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Abstract: Gadus morhua eggs contain several nutrients, including polyunsaturated fatty acids, lecithin
and glycoproteins. A novel sialoglycopeptide from the eggs of G. morhua (Gm-SGPP) was extracted
with 90% phenol and purified by Q Sepharose Fast Flow (QFF) ion exchange chromatography,
followed by S-300 gel filtration chromatography. Gm-SGPP contained 63.7% carbohydrate, 16.2%
protein and 18.6% N-acetylneuraminic acid. High-performance size exclusion chromatography
and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that
Gm-SGPP is a 7000-Da pure sialoglycopeptide. β-elimination reaction suggested that Gm-SGPP
contained N-glycan units. Amino acid N-terminal sequence analysis indicated the presence of
Ala-Ser-Asn-Gly-Thr-Gln-Ala-Pro amino acid sequence. Moreover, N-glycan was connected at the
third Asn location of the peptide chain through GlcNAc. Gm-SGPP was composed of D-mannose,
D-glucuronic acid and D-galactose. Fourier transform-infrared spectroscopy (FT-IR), 1H-nuclear
magnetic resonance spectroscopy (1H-NMR) and methylation analysis were performed to reveal the
structure profile of Gm-SGPP. In vitro results showed that the proliferation activity of MC3T3-E1 cells
was significantly promoted by Gm-SGPP. In vivo data revealed that Gm-SGPP increased the calcium
and phosphorus content of tibias and promoted longitudinal bone growth in adolescent rats.

Keywords: Gadus morhua eggs; sialoglycopeptide; osteogenesis; structure characterization

1. Introduction

Gadidae Gadus morhua is one of the most commercially important fish species, with an annual
marine catch of 8 million tons in China. Several by-products are generated during fish processing, most
of which are used in the production of low-value products. Fish eggs are rich in all nutrients required
for embryo development and many biologically active substances, including docosahexaenoic acid,
eicosapentaenoic acid, lecithin and glycoproteins [1,2]. Furthermore, fish eggs have been reported to
be able to improve memory [3], alleviate metabolic syndrome [4] and inhibit osteoclastogenesis [5].
However, high-value utilization of fish eggs is yet to be fully developed.

Molecules 2020, 25, 156; doi:10.3390/molecules25010156 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0001-7269-5751
http://dx.doi.org/10.3390/molecules25010156
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/1/156?type=check_update&version=2


Molecules 2020, 25, 156 2 of 12

Glycoproteins are polysaccharide–peptide or polysaccharide–protein complexes of varying
structures and bioactivities when compared to those of polysaccharides [6–9]. The analysis of
glycopeptide structure involves polysaccharide chain elucidation prior to that of the peptide chain [10]
as well as monosaccharide composition, glycosidic linkage configuration, monosaccharide sequence [11]
and secondary and 3D structure determination [12]. Sialic acid, a nine-carbon monosaccharide
derivative, is often located at the terminal monosaccharide of glycoproteins existing in various
biological tissues [13,14] and forms an important basis of the glycoprotein/glycopeptide functional
diversity [15,16].

Fish eggs contain glycoproteins/glycopeptides, some of which are known to have a particularly
high sialic acid content. Following purification of the first sialoglycoprotein from rainbow trout [17],
several studies demonstrated that sialoglycoproteins also exist in various fish species, such as Medaka
fish, salmon and Pacific herring [17–20]. Further, the structure of sialoglycoprotein in the various fish
species is different. Seko [21] isolated a 100–120 kDa sialoglycoprotein and a 6 kDa sialoglycopeptide
from flounder eggs. To date, most studies have focused on the glycoprotein structure but its bioactivity
has been largely ignored. Recently, we found that sialoglycoproteins from freshwater Carassius auratus
eggs had anti-osteoporotic effects through the promotion of osteogenesis and the inhibition of bone
resorption [22]. Kang [23] reported that egg yolk protein promotes longitudinal bone growth in
adolescent rats. Herein, we elucidated the structure and biological activity of glycopeptides in
G. morhua eggs.

In the present study, a novel glycopeptide from the eggs of G. morhua (Gm-SGPP) was isolated
and purified and its structure profile was identified through a combination of spectroscopic techniques
and amino acid sequencing methods. Furthermore, in vitro cell proliferation and in vivo bone growth
promotion abilities of the glycopeptide were investigated.

2. Results and Discussion

2.1. Characterization of Gm-SGPP

Gm-SGPP was initially characterized using sodium dodecyl sulfate (SDS)-polyacrylamide gel
electrophoresis (PAGE) and high-performance size exclusion chromatography (HPSEC). The single peak
observed in the HPLC spectrum indicated that Gm-SGPP was a pure glycopeptide with an estimated
molecular weight of 7000 Da (Figure 1C). It is, therefore, a much smaller glycoprotein compared to
that isolated from rainbow trout, which has a molecular weight of 260 kDa. In SDS-PAGE, Gm-SGPP
stained positively for carbohydrate but weakly for lipid and phosphorus (Figure 1E), indicating that
Gm-SGPP is a pure and single glycopeptide. High-performance liquid chromatography (HPLC) results
showed that the appearance time of Gm-SGPP was consistent with that of Neu5Ac at 19.32 min but not
for Neu5Gc at 13.12 min (Figure 1D). This indicated that Gm-SGPP contained Neu5Ac. Kitajima [20]
found that glycoproteins in Salmo gairdneri contained high amounts of Neu5Gc. Seko [21] reported that
sialic acids are not present in the glycoprotein of Paralichthys olivaceus, indicating that the type of sialic
acid is different in glycoprotein/peptide from different species.

2.2. Chemical Composition

The main feature of Gm-SGPP was found to be Neu5Ac acid, accounting for 18.6% of its weight.
Additionally, Gm-SGPP was composed of 16.2% protein and 63.7% hexose. As shown in Figure 2,
monosaccharide composition analysis showed that Gm-SGPP was comprised of Man, GlcN and Gal.
Small but distinct differences in carbohydrate composition are found in the glycoprotein from the yolk
in hen eggs [24].
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Figure 1. Chromatography isolation, purification and characterization of Gm-SGPP. (A) Anion-exchange
chromatography of crude sample on Q Sepharose Fast Flow column (QFF) (3 × 5 mL). Flow rate,
1 mL/min; fraction size, 4 mL. (B) Gel filtration of fraction Q-4 on Sephacryl S-300 column (1.6 × 100 cm).
Flow rate, 1 mL/min; fraction size, 4 mL. (C) High-performance size exclusion chromatography (HPSEC)
profiles of Gm-SGPP using a TSK-GEL G4000PWXL column (30 cm × 7.8 mm). Flowing phase, 0.2 M
NaCl; flow rate, 0.5 mL/min; column temperature, 40 ◦C (D) High-performance liquid chromatograph
(HPLC) of sialic acid using a ZORBAX SB-C18 column (4.6 mm × 150 mm). Flowing phase, 5%
acetonitrile–ultrapure water; flow rate, 1 mL/min; column temperature, 35 ◦C (E) Sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)of Gm-SGPP. 1, green for phosphorus staining; 2,
Sudan black B for lipid staining; 3, periodic acid/Schiff for carbohydrate staining; 4, Coomassie Brilliant
Blue for protein staining.

Figure 2. HPLC chromatograph of Gm-SGPP monosaccharide composition. (A) Seven neutral
monosaccharides as control. (B) Gm-SGPP.

2.3. Determination of Glycosidic Bond Type

N- and O-glycosylation are the two main types of protein glycosylation. Herein, the absorption of
Gm-SGPP, recorded at 240 nm, treated with NaOH remained unchanged (Figure 3), suggesting the
absence of O-glycosylation. Combining the results of amino acid composition and N-terminal amino
acid sequence analysis, Gm-SGPP was deduced to be a glycoprotein with N-glycosylation. Iwasaki [25]
reported that the glycophosphoproteins of Medaka fish possess N-linked glycan units. Seko [21]
reported that the glycosidic bond in P. olivaceus was N-linked glycan and did not contain sialic acid
in the carbohydrate chain. These results indicated that glycosidic bond and carbohydrate chain are
different among species.
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Figure 3. UV spectrum of Gm-SGPP treated and untreated with NaOH. Wavelength, 200–400 cm−1.

2.4. Amino Acid Composition and Sequence Analysis of Gm-SGPP

Gm-SGPP was observed to be composed of seven amino acids (Table 1). High amounts of aspartate
further indicated that Gm-SGPP contained N-glycan units.

Table 1. Amino acid composition of Gm-SGPP.

Amino Acid Gm-SGPP (mg/g glycopeptide) Amino Acid Gm-SGPP (mg/g glycopeptide)

Asp 15.33 Gly 16.42
Thr 16.29 Ala 33.51
Ser 15.80 Pro 14.37
Glu 13.90

Total 125.62

Gm-SGPP was subjected to automated amino acid sequence analysis, revealing the sequence to be
NH2-Ala-Ser-X-Gly-Thr-Gln-Ala-Pro. The third cycle revealed no phenylthiohydantoin derivatives,
indicating that Asn contained an N-linked glycan chain. It was, thus, concluded that the peptide
portion of Gm-SGPP consisted of NH2-Ala-Ser-Asn(CHO)-Gly-Thr-Gln-Ala-Pro. This result is similar
to that of the sialoglycoproteins isolated from Medaka eggs [26], wherein the fifth position of Asn was
attached with the glycan moiety.

2.5. Fourier Transform-Infrared (FT-IR) Spectroscopy Analysis of Gm-SGPP

Fourier transform infrared (FT-IR) spectra showed a strong and broad absorption peak at
3500–3200 cm−1 corresponding to the N–H stretching vibrations of proteins and hydroxyl stretching
vibration of oligosaccharide (Figure 4) [27]. The bands at 2940.63 and 1114.48 cm−1 were attributed
to C–H and C–O stretching vibrations, respectively. The wave numbers between 1200 and 800 cm−1

represented the finger print region for carbohydrates. The peak at 1071.92 cm−1 was assigned to
the CH2–O–CH2 stretching vibration. All the above bands are characteristics of oligosaccharides.
The peaks at 2940.63 and 1556.47 cm−1 are the characteristic absorption bands for proteins, attributed
to C=O stretching and N–H bending vibrations of the acylamino group, respectively [6,28]. These data
consequently further demonstrated that Gm-SGPP is a glycopeptide.

2.6. Methylation Analysis of Gm-SGPP

Methylation analysis of the Gm-SGPP glycan portion was performed to investigate the
inter-glycosidic linkages between monosaccharide residues [29,30]. The partially methylated
alditol acetate derivatives (PMAAs) of Gm-SGPP were analyzed by gas chromatography (GC)–mass
spectrometry (MS). The results were classified according to the database of the University of Georgia
Complex Carbohydrate Research Center. GC–MS analysis results are shown in Table 2. At 36.37 min,
the characteristic fragment ions of 1,2,4,5-Ac4-2,3,6-Me3-GlcNAc were detected, demonstrating
that Gm-SGPP contained →4) GlcNAc (1→. Furthermore, it was found that →2,4)Man(1→ and
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→3,6)Man(1→were present as the fragment ions of 1,2,4,5-Ac4-3,6-Me2-Man and 1,5,6-Ac3-2,4-Me2-Man,
respectively. At 31.31, 22.43, 24.80 and 23.59 min, the markers of→3,4) Gal (1→ Gal (1→,→3)Gal(1→
and→4)Gal(1→ were observed. In conclusion, Gm-SGPP was in accordance with the specific regular
“five core carbohydrate.” Taguchi [25] found that→4)GlcNAc(1→,→2,4)Man(1→,→3,6)Man(1→ and
→3)Gal(1→ are present in Oryzias melastigma and Neu5Ac is attached at the end of Gal.

Figure 4. IR spectrum of Gm-SGPP. Gm-SGPP was mixed with KBr powder and measured in the range
4000–400 cm−1.

Table 2. Gas chromatography–mass spectrometry (GC–MS) analysis of methylate from Gm-SGPP.

Retention Time Monosaccharide of Methylation Characteristic Fragment Ions Connection Type

27.11 1,2,4,5-Ac4-3,6-Me2-Man 113,130,131,190,233 →2,4)Man(1→
28.23 1,5,6-Ac3-2,4-Me2-Man 57,87,118,129,189 →3,6)Man(1→
31.31 1,3,4,5-Ac4-2,6-Me2-Gal 130,190,201,261 →3,4)Gal(1→
22.43 1,5-Ac2-2,3,4,6-Me4-Gal 57,118,145,161,205 Gal(1→
24.80 1,3,5-Ac3-2,4,6-Me3-Gal 87,101,118,129,161 →3)Gal(1→
23.59 1,4,5-Ac3-2,3,6-Me3-Gal 71,118,129,145,161 →4)Gal(1→
36.71 1,2,4,5-Ac4-2,3,6-Me3-GlcNAc 117,159,233 →4)GlcNAc(1→

2.7. H-Nuclear Magnetic Resonance (1H-NMR) Spectroscopy of Gm-SGPP

1H-nuclear magnetic resonance spectroscopy (1H-NMR) (1H-NMR) spectrum of Gm-SGPP is
shown in Figure 5. According to Seko [24], 1H-NMR signals for H-3ax and H-3eq of Neu5AC appear at
1.713–1.721 ppm and 2.666–2.672 ppm, respectively. In our experiments, the signals for Neu5AC were
located at 1.717 and 2.671 ppm, suggesting that the Neu5AC residues of Gm-SGPP have an α-(2–6)
linkage to galactose. Further, the signal at 5.81 ppm was assigned to the GlcNAcβ(1)-Asn residue.
The anomeric hydrogen signals between 4.61 and 4.65 ppm were attributed to GlcNAc-2,5,5′,5′′,5′′ of
H1 and the signal at 4.86 ppm was attributed to GlcNAc-1-H1. The signals of Man-3-H1, Man-4-H1
and Man-3-H2 appeared at 4.77, 5.07 and 4.18 ppm, respectively. The above data further proved that
the carbohydrate chain of Gm-SGPP is a four-branched chain, which was consistent with methylation
analysis results [13].

In summary, combining the results of the peptide and glycan moieties, we speculated that the
structure outline of Gm-SGPP is as shown in Figure 6.

2.8. Gm-SGPP Promoted MC3T3-E1 Cell Proliferation

MC3T3-E1 is a well-recognized pre-osteoblastic cell line with biological characteristics, including
alkaline phosphatase and type I collagen activity, of osteoblasts [31]. MC3T3-E1 is often used as a
cell model of bone metabolism research. Kim [32] reported that water-soluble yolk protein from
chicken eggs promotes MC3T3-E1 cell proliferation, differentiation and mineralization, thus effectively
preventing bone loss. The present results showed that the proliferation activity of MC3T3-E1 cells was
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significantly promoted by Gm-SGPP in a dose-dependent manner (Figure 7), indicating that Gm-SGPP
may have anti-osteoporotic effects by promoting bone formation. Further studies on the bioavailability
of Gm-SGPP are required.

Figure 5. 1H-nuclear magnetic resonance spectroscopy (1H-NMR) spectrum of Gm-SGPP. Gm-SGPP
was dissolved in 1 mL of D2O and spectra were obtained at 600 MHz with sufficient acquisition time.

Figure 6. Structure outline of Gm-SGPP.

Figure 7. Effects of Gm-SGPP on growth of MC3T3-E1 cells. MC3T3-E1 cells were treated with various
concentrations of Gm-SGPP (0, 5, 10, 20 and 40 µg/mL) for 72 h. Gm-SGPP promoted the proliferation
of MC3T3-E1 cells in a dose-dependent manner.

2.9. Gm-SGPP Promoted Bone Formation in Adolescent Mice

Bone growth was assessed during a 48 h period using tetracycline hydrochloride labeling on
the newly formed bone to evaluate the rate of bone growth. Longitudinal bone growth increased
significantly by Gm-SGPP treatment compared with that by the control group (Figure 8A). Changes in
bone calcium and phosphorus content directly reflect the density of bone. In this study, compared
with the control, bone calcium and phosphorus contents of the Gm-SGPP group increased markedly
by 10.42% and 13.12%, respectively, in mouse tibia (Figure 8B). In conclusion, Gm-SGPP efficiently
promoted bone formation in adolescent mice compared to that in the control [23]. In a previous
study, Leem et al. found that the yolk water-soluble protein (100 mg/kg) of hen eggs can improve the
longitudinal bone growth of adolescent male rats, while milk protein and casein cannot ameliorate
the longitudinal bone growth. We speculated that the functional factor of yolk water-soluble protein
(100 mg/kg) of hen egg may associated with sialoglycopeptide from hen egg and this needs further study.
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Figure 8. (A) Effect of Gm-SGPP on longitudinal bone growth in adolescent male mice. Fluorescence
photomicrographs of longitudinal sections at the growth plate in the distal femurs. The fluorescent
line corresponds to the injection of tetracycline hydrochloride (20 mg/kg body weight), which binds
with calcium and can be detected by ultraviolet illumination. The arrow between the fluorescent line
formed by tetracycline and the epiphyseal end line of the growth plate indicates the length of bone
growth during 48 h (10×magnification). Normal (1) and Gm-SGPP (100 mg/kg) groups (2). (B) Effect of
Gm-SGPP on calcium and phosphorus content of tibias in adolescent male mice. Normal and Gm-SGPP
mice were represented as the normal control group (treated with normal saline) and Gm-SGPP-treated
group (100 mg/kg body weight), respectively. Mice were treated for 4 weeks and tibias were collected at
−20 ◦C to measure calcium and phosphorus content. Data are expressed as mean ± SD (n = 10/group).
Multiple comparisons were performed by one-way ANOVA analysis. *p < 0.05, **p < 0.01 versus
the control.

3. Methods

3.1. Materials

Fresh mature female G. morhua were purchased from Oriental Ocean Company of China and stored at
−80 ◦C until further use. QFF and Sephacryl S-300 were obtained from GE Healthcare (Fairfield, CT, USA).
Neu5Ac, Neu5Gc, D2O, 1-phenyl-3-methyl-5-pyrazolone and dextran standards were purchased from
Sigma (St. Louis, MO, USA). Dulbecco’s modified Eagle medium (DMEM) was obtained from Gibco
(Gaithersburg, MD, USA). Fetal bovine serum was from HyClone (Logan, UT, USA).

3.2. Preparation of Gm-SGPP

Unless otherwise stated, all extraction procedures were performed at 4 ◦C. Fresh eggs were
homogenized in a blender with 3 volumes (v/w) of 0.4 M NaCl for 30 min and then centrifuged
at 4500 rpm for 10 min. The supernatant was then dialyzed for 24 h to obtain water-soluble
glycopeptides. An equal volume of 90% phenol was added to the supernatant with mild stirring
overnight to destroy the protein 3D structure while retaining glycoprotein stability. After centrifugation,
the aqueous phase was dialyzed and lyophilized and the crude samples were then applied to a QFF
column (GE Healthcare, USA) using the AKTA™ UPC 100 (GE Healthcare) system eluted by a linear
gradient (0–1 M) of NaCl in 0.02 M Tris-HCl buffer (pH 8.0). The elution profile was monitored
by measuring the absorbance at 230 nm for proteins. The carbohydrate profile was assayed using
the phenol–sulfuric acid method. As shown in Figure 1A, the Q-4 fraction, sialic acid-rich fraction,
was further chromatographed using a Sephacryl S-300 column (GE Healthcare) and eluted with
ultrapure water. The S-3 fraction containing the most protein, carbohydrates and sialic acid was
freeze-dried and used as the experimental sample.
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3.3. Identification of Gm-SGPP

The molecular weight of Gm-SGPP was determined by HPSEC. Measurements were performed on
a TSK-GEL G4000PWXL column (TOSOH BIOSEP) eluted with 0.2 M NaCl. A calibration curve was
obtained with a series of dextran standards. Glycopeptide characteristics and purity were evidenced by
SDS-PAGE and HPSEC. Gm-SGPP was stained by periodic acid–Schiff for carbohydrates [33,34], Sudan
black B for lipids [35] and methyl green for phosphorus [36]. The type of sialic acid was identified by
HPLC [37] using Neu5AC and Neu5GC as standards.

3.4. Chemical Composition of Gm-SGPP

The carbohydrate content of Gm-SGPP was determined using the phenol–sulfuric acid method
using glucose as the standard [38]. Monosaccharide composition was analyzed through the PMP
precolumn derivatization with HPLC (PMP-HPLC) method using a ZORBAX Eclipse XDB-C18 column
(Agilent, USA) [39]. Protein content was measured by the Folin’s reagent method using bovine serum
albumin as the standard [40]. Neu5Ac content determination was as described above.

3.5. Determination of Gm-SGPP Glycosylation Type

Glycosylation type was determined through the β-elimination reaction [41]. Briefly, Gm-SGPP
(5 mg) was dissolved in 5 mL of 0.2 M NaOH solution for 2 h, followed by UV-vis spectra determination
using a UV-2550 spectrophotometer (Shimadzu, Japan) within the 200–400 cm−1 wave range. The sample
without NaOH treatment was used as the control.

3.6. FT-IR Spectroscopy Analysis of Gm-SGPP

The FT-IR spectrum of Gm-SGPP was recorded with a Nicolet Magna-IR 550 spectrometer within
the 4000–400 cm−1 range using the potassium bromide (KBr) pellet method.

3.7. Amino Acid Composition Analysis of Gm-SGPP

The amino acid composition was analyzed using a Hitachi 835-50 model amino acid analyzer
(Hitachi, Japan) following hydrolysis in 6 M HCl at 110 ◦C for 24 h under N2.

3.8. Amino Acid Sequence Analysis of Gm-SGPP

Deglycosylation of Gm-SGPP was performed according to the method of Edge [42]. Briefly, 20 mg
of dry Gm-SGPP was added to a 2-mL mixture of anisole and trifluoromethanesulfonic acid and
nitrogen was bubbled through the solution, followed by magnetic stirring at 0 ◦C for 30 min. After
the reaction, 50-fold of diethyl ether and 95% ethanol were added to obtain protein precipitation.
The protein was re-dissolved in distilled water and applied to a SuperdexTM Peptide S-100 GL column
(GE Healthcare, USA) and eluted with 0.2 M NH4HCO3 at a flow rate of 0.4 mL/min. Deglycosylated
Gm-SGPP was collected for amino acid sequence analysis. The N-terminal amino acid sequence of
Gm-SGPP was analyzed by an automated Edman degradation performed with a Model PPSQ-33A
N-terminal sequencer (Shimadzu, Japan).

3.9. Methylation Analysis of Gm-SGPP

Methylation analysis of Gm-SGPP was performed according to the method of Hakomori [43].
The sample was subjected to a series of derivative reactions, including methylation, hydrolysis, reduction
and acetylation, to obtain PMAAs. PMAAs were analyzed by HP6890II GC–MS (Agilent, USA).
Complete methylation was confirmed by the disappearance of the hydroxyl band between 3400 and
3600 cm−1 and by the enhanced absorption band of CH3 at 2900cm−1 in the FT-IR spectrum [44].
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3.10. 1H-NMR Spectroscopy of Gm-SGPP

Gm-SGPP (20 mg) was co-evaporated with D2O (99.9%) by lyophilization three times and
dissolved in 1 mL of D2O (99.9%) containing 0.1 µL of 4,4-dimethyl-4-silapentane-1-sulphonic acid as
an external standard. 1H-NMR spectra of Gm-SGPP were obtained using a 600-MHz Bruker AVANCE
III spectroscope (Rheinstetten, Karlsruhe, Germany) at 20 ◦C.

3.11. MTT Cell Viability Assay

Pre-osteoblastic MC3T3-E1 cells were obtained from the American Type Culture Collection
(Manassas, VA, USA) and cultured in 5% CO2 at 37 ◦C with DMEM supplemented with 10% (v/v)
heat-inactivated fetal bovine serum and 100 g/mL streptomycin. All experiments were repeated at
least three times to ensure accuracy.

The proliferation activity of Gm-SGPP was determined as follows. MC3T3-E1 cells (3 × 103/well)
in the exponential growth phase were seeded in 96-well plates. After 24 h, cells were treated with
various concentrations of Gm-SGPP (0, 5, 10, 20 and 40 µg/mL) for 72 h. MTT solution (0.5 mg/mL in
GI-1640 medium) was added and the cells were incubated for further 4 h. Cell viability was determined
by the MTT method.

3.12. Animal Treatments

Three-week-old male ICR mice (18.0 ± 2.0 g) were purchased from Vital River Laboratory Animal
Center (Beijing, China; Licensed ID: SCXK2012-0001). Three to four mice were housed per cage at 23 ±
1 ◦C with a 12:12 h light:dark cycle and were provided ad libitum access to a standard sterile diet and
water. The body weight of these animals was recorded every three days. Animal experiments were
approved by the ethical committee of experimental animal care at Ocean University of China.

ICR mice were divided into two groups (n = 16 per group)—normal group (treated with
physiological saline) and the Gm-SGPP-treated group (100 mg/kg body weight of Gm-SGPP). Animals
in each group were intragastrically administered physiological saline or Gm-SGPP (1 mL/100 g
body weight) once per day. The mice were sacrificed after four weeks of treatment to obtain the femurs
and tibias used in subsequent experiments.

Bone growth rate was measured by measuring the gap between the fluorescent line formed
by tetracycline hydrochloride and the epiphyseal end line of the femur growth plate using a
fluorescence microscope (Leica DM2500, Leica). Tetracycline hydrochloride (20 mg/kg body weight)
was subcutaneously injected to mice 48 h prior to sacrifice. The dissected femurs were fixed in 10%
neutral formaldehyde for 24 h, decalcified by immersion in 10% Ethylene diamine tetraacetic acid(EDTA)
solution for 3 h and sectioned at a thickness of 10 µm. The calcium and phosphorus contents of
tibia were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES; 7300DV,
PerkinElmer). The dissected tibias were crushed and dried at 105 ± 1 ◦C for 2 h, followed by digestion
with nitric acid and perchloric acid.

3.13. Statistical Analysis

All data were presented as mean ± standard deviation of at least three independent experiments.
Statistical comparisons were assessed by one-way analysis of variance (ANOVA), followed by
the least significant difference test. All computations were performed using statistical software.
Statistical differences were considered significant at p < 0.05.

4. Conclusions

A sialoglycopeptide from the eggs of G. morhua was purified and its structure was elucidated
by HPLC, FT-IR, 1H-NMR, GC–MS and N-terminal amino acid sequence analysis. It was found
that Gm-SGPP stimulated the proliferation of pre-osteoblasts and promoted bone formation in
adolescent mice. Nevertheless, the biological function of Gm-SGPP remains a challenge for future
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research. Gm-SGPP may be an effective supplement in the promotion of bone formation. The present
findings will serve as a reference for future study of the structure–activity relationship analysis of
Gm-SGPP.
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