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Abstract: Synthesis of nanoparticles using the plants has several advantages over other methods due
to the environmentally friendly nature of plants. Besides being environmentally friendly, the synthesis
of nanoparticles using plants or parts of the plants is also cost effective. The present study focuses on
the biosynthesis of zinc oxide nanoparticles (ZnO NPs) using the seed extract of Butea monsoperma
and their effect on to the quorum-mediated virulence factors of multidrug-resistant clinical isolates of
Pseudomonas aeruginosa at sub minimum inhibitory concentration (MIC). The synthesized ZnO NPs
were characterized by different techniques, such as Fourier transform infra-red spectroscopy (FTIR),
scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron
microscopy (TEM). The average size of the nanoparticles was 25 nm as analyzed by TEM. ZnO NPs at
sub MIC decreased the production of virulence factors such as pyocyanin, protease and hemolysin for
P. aeruginosa (p ≤ 0.05). The interaction of NPs with the P. aeruginosa cells on increasing concentration
of NPs at sub MIC levels showed greater accumulation of nanoparticles inside the cells as analyzed
by TEM.
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1. Introduction

Pseudomonas aeruginosa is an opportunistic pathogen which attacks individuals suffering from
different diseases including cancer, AIDS, and cystic fibrosis, as well patients who have medical
implants or burn victims [1–4]. It is a very common pathogen that develops resistance against
antibiotics and overcomes antibiotic treatment [5,6]. P. aeruginosa confers its pathogenesis and develops
multidrug resistance through Quorum sensing [7]. Quorum sensing is a cell to cell communication
responsible for different virulence gene expressions such as pyocyanin, proteases, toxins, and biofilm.
Different compounds that interfere with this bacterial cell to cell communication are known as quorum
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quenchers, and these quorum quenchers attenuate the expressions of virulence genes responsible
for proteases, toxins, siderophores, swarming and biofilm formation [8]. Quorum quenchers do not
interfere with growth, and hence there is the least probability of development of resistance against
them [9,10].

Nanotechnology is an emerging field since it has applications in science and technology for
manufacturing new materials at the nanoscale level [11]. Nanotechnology at present is not only
confined to the electronics, rather these nanoparticles posses a role in catalysis, magnetism, optical,
and antimicrobial aspects [12,13], beside their application in wound healing and anti-inflammatory
effects [14]. Metal oxide-like zinc oxide nanoparticles during the last few years have drawn great
attention due to their stability and ability to overcome harsh environmental conditions. They can be
easily fabricated even at low temperature via reflux digestion process [15] and are considered to be safe
for human beings and animals [16,17]. Zn compounds have been currently listed as GRAS, generally
regarded as safe by the US Food and Drug Administration (21CFRI82.8991).

There are different methods for the synthesis of nanoparticles including physical and chemical
methods. Chemical and physical methods besides being costly require extensive labor, time, and
also generate a large quantity of secondary waste from the chemical agents used for the precipitation
and reduction. The green method of synthesis of nanoparticles has advantages over other methods
including being cost efficient and eco-friendly. Since the green method of synthesis uses plant material
as a capping agent so no adverse effect would be seen during medical applications [18]. Synthesis
of different metal nanoparticles using different parts of plant extracts are well documented in the
literature such as leaves of Azadirachta indica [19], leaves of Putranjiva roxburghii [20], stem of Tinospora
cordifolia [21], coir of Coccus nucifera [22], Bark of Crataeva nurvala [23], bark extract of Holarrhena
pubescens [24].

Butea monosperma (Lam.) Kuntze (BM) is commonly known as Flame of forest, because of its red
colored flowers and belongs to the family Fabaceae. Single seed at the end locus is found inside the
Pod and the length of each pod is around 10–15 cm. Due to their diverse nature, B. monosperma seeds
were selected for the synthesis of ZnO NPs. Since the seeds of B. monosperma are found inside the
pods which fall down and contribute toward the waste material, therefore, we included seeds in this
study. Furthermore, these biosynthesized zinc oxide nanoparticles were characterized by different
sophisticated techniques, and further their effect on to the quorum sensing regulated virulence factors
in P. aeruginosa was investigated.

2. Materials and Methods

2.1. Preparation of Aqueous Seed Extract of B. monosperma

The seeds of B. monosperma were obtained from the pods and in each pod a single seed was present.
Seeds were collected from different pods and sun dried to remove the water content. The air dried
seeds were crushed and ground to the fine powder. 10 g of powder was dissolved in 100 mL of sterile
water, and then the aqueous extract was filtered using Whatman No. 1 filter paper (Maidstone, UK)
and finally passed from 0.22 µm filter (Millipore). The centrifugation at 1200 rpm for 5 min removed
the heavy biomaterials and extract in aqueous form was stored at 4 ◦C for further use.

2.2. Synthesis of B. monosperma Zinc Oxide Nanoparticles (BM-ZnO-NPs)

Different volume (10 mL to 40 mL) of aqueous extract of B. monosperma seeds were mixed with
1mM Zinc nitrate hexahydrate solution. The reaction mixture was heated (60 ◦C) for 3–4 h until
cream colored precipitate was not obtained. This cream color precipitate was further centrifuged at
3000 rpm for 15 min and the resulting pellet now obtained was collected in glass plate which was oven
dried at 45 ◦C for 24–48 h. After complete drying, the powder obtained was further ground using
mortar and pestle. The Diagrammatic representation of overall process of formation of ZnO NPs using
B. monosperma seeds is represented in Figure 1.
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Figure 1. Diagrammatic representation of overall process of formation of ZnO NPs using Butea
monosperma seeds.

2.3. Characterization of Synthesized BM-ZnO-NPs by FT-IR

FTIR spectrum was recorded using Perkin Elmer spectrophotometer spectrum in the range of
4000–400 cm−1 at room temperature (25–35 ◦C). The adsorption spectrum displayed different peaks
representative of various bonds formed.

2.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDAX)

To determine the morphology, distribution of nanoparticles and elemental composition of
synthesized NPs, SEM equipped with EDAX(INCAx-actSN:56756) was performed. A thin film of
nanoparticles was formed onto the glass coverslips by spreading the nanoparticles on to it, the samples
were gold coated using gold coating sputter, and then the films were analyzed at an accelerating
voltage of 15 KV.

2.5. Transmission Electron Microscopy (TEM)

The size and shape of the nanoparticles was further determined using TEM (Jeol 2100). Briefly,
a copper grid was used onto which the sample (drop of nanoparticles) was placed, which was
illuminated using electronic radiation under vacuum. Furthermore, the images were captured using
electron beam transmitted through the sample [25].

2.6. Bacterial Isolates

P. aeruginosa (N = 10) were isolated from the patients’ samples (urine, pus, etc.) received in the
department of Microbiology J.N. Medical College and Hospital. The P. aeruginosa were identified
by using various biochemical tests and individual isolates were tested for the antibiotic sensitivity
based on the recommendation of clinical and laboratory standards institute [26]. PAO1 was used as
a standard.
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2.7. Determination of Minimum Inhibitory Concentration (MIC) of ZnO NPs

Minimum inhibitory concentration of synthesized ZnO NPs was determined against P. aeruginosa
by using two-fold macro broth dilution method as previously described [25]. Initially, P. aeruginosa
colonies from overnight grown nutrient agar plates were used to inoculate the broth. Fresh overnight
grown culture of P. aeruginosa (2 × 106 CFU/mL) was used to inoculate each tube which was two-fold
serially diluted with ZnO NPs at different concentration.

2.8. Inhibition of Quorum-Mediated Virulence Factors by BM-ZnO NPs

2.8.1. Pyocyanin Assay

The effects of synthesized ZnO NPs on the production of virulence factor pyocyanin by P. aeruginosa
were investigated using the methods described by Ali et al. [23] and Essar et al. [27]. Freshly grown
overnight culture of P. aeruginosa was used to inoculate nutrient broth (5 mL) with or without varying
concentration of BM-ZnO NPs in shaking incubator at 200 rpm. After incubation for 16 h at 37 ◦C,
pyocyanin from the cell-free supernatant of the BM-ZnO-NPs treated and untreated P. aeruginosa culture
was extracted with 3 mL chloroform and then re-extracted into 1 mL 0.2 N HCl and the absorbance
was measure at 520 nm. The concentration of pyocyanin (µg) produced per ml of culture supernatant
was determined by multiplying the optical density 520 nm by 17.072.

2.8.2. Protease Assay

The protease assay was performed as described by Quiblier et al. [28] with slight modifications.
Briefly, skim milk (5 gm) and bacteriological agar (0.5 gm) in 50 mL distilled water was amended
with varying concentration of nanoparticles in different plates. Control plates were not amended
with nanoparticles. An overnight grown culture of P. aeruginosa was put in the well of each plate and
incubated overnight. Zone of clearance was measured [29]. Nutrient Broth was also added in each
plate to check the proteolysis efficacy due to culture media.

2.8.3. Hemolysis Assay

Hemolytic analysis was performed as described by Saghalli et al. [30] with slight modification.
Initially, blood agar plates were prepared with 5% blood and 1% agar amended with the varying
concentration of BM-ZnO-NPs and control plates were not amended with nanoparticles. Wells in the
plates were punched, and gaps were sealed by soft agar. The overnight grown culture of P. aeruginosa
including PAO1 was poured in wells in equal quantity in both the plates. Nutrient broth was also
poured in both the plates to check the hemolysis due to media.

2.9. TEM Analysis Showing Localization of BM-ZnO NPs Inside Bacterial Cell

The effects and internalization of BM-ZnO NPs on P. aeruginosa cells before and after treatment has
been analyzed by using TEM. The preparation of sample for TEM analysis such as fixation, dehydration,
drying, coating, and imaging was performed as protocol described by Ansari et al. [25].

3. Results

3.1. FTIR Analysis

The FTIR spectra at 10 mL extract concentration showed two different peaks at 1632, 3464 which
represent -C=O stretching, -OH stretching whereas 20 mL extract concentration showed 4 intense
peaks at 826, 1385, 1685, and 3381 correspondent to -C-H out of plane, -N-O(nitro), -NH2 wagging,-and
NH stretch, respectively. Extract concentration at 30 mL showed three distinct peaks at 1384, 1627,
3478, representing N-O (nitro), -C=O (stretch), -O-H (stretch). 40 mL extract concentration also showed
3 peaks at 1385, 1632, 3473 for -N-O (nitro), -C=O, O-H (stretch), respectively (Figure 2).
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3.2. SEM and EDAX Analysis

SEM analysis of nanoparticles at different concentration of extract showed the distribution
of nanoparticles and their elemental composition was quantified by EDAX. SEM showed that
nanoparticles at lower extract concentration (10 mL) were more clumped whereas on increasing
the extract concentration segregation was seen, and at the highest concentration (40 mL) greatest
segregation of nanoparticles was seen and individual nanoparticles were more clear (Figure 3). EDAX
analysis showed that as the extract concentration increases the greater amount of ZnO NPs were
formed, it is evident from the graphical analysis that at 10 mL of extract concentration 6.12% of zinc
was analyzed whereas at 40 mL extract the number increased to 12.53% (Figure 4).
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3.3. TEM Analysis of Synthesized ZnO NPs

The average size of nanoparticles at 40 mL extract concentration was 25 nm as calculated by
ImageJ software (Figure 5). The particle size at 10, 20, and 30 mL extract concentrations were not
measured as there were greater aggregation and clumping of nanoparticles.

Antibiotics 2020, 9, x FOR PEER REVIEW 7 of 14 

3.3. TEM Analysis of Synthesized ZnO NPs 

The average size of nanoparticles at 40 mL extract concentration was 25 nm as calculated by 
ImageJ software (Figure 5). The particle size at 10, 20, and 30 mL extract concentrations were not 
measured as there were greater aggregation and clumping of nanoparticles. 

 
Figure 5. TEM of BM-ZnO NPs at different concentration of extract. (A) 10 mL extract, (B) 20 mL 
extract, (C) 30 mL extract, (D) 40 mL extract, (E) Average size of the nanoparticles at 40 mL extracts. 

3.4. Antibiotic Resistance Pattern of Clinical Isolates of P. aeruginosa 

All the 10 isolates of P. aeruginosa were resistant to Amikacin (Ak, 30 µg), cefepime (Cpm, 30 
µg), sparfloxacin (Spx, 5 µg),piperacillin (Pi, 100 µg), Levofloxacin (Le, 5 µg), piperacilin-
tazobactum (Pit, 100/10 µg), imipenem (Ipm, 10 µg), tobramycin (Tob, 10 µg), nitrofurantoin (Nit, 
300 µg), and ceftazidime (Caz, 30 µg) antibiotics. 

3.5. Minimum Inhibitory Concentration (MIC) 

MIC value of BM-ZnO NPs against standard PAO1 was found to be 1600 µg/mL, whereas the 
MIC value ranged from 1600–3200 µg/mL for clinical isolates obtained from different sources (Table 
1). Therefore, 300, 200, and 100 µg/mL were considered as sub MIC.  

 
 
 
 
 
 
 

Figure 5. TEM of BM-ZnO NPs at different concentration of extract. (A) 10 mL extract, (B) 20 mL
extract, (C) 30 mL extract, (D) 40 mL extract, (E) Average size of the nanoparticles at 40 mL extracts.

3.4. Antibiotic Resistance Pattern of Clinical Isolates of P. aeruginosa

All the 10 isolates of P. aeruginosa were resistant to Amikacin (Ak, 30 µg), cefepime (Cpm, 30 µg),
sparfloxacin (Spx, 5 µg),piperacillin (Pi, 100 µg), Levofloxacin (Le, 5 µg), piperacilin-tazobactum
(Pit, 100/10 µg), imipenem (Ipm, 10 µg), tobramycin (Tob, 10 µg), nitrofurantoin (Nit, 300 µg), and
ceftazidime (Caz, 30 µg) antibiotics.

3.5. Minimum Inhibitory Concentration (MIC)

MIC value of BM-ZnO NPs against standard PAO1 was found to be 1600 µg/mL, whereas the
MIC value ranged from 1600–3200 µg/mL for clinical isolates obtained from different sources (Table 1).
Therefore, 300, 200, and 100 µg/mL were considered as sub MIC.

Table 1. MIC values of BM-ZnO NPs against P. aeruginosa (PAO1 and clinical isolates).

Isolates MIC (µg mL−1) Source

PAO1 1600 Standard

P1 3200 Pus
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Table 1. Cont.

Isolates MIC (µg mL−1) Source

P2 3200 Pus

P3 1600 Pus

P4 3200 Pus

P5 1600 Pus

P6 3200 Urine

P7 3200 Pus

P8 3200 Urine

P9 1600 Pus

P10 3200 Urine

3.6. Inhibition of Production of Quorum-Mediated Virulence Factors

In case of PAO1, pyocyanin level decreased by 63.3% at 300 µg/mL, whereas 44.7% and 28.3%
reduction was observed at 200 µg/mL and 100 µg/mL, respectively (Figure 6). The reduction in the
level of pyocyanin for clinical isolates after treatment with 300 µg/mL of BM-ZnO NPs was 58.5% to
67.7%. The lower doses of ZnO NPs viz. 200 and 100 µg/mL also reduced the level of pyocyanin by
45.08% to 54.3% and 23.6% to 36.7%, respectively (Figure 7). Protease concentration for PAO1 reduced
by 35.4% at 300 µg/mL, whereas 21.5% reduction was observed at 200 µg/mL. The sub MIC level of
100 µg/mL showed statistical insignificant results. In case of clinical isolates protease concentration
decreased by 24.1% to 39.3% at300 µg/mL and at lower concentration of ZnO NPs viz. 200 µg/mL
11.2% to 30.3% reductions were observed (Figure 8). 100 µg/mL of concentration showed statistical
insignificant results for all the isolates. Hemolytic activity of the isolates was also affected by ZnO NPs;
PAO1 showed 45% reduction in the hemolytic activity at highest sub MIC level (300 µg/mL). However,
at lower concentration i.e., 200 and 100 µg/mL, ZnO NPs reduced the hemolytic activity by 29.5% and
19.1%, respectively (Figure 9); whereas for clinical isolates 300 µg/mL of ZnO NPs successfully reduced
the level of hemolytic activity in the range of 29.6% to 52.9% followed by 15.3% to 38.2% for 200 µg/mL
and 14.1% to 29.4% at 100 µg/mL, respectively (Supplementary Materials Tables S1–S4).

Antibiotics 2020, 9, x FOR PEER REVIEW 8 of 14 

Table 1. MIC values of BM-ZnO NPs against P. aeruginosa (PAO1 and clinical isolates). 

Isolates MIC (μg ml−1) Source 
PAO1  1600 Standard 

P1 3200 Pus 
P2 3200 Pus 
P3 1600 Pus 
P4 3200 Pus 
P5 1600 Pus 
P6 3200 Urine 
P7 3200 Pus 
P8 3200 Urine 
P9 1600 Pus 
P10 3200 Urine 

3.6. Inhibition of Production of Quorum-Mediated Virulence Factors 

In case of PAO1, pyocyanin level decreased by 63.3% at 300 µg/mL, whereas 44.7% and 28.3% 
reduction was observed at 200 µg/mL and 100 µg/mL, respectively (Figure 6). The reduction in the 
level of pyocyanin for clinical isolates after treatment with 300 µg/mL of BM-ZnO NPs was 58.5% to 
67.7%. The lower doses of ZnO NPs viz. 200 and 100 µg/mL also reduced the level of pyocyanin by 
45.08% to 54.3% and 23.6% to 36.7%, respectively (Figure 7). Protease concentration for PAO1 
reduced by 35.4% at 300 µg/mL, whereas 21.5% reduction was observed at 200 µg/mL. The sub MIC 
level of 100 µg/mL showed statistical insignificant results. In case of clinical isolates protease 
concentration decreased by 24.1% to 39.3% at300 µg/mL and at lower concentration of ZnO NPs viz. 
200 µg/mL 11.2% to 30.3% reductions were observed (Figure 8). 100 µg/mL of concentration showed 
statistical insignificant results for all the isolates. Hemolytic activity of the isolates was also affected 
by ZnO NPs; PAO1 showed 45% reduction in the hemolytic activity at highest sub MIC level (300 
µg/mL). However, at lower concentration i.e., 200 and 100 µg/mL, ZnO NPs reduced the hemolytic 
activity by 29.5% and 19.1%, respectively (Figure 9); whereas for clinical isolates 300 µg/mL of ZnO 
NPs successfully reduced the level of hemolytic activity in the range of 29.6% to 52.9% followed by 
15.3% to 38.2% for 200 µg/mL and 14.1% to 29.4% at 100 µg/mL, respectively (Supplementary 
Materials Tables S1–S4). 

 
Figure 6. PAO1 treated with different concentration BM-ZnO NPs. Errors bars are indicative of 
standard deviation (±); * represents significance when p ≤ 0.05 & C represent control group. 

Figure 6. PAO1 treated with different concentration BM-ZnO NPs. Errors bars are indicative of
standard deviation (±); * represents significance when p ≤ 0.05 & C represent control group.



Antibiotics 2020, 9, 260 9 of 14

Antibiotics 2020, 9, x FOR PEER REVIEW 9 of 14 

 
Figure 7. Bar graphs of clinical isolates of P. aeruginosa representing pyocyanin production (µg/mL) 
at three different concentrations (100, 200, 300 µg/mL) of BM-ZnO NPs along with control as 
untreated. * represents significance when p ≤ 0.05/mL; Error bars represent standard deviation. 

 
Figure 8. Images representative of Anti-proteolytic effect of ZnO NPs. Zone size decreases as the 
concentration increases. Well (1) represents Nutrient Broth, well (2) PAO1 culture, and well (3) 
Clinical isolate. (A) Control, (B) 100 µg/mL of ZnO amended, (C) 200 µg/mL of ZnO amended, (D) 
300 µg/mL of ZnO amended. 

 
Figure 9. Images representative of Anti-hemolysis effect of ZnO NPs. Zone size decreases as the 
concentration increases. Well (1) represents Nutrient Broth, well (2) PAO1 culture and well (3) 
Clinical isolate. (A) Control, (B) 100 µg/mL of ZnO amended, (C) 200 µg/mL of ZnO amended, (D) 
300 µg/mL of ZnO amended. 

Figure 7. Bar graphs of clinical isolates of P. aeruginosa representing pyocyanin production (µg/mL) at
three different concentrations (100, 200, 300 µg/mL) of BM-ZnO NPs along with control as untreated.
* represents significance when p ≤ 0.05/mL; Error bars represent standard deviation.

Antibiotics 2020, 9, x FOR PEER REVIEW 9 of 14 

 
Figure 7. Bar graphs of clinical isolates of P. aeruginosa representing pyocyanin production (µg/mL) 
at three different concentrations (100, 200, 300 µg/mL) of BM-ZnO NPs along with control as 
untreated. * represents significance when p ≤ 0.05/mL; Error bars represent standard deviation. 

 
Figure 8. Images representative of Anti-proteolytic effect of ZnO NPs. Zone size decreases as the 
concentration increases. Well (1) represents Nutrient Broth, well (2) PAO1 culture, and well (3) 
Clinical isolate. (A) Control, (B) 100 µg/mL of ZnO amended, (C) 200 µg/mL of ZnO amended, (D) 
300 µg/mL of ZnO amended. 

 
Figure 9. Images representative of Anti-hemolysis effect of ZnO NPs. Zone size decreases as the 
concentration increases. Well (1) represents Nutrient Broth, well (2) PAO1 culture and well (3) 
Clinical isolate. (A) Control, (B) 100 µg/mL of ZnO amended, (C) 200 µg/mL of ZnO amended, (D) 
300 µg/mL of ZnO amended. 

Figure 8. Images representative of Anti-proteolytic effect of ZnO NPs. Zone size decreases as the
concentration increases. Well (1) represents Nutrient Broth, well (2) PAO1 culture, and well (3) Clinical
isolate. (A) Control, (B) 100 µg/mL of ZnO amended, (C) 200 µg/mL of ZnO amended, (D) 300 µg/mL
of ZnO amended.

Antibiotics 2020, 9, x FOR PEER REVIEW 9 of 14 

Figure 7. Bar graphs of clinical isolates of P. aeruginosa representing pyocyanin production (µg/mL) 
at three different concentrations (100, 200, 300 µg/mL) of BM-ZnO NPs along with control as 
untreated. * represents significance when p ≤ 0.05/mL; Error bars represent standard deviation. 

Figure 8. Images representative of Anti-proteolytic effect of ZnO NPs. Zone size decreases as the 
concentration increases. Well (1) represents Nutrient Broth, well (2) PAO1 culture, and well (3)
Clinical isolate. (A) Control, (B) 100 µg/mL of ZnO amended, (C) 200 µg/mL of ZnO amended, (D) 
300 µg/mL of ZnO amended. 

Figure 9. Images representative of Anti-hemolysis effect of ZnO NPs. Zone size decreases as the
concentration increases. Well (1) represents Nutrient Broth, well (2) PAO1 culture and well (3) 
Clinical isolate. (A) Control, (B) 100 µg/mL of ZnO amended, (C) 200 µg/mL of ZnO amended, (D) 
300 µg/mL of ZnO amended. 

Figure 9. Images representative of Anti-hemolysis effect of ZnO NPs. Zone size decreases as the
concentration increases. Well (1) represents Nutrient Broth, well (2) PAO1 culture and well (3) Clinical
isolate. (A) Control, (B) 100 µg/mL of ZnO amended, (C) 200 µg/mL of ZnO amended, (D) 300 µg/mL
of ZnO amended.



Antibiotics 2020, 9, 260 10 of 14

3.7. TEM Analysis Showing Localization of BM-ZnO-NPs at Sub MIC Concentration

Figure 10A–D represents the localization of BM-ZnO-NPs inside the bacterial cells at sub MIC
concentration i.e., 100, 200 and 300 µg/mL, respectively. It was observed that as the concentration of
nanoparticles increased, there was a greater accumulation of NPs inside the cells.
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4. Discussion

P. aeruginosa is a notorious pathogen causing nosocomial infections in individuals whose immune
system has been weaken more specifically in burn patients [31,32]. It rarely causes community acquired
infection in immuno-competent patients that is the reason it is known as an opportunistic pathogen.
It is also evident from the literature that P. aeruginosa produces virulence factors and maintains multi
drug resistance through quorum sensing [7]. Therefore the induction of quorum sensing inhibitors
could be the key aspect in the anti-pathogenicity of this organism [33].

The present study demonstrates that ZnO NPs possess quorum-mediated anti-virulence property
against the standard strain PAO1 as well as against multi drug resistant clinical isolates of P. aeruginosa.

4.1. Effect of Varying Volume of Extract on the Synthesis of Nanoparticles

Biosynthesized BM-ZnO NPs was characterized by different techniques viz. FTIR, SEM, EDAX,
and TEM. FTIR analysis showed the formation of different bonds between extract and ZnO NPs.
These bonds are remarkable features of the bio-molecules involved in the capping and stabilization
of nanoparticles. SEM and TEM analysis showed distribution of particles and its aggregation, it is
evident that higher proportion vs. nanoparticles posses more capping and stabilizing agent due to
which greater uniformity in terms of shape and size was obtained, the fact is supported by the SEM and
TEM analysis of ZnO NPs where greater uniformity was seen as the concentration of extract increased
(Figures 3 and 5). In other words, a greater amount of extract reduced precursor molecules (Zinc
nitrate), which was confirmed by the EDAX analysis, which showed that a greater amount of zinc was
obtained at higher extract concentration (Figure 4). Our results are also in agreement with previous
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studies which showed that on increasing extract concentration greater homogeneity regarding shape
and size was obtained for zinc nanoparticles [34] and silver nanoparticles [35].

4.2. Effect of Bio Synthesized ZnO NPs on QS Mediated Virulence Factors

Pyocyanin, a blue, green phenazine pigment specifically produced by the P. aeruginosa [27],
is directly operated by QS [1,36]. Pyocyanin, besides being the hallmark of P. aeruginosa, is also
a secondary metabolite that leads to the severe toxic effect in combination with its precursor
phenazine-1-carboxylic acid [37]. The damage caused by these two molecules accounts for the
apoptosis of neutrophils and neutrophil mediated defensive mechanism [38]. BM-ZnO NPs decreased
the production of pyocyanin in dose dependent manner as we observed that at the highest dose of
300 µg/mL of ZnO NPs there was the greatest decrease in production of pyocyanin as compared
to the untreated cells (p ≤ 0.05). P. aeruginosa in order to maintain its pathogenicity and to further
spread its infection secretes the hydrolytic enzymes such as hemolysin and proteases [39]. Proteases or
peptidases are enzymes that degrade proteins and peptides by hydrolyzing the peptide bonds [40].
Proteins being the building block of cells when degraded by the protease affect the individual cells and
further enhance the infection. Hemolysins leads to the lysis of host cell, different hemolysin such as
Phospholipase and lecithinase acts in combination to break down lipids and lecithin and these proteins
further encourage invasions by inducing cytotoxic effects on host cells [41]. BM-ZnO-NPs as shown
in the result section decreased the production of hydrolytic enzymes viz. proteases and hemolysin.
Maximum affect was seen at the highest dose (300 µg/mL) for PAO1 as well as for clinical isolates.
Previous reports focused on to the antimicrobial aspect supporting the bacteriostatic or bactericidal
approach [42] but very few reports focused on the antivirulence aspect supporting quorum quenching.
Our results are in agreement with the previous work done by Garcia-Lara et al. [43] who showed that
ZnO NPs affected the pyocyanin and elastase in P. aeruginosa at 100 µg/mL. They also proposed that
virulence factors production and biofilm was due to quorum quenching effect of nanoparticles and not
due to bacteriostatic or bactericidal effect. In another study, Saleh et al. [44] also reported that ZnO
NPs can be effectively used as a quorum sensing inhibitor against P. aeruginosa infection and can be
used as an alternative to conventional antimicrobials. Naseer Al Shabib [45] showed the similar results
where Nigella sativa mediated ZnO NPs effectively inhibited the quorum regulated virulence factors in
P. aeruginosa at sub MIC level.

Further, we are also of the opinion that due to the localization of BM-ZnO NPs inside the bacterial
some mechanism would have been disturbed because of which virulence efficacy lowered down.
Furthermore, the TEM analysis Figure 10A–D revealed that as the concentration of nanoparticles
increased there was a greater accumulation of nanoparticles inside the cell and greater decrease in the
virulence efficacy.

5. Conclusions

The biosynthesized ZnO NPs at sub MIC level successfully inhibited the production of quorum
sensing mediated virulence factors in P. aeruginosa. We are of opinion that ZnO NPs have quorum
quenching effect due to which the virulence efficacy of P. aeruginosa lowered. Zinc oxide nanoparticles
might have affected the QS mediated strategy either by arresting the production of QS molecules or by
interacting with the QS molecules making them unidentified for the cell machinery and neutralizing
their effect. Furthermore, studies on molecular aspect need to be done to know the exact mechanism
involved in anti-virulence strategy, the studies on gene level could be a better option for knowing
interaction between nanoparticles and gene expression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/5/260/s1,
Table S1: Effect of different concentration of BM-ZnO NPs on different virulence factors of PAO1., Table S2: Effect
of different concentration of BM-ZnO NPs on pyocyanin production by clinical isolates of P. aeruginosa., Table S3:
Effect of different concentration of BM-ZnO NPs on protease production by clinical isolates of P. aeruginosa.,
Table S4: Effect of different concentration BM-ZnO NPs on hemolysis production by clinical isolates of P. aeruginosa.
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