

0.03 ±
0.01

0.04 ±
0.01 a

0.03 ±
0.01 a

0.04 ±
0.01 a

0.04 ±
0.01 a

cis-
isorhapontigenin 0 a 0 a 0.01 ±

0.01 a 0 a 0 a 0.01 ±
0.01 a 0 a 0 a 0.01 ±

0.01 a

Total 206.23 ±
4.14 d

216.15 ±
3.99 c

241.09 ±
3.22 ab

230.38 ±
6.33 bc

234.09 ±
3.94 b

242.71 ±
5.29 ab

240.54 ±
6.63 b

250.99 ±
3.41 ab

249.87
± 4.85 a

Table 4. Seasonal variations in stilbene content and repertoire in the bark of Picea jezoensis (mg per
g of the dry weight (mg/g DW)). Stilbenes were extracted using ethanol for 2 h at 60 ◦C. Means
followed by the same letter (a, b, c, d, ab, bc, or cd) in one row were not different using Student’s
t-test (three independent experiments). p < 0.05 was considered statistically significant.

Stilbenes Collected in
Spring

Collected in
Summer

Collected in
Autumn

Collected in
Winter

t-astringin 16.12 ± 1.74 b 12.65 ± 1.19 c 20.58 ± 1.12 a 23.8 ± 0.69 a

cis-astringin 0.54 ± 0.17 a 0.16 ± 0.07 b 0.32 ± 0.09 ab 0 c

t-piceid 2.73 ± 0.74 b 3.67 ± 0.36 b 4.28 ± 0.19 ab 4.87 ± 0.12 a

t-isorhapontin 130.9 ± 18.37 ab 104.35 ± 11.7 b 112.98 ± 5.13 b 134.26 ± 5.54 a
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Table 4. Cont.

Stilbenes Collected in
Spring

Collected in
Summer

Collected in
Autumn

Collected in
Winter

t-piceatannol 0.19 ± 0.08 a 0.02 ± 0.02 b 0.05 ± 0.01 b 0 c

cis-piceid 0.04 ± 0.03 b 0.03 ± 0.01 b 0.21 ± 0.02 a 0 c

cis-isorhapontin 0.19 ± 0.08 b 6.8 ± 3.3 a 0 c 0 c

t-resveratrol 0.18 ± 0.05 cd 0.32 ± 0.09 bc 0.56 ± 0.05 a 0.07 ± 0.04 d

t-isorhapontigenin 0.04 ± 0.03 ab 0.22 ± 0.08 a 0 b 0 b

cis-resveratrol 0 a 0 a 0.01 ± 0.01 a 0.01 ± 0.01 a

cis-isorhapontigenin 0.01 ± 0.01 ab 0.03 ± 0.01 a 0 b 0 b

Total 150.95 ± 19.93 ab 126.54 ± 15.06 b 138.97 ± 6.42 b 163.02 ± 6.36 a

3. Discussion

Although stilbenes have been detected in plants of more than 30 families, only four
plant families were able to accumulate more than 10 mg/g DW of stilbenes [6]. Plant
families with the highest total content of stilbenes included Pinaceae (Gymnosperms,
Pinidae, conifers), Moraceae (Magnoliopsida, dicotyledons), Polygonaceae (Magnoliopsida,
dicotyledons), and Vitaceae (Magnoliopsida, dicotyledons). In other plant species, the
total content of stilbenes was considerably lower than 10 mg/g DW or was documented
only for certain stilbenes [6]. To the best of our knowledge, the highest content of stilbenes
(58–60 mg/g DW) was reported for the roots and stump bark of Norway spruce Picea abies
and Black pine Pinus nigra [27,28], root bark of Mulberry Morus albus L. Benxi, Liaoning
region 54 mg/g DW [32], roots of Japanese knotweed Polygonum cuspidatum 11.1–19.4 mg/g
DW [33], and canes of Vitis vinifera 10.8–10.9 mg/DW for Vitaceae [34]. Thus, a comparison
with stilbene production levels detected for other plant species indicated that the bark of
P. jezoensis is a rich source of stilbenes. This study showed that the newly analyzed species
of spruce P. jezoensis resulted in the highest level of total stilbenes (251 mg/g DW) detected
in the plant material.

Additionally, we showed that the bark of P. jezoensis harvested in winter and spring
contained significantly higher levels of stilbenes than the bark collected from summer and
autumn spruce. This seasonal variation in stilbene content confirmed previously published
results demonstrating that stilbene level was significantly reduced in the P. jezoensis material
collected in summer [25,35]. It is possible that the seasonal variation in stilbene content
contributes to protection of the spruce tissues from adverse environmental conditions,
since it is known that stilbene biosynthesis is activated in response to ultraviolet irradiation,
drought, salinization, pathogen attack, and other environmental stresses [36]. In addition,
the considerable reduction in the content of stilbenes in the bark harvested in summer
can be explained by the active growth of the spruce tissues. It is known that cell growth
and biomass accumulation compete with the synthesis of secondary metabolites, since
these processes employ similar sources of energy and materials for the synthesis of specific
compounds. Thus, the detected seasonal variation in the content of stilbenes suggests that
spring and autumn could be the most suitable seasons for stilbene extraction from the
spruce material; therefore, the data could have an important commercial significance. Thus,
the present study firstly reported on the P. jezoensis bark as a rich source of stilbenes with
stilbene levels exceeding stilbene production detected for other plant species. In addition,
this study defined the most effective approaches for stilbene extraction from P. jezoensis.

The bark of P. jezoensis is a rich source of primarily t-isorhapontin (84–87% of total
stilbenes in extract) and t-astringin (9–12% of total stilbenes in extract). T-isorhapontin is
a glucoside of isorhapontigenin, which is a tetrahydroxylated stilbenoid with a methoxy
group. Currently, little is known about the biological properties of isorhapontin, astringin,
and other spruce stilbenes. Several studies reported on the antimicrobial effects of the
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bark-associated spruce stilbenes on food pathogens and spoilage organisms [37,38], plant
fungal pathogens [39], wood-degradative microorganisms [40], and even termites [41].

In conclusion, this study revealed that extract of P. jezoensis bark, which is a major
waste product in wood industries, is a rich source of stilbenes and could potentially be
used as a natural antimicrobial instrument against pathogenic microorganisms. Active
studies of medicinal and plant-protecting properties of spruce stilbenes are necessary for
their application in biotechnology.

4. Materials and Methods
4.1. Plant Material

Bark, wood, and needles of of Picea jezoensis were harvested from the spruce trunks
in the Far Eastern Federal District of Russia. The bark, wood, and needles of P. jezoensis
were supplied by the Ivanovka sawmill (Russia, longitude 43.97641661616043 and latitude
132.4808241135788) from debarking of logs. The bark was milled and sieved to select
particles between 0.2 and 1 mm. The needles, bark, and wood were collected in spring,
summer, autumn, and winter of 2019. In the laboratory, the raw material was separated
from wood residues, washed, and then dried at 60 ◦C for 1 day.

4.2. Optimization of Stilbene Extraction

Various organic solvents can be used for stilbene extraction and analysis. Although
grapevine cane extracts are usually obtained using methanol or ethanol, there are also
reports on using other solvents [29,30,42]. To select the most optimal solvent for stilbene
extraction from the P. jezoensis bark, we used 100 mg of dry mass of crushed and dried bark
collected in the winter and extracted stilbenes with methanol (100% and 70%), ethanol (96%,
70%, 40%), water, hexane, ethyl acetate, and acetone at 60 ◦C for 2 h. Determination of
the most optimal temperature and time for stilbene extraction from the dried and crushed
bark was carried out using methanol as a solvent at 20, 40, and 60 ◦C for 2, 4, and 6 h.
After extraction, the extract was purified with Discovery® DSC-18 SPE Tube bed wt. 50 mg,
volume 1 mL (Supelco, Bellefonte, PA, USA) and then used for the HPLC-MS-UV analysis.
Measurements for each sample were repeated 2 times.

4.3. High-Performance Liquid Chromatography and Mass-Spectrometry

The identification of individual stilbenes was achieved by a comparison with com-
mercially available standards and HPLC with MS detection. The targeted HPLC with
high-resolution mass spectrometry of the stilbene derivatives was carried out using the
1260 Infinity LC analytical system (Agilent Technologies, Santa Clara, CA, USA) equipped
with a G1315D photodiode array detector and coupled to an ion trap mass spectrometer
(Bruker HCT ultra PTM Discovery System, Bruker Daltonik GmbH, Bremen, Germany) as
described [25]. All studied samples were analysed for quantitative determination by HPLC
with diode array detection (HPLC-DAD) using an HPLC LC-20 AD XR analytical system
(Shimadzu, Japan) as described [43]. All determined components of the crude extracts
were identified using the chromatographic and MS data (see Table S2) and were compared
with their respective standards. The content of stilbenes was determined by the external
standard method using calibration curves of five-point regression, built using the available
standards.

The chromatographic separation was performed on a Shim-pack GIST C18 column
(150 mm, 2.1 nm i.d., 3-µm part size, Shimadzu, Japan); the column temperature was 40 ◦C.
The mobile phase consisted of A (0.1% aqueous acetic acid) and B (0.1% acetic acid in
acetonitrile), which was maintained at a constant flow rate of 0.2 mL/min. The gradient
program was used as follows: 0 min 0% of B; 35 min 40% of B; 40 min 50% of B; 50 min
100% of B; and then eluent B until 65 min. The injected volume was 1 µL.

Analytical standards included t-piceid obtained from Sigma-Aldrich (St. Louis, MO,
USA), t-piceatannol obtained from Enzo Life Sciences (New York, NY, USA), t-astringin
and t-isorhapontin obtained from Polyphenols (Sandnes, Norway), and t-resveratrol from
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TCI (Tokyo Chemical Industry UK Ltd., Oxford, United Kingdom). Cis forms of stilbenes
are not commercially available due to their instability in solid form. For determination
of the cis isomers of stilbenes, the corresponding standards were obtained in accordance
with the method described earlier with minor modifications [25,44,45]. Briefly, 1 mL of
the corresponding trans-standard (1 mg/mL) was exposed to ultraviolet B (312 nm) at
room temperature for 2 h. The concentration of cis isomer was calculated according to the
difference between the concentrations before and after exposure to UV-B [21].

4.4. Statistical Analysis

The data are presented as mean ± standard error and were tested by Student’s t-test.
The 0.05 level was selected as the point of minimal statistical significance in all analyses. The
data on stilbene content were obtained from three different plants with two replicates each.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11110714/s1, Supplemental Figure S1: Comparison of HPLC-UV chromatographic
profiles for the stilbene standard before (a) and after treatment at 60 ◦C for 2 h recorded at 310 nm,
Table S1: List of the stilbene derivatives identified in the extracts of Picea jezoensis bark, Table S2:
Resveratrol content before and after treatment by 60 ◦C during 2 h.
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