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Dongdong Zhang,1,2 Samuel Yang,3,4 Xiaohui Yuan,2 and Ping Zhang1,5,6,7,*

SUMMARY

Electrocardiogram (ECG) is a widely used reliable, non-invasive approach for car-
diovascular disease diagnosis. With the rapid growth of ECG examinations and
the insufficiency of cardiologists, accurate and automatic diagnosis of ECG sig-
nals has become a hot research topic. In this paper, we developed a deep neural
network for automatic classification of cardiac arrhythmias from 12-lead ECG re-
cordings. Experiments on a public 12-lead ECG dataset showed the effectiveness
of our method. The proposed model achieved an average F1 score of 0.813. The
deep model showed superior performance than 4 machine learning methods
learned from extracted expert features. Besides, the deep models trained on sin-
gle-lead ECGs produce lower performance than using all 12 leads simultaneously.
The best-performing leads are lead I, aVR, and V5 among 12 leads. Finally, we em-
ployed the SHapley Additive exPlanations method to interpret the model’s
behavior at both the patient level and population level.

INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death and produce immense health and economic

burdens in theUnited States and globally (Virani et al., 2020). The electrocardiogram (ECG) is a simple, reliable,

and non-invasive approach for monitoring patients’ heart activity and diagnosing cardiac arrhythmias. A stan-

dard ECG has 12 leads including 6 limb leads (I, II, III, aVR, aVL, aVF) and 6 chest leads (V1, V2, V3, V4, V5, V6)

recorded from electrodes on the body surface. Accurately interpreting the ECG for a patient with concurrent

cardiac arrhythmias is challenging even for an experienced cardiologist, and incorrectly interpreted ECGs

might result in inappropriate clinical decisions or lead to adverse outcomes (Bogun et al., 2004).

An estimated 300 million ECGs are recorded worldwide annually (Holst et al., 1999) and keep growing.

Computer-aided interpretation of ECGs has become more important, especially in low-income and mid-

dle-income countries where experienced cardiologists are scarce (World Health Organization, 2014).

Therefore, accurate and automatic diagnosis of ECG signals has become a hot research interest. In past

decades, automatic diagnosis of ECGs has been widely investigated with the availability of large open-

source ECG datasets such as MIT-BIH Arrhythmia Database (Moody and Mark, 2001), 2017 Physionet Chal-

lenge/CinC dataset (Clifford et al., 2017), 2018 China Physiological Signal Challenge dataset (CPSC2018)

(Liu et al., 2018a), PTB-XL database (Wagner et al., 2020).

Existing models for automatic diagnosis of ECG abnormalities can be classified into two categories: tradi-

tional methods and deep learning methods. The comparison between traditional methods and deep

learning methods is demonstrated in Figure 1. Traditional methods based on machine learning (ML) algo-

rithms are of two stages; these methods require experts to engineer useful features or extract features us-

ing signal processing techniques first and then use these features to build ML classifiers (Jambukia et al.,

2015; Macfarlane et al., 2005). The University of Glasgow ECG analysis program applied rule-based criteria

on signal processing features and medical features for the diagnosis of ECGs (Macfarlane et al., 2005). The

use of wavelet coefficients for the classification of ECGs has been investigated in (De Chazal et al., 2000).

Detta et al. developed a feature-oriented method with a two-layer cascaded binary classifier and achieved

the best performance in the 2017 Physionet/CinC Challenge for atrial fibrillation classification from single-

lead ECGs (Datta et al., 2017).

However, traditional methods are limited by data quality and domain knowledge. Additional effort is

required to extract expert features. The second approach is using end-to-end deep learning techniques
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that do not require an explicit feature extraction. Deep learning methods have made great progress in

many areas (LeCun et al., 2015) such as computer vision, speech recognition, and natural language process-

ing since 2012. Many studies have also demonstrated promising results of deep learning in the healthcare

domain such as complex diagnostics spanning dermatology, radiology, ophthalmology, and pathology

(Esteva et al., 2019). Recently, deep learning models have been applied to ECG data for various tasks

including disease detection, annotation or localization, sleep staging, biometric human identification,

denoising, and so on (Hong et al., 2020). Deep neural networks have shown initial success in cardiac diag-

nosis from single-lead or multi-lead ECGs (Chen et al., 2020; Datta et al., 2017; Hannun et al., 2019; He et al.,

2019; Strodthoff et al., 2020; Zhu et al., 2020). A deep learning model trained on a large single-lead ECG

dataset with 91,232 ECG recordings shows superior performance than cardiologists for diagnosing 12

rhythm classes (Hannun et al., 2019). Ullah et al. transformed the 1D ECG time series into a 2D spectral im-

age through short-time Fourier transform and trained a deep learningmodel to classify cardiac arrhythmias

(Ullah et al., 2020). Twelve-lead ECGs are the standard techniques in realistic clinical settings and can pro-

vide more valuable information compared to single-lead ECGs. Chen et al. proposed an artificial neural

network that combined convolutional neural networks (CNNs), recurrent neural networks (RNNs), and

attention mechanism for cardiac arrhythmias detection and won first place in the 2018 China Physiological

Signal Challenge (Chen et al., 2020). Zhu et al. applied a deep learning algorithm to 12-lead ECGs to diag-

nosis 20 types of cardiac abnormalities, and the model performance exceeded physicians trained in ECG

interpretation (Zhu et al., 2020). Besides, some studies (Hong et al., 2017; Liu et al., 2018b) showed that the

performance of neural networks can be significantly improved by incorporating expert features. Despite

the promising performance of deep learning models on cardiac arrhythmias diagnosis, deep learning

models usually operate as black boxes, and understanding the model’s behavior on making decisions is

important and challenging.

In this study, we developed a deep neural network based on 1D CNNs for automatic multi-label classifica-

tion of cardiac arrhythmias in 12-lead ECG recordings, and the model achieved comparable state-of-the-

art performance (average F1 score is 0.813) on the CPSC2018 dataset. We also conducted experiments on

single-lead ECGs and showed the performance of every single lead. In addition, we applied the SHapley

Additive exPlanations (SHAP) method (Lundberg and Lee, 2017) to interpret the model’s predictions at

both the patient level and population level. SHAP is a game-theoretic approach to explain the model pre-

dictions and has been applied to tree-based algorithms to enhance clinical interpretability (Lundberg et al.,

2020; Li et al., 2020).

Figure 1. Comparison of existing models for automatic diagnosis of ECG abnormalities

(A) Two-stage traditional methods using feature engineering; (B) end-to-end deep learning methods.
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To summarize, the contributions of our work are as follows:

� We developed a deep neural network for automatic diagnosis of cardiac arrhythmias and the model

achieved comparable state-of-the-art performance (Chen et al., 2020) on the CPSC2018 dataset.

� We compared the performance of the proposed model with 4 machine learning classifiers and 3

deep learning classifiers. The result showed that the proposed model outperformed all baseline

classifiers.

� We conducted experiments on single-lead ECGs and the results suggested the F1 score, averaged

across diagnostic classes, of the deep model trained on single-lead ECGs is 4.4%–11.8% lower than

using all 12 leads, and the top-performing single leads are lead I, aVR, and V5.

� To better understand the model’s behavior, we employed the SHAP method to enhance clinical

interpretability at both the patient level and population level.

RESULTS AND DISCUSSION

Experiment setup

Study design

In this study, we aim to develop a deep learning model for automatic diagnosis of 12-lead ECG with 9 car-

diac arrhythmias (CA) types: normal sinus rhythm (SNR), atrial fibrillation (AF), first-degree atrioventricular

block (IAVB), left bundle branch block (LBBB), right bundle branch block (RBBB), premature atrial contrac-

tion (PAC), premature ventricular contraction (PVC), ST-segment depression (STD), and ST-segment eleva-

tion (STE). An example of 12-lead ECG for a patient with AF from the CPSC2018 dataset is shown in Fig-

ure S1. Patient characteristics and diagnostic class prevalence on the CPSC2018 dataset are reported in

Table S1. The overview of the proposed network architecture is illustrated in Figure 2. Our proposed

deep neural network accepts raw ECG inputs (12 leads, duration of 30 s, sampling rate of 500 Hz), utilizes

1D CNNs to extract deep features, and outputs the prediction results for 9 diagnostic classes.

Twelve-lead model performance

Precision, recall, F1 score, AUC, and accuracy of the model’s prediction on each cardiac arrhythmia on the

test data set of 10 rounds are averaged and reported in Table 1. Overall, average AUC and accuracy of the

deep learning model both exceeded 0.95, and the average F1 score was 0.813 with an average precision of

0.821 and an average recall of 0.812. Among all cardiac arrhythmias, the deepmodel performed best on AF

and RBBB classification with an F1 score of over 0.9. However, we also observed the F1 score of STE is low as

0.535 which may be due to the significant physician disagreement in diagnosing STE from ECGs (McCabe

et al., 2013).

To illustrate why the model is working or not working on specific examples of cardiac arrhythmias, we

selected the best validation model of 10 rounds and used the confusion matrices calculated on the test

data set. The confusion matrices are shown in Figure S2. Low false-negative rate and high true-negative

rate were observed for all 9 classes as shown in Figure S2. For the diagnosis of AF, RBBB, and PVC, low

false-positive rate and false-negative rate were observed. However, the confusion matrices showed that

the model had trouble in classifying PAC, STD, and STE with a high false-negative rate. Besides, we adop-

ted an ablation study to measure the effectiveness of data augmentation. By applying scaling and shifting

during the training phase, performance on the test data set improved 1.9% and the average F1 score in-

creases from 0.794 to 0.813. In order to estimate the statistical significance of the differences, we also

applied statistical t test and observed a significant p value (i.e., p<0:05).

Comparison with baseline models

Inspired by (De Chazal et al., 2000) and (Liu et al., 2018b), we built several machine learning models with

extracted expert features. To be specific, we extracted 2 types of expert features: (1) statistical features

(e.g., mean, standard deviation, variance, and percentile) of raw ECG input and (2) statistics and Shannon

entropy of signal processing features extracted by applying discrete wavelet decomposition. Statistical

features and signal processing features are concatenated and input to machine learning classifiers. For ma-

chine learning classifiers, we considered logistic regression, random forest (RF), gradient boosting trees

(GBT), and multi-layer perceptron. Besides, we considered the following 3 neural networks for time series

classification as deep learning baselines:
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� Long short-term memory (Hochreiter and Schmidhuber, 1997) is a variant of RNN which is designed

for time series processing.

� Time-incremental CNN (Yao et al., 2018) combines the feature extraction ability of CNN and RNN’s

ability to effectively learn from time series.

� InceptionTime (Inception) (Fawaz et al., 2020) is an ensemble model based on the CNN applied to

time series classification.

The comparison of model performance (F1 score) is shown in Figure 3. Our proposed model achieved the

best performance compared to other methods. Inception showed slightly poorer performance compared

to our model. Among 4 machine learning models, GBT achieved the best average F1 score of 0.619, while

RF performed worst with an average F1 score of 0.515. As shown in Figure 3, it is apparent that the end-to-

end deep learning model with deep features showed significant accuracy improvement compared to ma-

chine learning models. Among 8 methods, our deep learning model achieved the best performance with

an average F1 score of 0.813.

Single-lead model performance

We modified the input layer of the deep neural network and trained the model on single-lead ECG inputs

x˛R1500031. Comparison of single-leadmodel performancemeasured by F1 score is summarized in Table 2.

Figure 2. Deep neural network architecture for cardiac arrhythima diagnosis

Our deep neural network accepts raw ECG inputs (12 leads, duration of 30 s, sampling rate of 500 Hz), utilizes 1D CNNs to

extract deep features, and outputs the prediction results for 9 diagnostic classes.
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From Table 2, we observed the following: (1) in summary, the single-lead model showed inferior perfor-

mance compared to using all 12 leads simultaneously. On average, the performance of the deep learning

model trained on single-lead ECGs dropped by 4.4%–11.8% compared to using all 12 leads. (2) Among 12

leads, lead I, aVR, and V5 are the top-performing single leads with an F1 score of more than 0.765, and lead

aVL is shown to perform worst with an average F1 score of 0.695. (3) All single leads achieved good perfor-

mance on AF classification with an F1 score of over 0.9. Lead II, aVR showed the comparable best perfor-

mance in the diagnosis of AF. (4) The F1 score (0.94) on RBBB classification obtained using lead V1 is signif-

icantly higher than that using any other leads which means V1 plays an important role in diagnosing RBBB.

(5) The best predictive single lead for LBBB is lead I. (6) Lead I used by Apple Watch and lead II favored by

cardiologists for quick review also showed very good performance on average. (7) Interestingly, although

the 12-lead model achieved comparable or better performance than single-lead models for most diag-

nostic classes, lead I for LBBB and lead V1 for RBBB showed superior performance. We speculate that un-

expected feature interactions may hurt the performance of the 12-lead model. (8) The results identified

lead aVR as a useful lead in ECG interpretation while ECG interpretation mostly ignores this lead histori-

cally (Gorgels et al., 2001).

Table 1. Twelve-lead model performance averaged on 10-fold tests

CA type Precision Recall F1 AUC Accuracy

SNR 0.814 0.800 0.805 0.974 0.948

AF 0.920 0.918 0.919 0.988 0.971

IAVB 0.868 0.865 0.864 0.987 0.974

LBBB 0.844 0.894 0.866 0.980 0.991

RBBB 0.911 0.942 0.926 0.987 0.959

PAC 0.756 0.720 0.735 0.949 0.952

PVC 0.869 0.839 0.851 0.976 0.971

STD 0.808 0.826 0.814 0.971 0.953

STE 0.603 0.504 0.535 0.923 0.974

AVG 0.821 0.812 0.813 0.970 0.966

Figure 3. F1 score comparison of machine learning models and end-to-end deep learning models
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Model interpretability

Model interpretability of deep neural networks has been a common challenge and limiting factor toward

real-world applications. In addition to the promising performance achieved by our deep model in diag-

nosing cardiac arrhythmias, the SHAPmethod was used to explain model predictions. As shown in Figure 4,

we demonstrated the model interpretability at both the patient level and population level through

visualizations.

Patient-level interpretation

For each ECG input with the top-predicted cardiac arrhythmia class l = argmaxðbyÞ, we visualized the SHAP

value matrix svl˛R15000312 along with the raw ECG input matrix x˛R15000312. The explanations of the mod-

el’s prediction results for several ECG instances from different patients are shown in Figure 5. Figure 5A

shows the model’s identification of irregular QRS complexes (combinations of Q, R, S waves seen on a

typical ECG) with the lack of P waves as a classic example of AF. This observation is consistent with the diag-

nostic criteria of AF (Gutierrez and Blanchard, 2011). In Figure 5B with IAVB, highlighted features show

increased PR intervals (periods that extends from the beginning of the P waves until the beginning of

the QRS complexes) which are used for the diagnosis of IAVB (Barold et al., 2006). Figure 5D shows a typical

example of PVC. PVC happens in some sporadic periods in the ECGs, and only the period where PVC oc-

curs is highlighted in Figure 5D which is reasonable. Figure 5C shows the model’s identification of deep S

waves in lead V1 for LBBB. Typically, RBBB is detected with an RSR0 QRS complex in lead V1 as shown in

Figure 5E. Observations from Figures 5C and 5E are compatible with the corresponding diagnostic criteria

for LBBB and RBBB (Alventosa-Zaidin et al., 2019; Goldberger et al., 2017). More interpretation results can

be found in Figure S3. After reviewing the model’s predicted findings with a clinician (S.Y. in the author-

ship), the characteristics of the ECG associated with the diagnoses were consistent with standard ECG

interpretation.

Table 2. Comparison of single-lead model performance measured by F1 score

CA type I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 All

SNR 0.705 0.682 0.602 0.712 0.604 0.663 0.657 0.694 0.710 0.717 0.731 0.721 0.805

AF 0.914 0.927 0.911 0.929 0.913 0.908 0.924 0.913 0.915 0.922 0.910 0.905 0.919

IAVB 0.843 0.853 0.818 0.842 0.808 0.830 0.860 0.866 0.866 0.816 0.842 0.840 0.864

LBBB 0.897 0.778 0.783 0.825 0.802 0.737 0.860 0.860 0.804 0.759 0.813 0.789 0.866

RBBB 0.859 0.802 0.804 0.845 0.815 0.796 0.940 0.886 0.852 0.828 0.827 0.840 0.926

PAC 0.723 0.737 0.709 0.688 0.698 0.719 0.730 0.689 0.692 0.680 0.715 0.702 0.735

PVC 0.813 0.821 0.846 0.818 0.792 0.836 0.788 0.842 0.835 0.838 0.818 0.809 0.851

STD 0.695 0.790 0.627 0.793 0.573 0.711 0.615 0.652 0.702 0.753 0.781 0.757 0.814

STE 0.433 0.406 0.312 0.435 0.251 0.338 0.293 0.417 0.477 0.552 0.485 0.497 0.535

AVG 0.765 0.755 0.712 0.765 0.695 0.726 0.741 0.758 0.762 0.763 0.769 0.762 0.813

Figure 4. Interpretability of the deep learning model at both the patient level and population level using SHAP

values
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However, the deep learning model could make wrong predictions, and the SHAP method could learn

wrong interpretations. To show this, we picked some failed cases, and the discussions are shown in

Figure S4.

Population-level interpretation

Because SHAP values are directly additive, we calculated the contribution rate of ECG leads toward each

diagnosis class, which is utilized for population-level interpretation of the deep learning model as shown in

Figure 4. Figure 6 demonstrates the contribution rate of ECG leads toward diagnostic classes in the 12-lead

deep model. Diagnosing AF and IAVB requires visualizing P waves and the PR intervals. These findings can

be seen onmany leads but are best seen in leads II and V1. This is confirmed by themodel’s ranking of these

leads of importance for the identification of these rhythms. The model’s ranking of V5’s importance raises

the question about whether or not clinicians should look at this lead to improve ECG interpretation. LBBB’s

and RBBB’s hallmark feature is the deep S waves in V1 and RSR0 complexes in V1, respectively. The model’s

identification of the importance of this lead in LBBB and RBBB is consistent with standard ECG interpreta-

tions. STD and STE are seen in an acute coronary syndrome where a region of the heart is suffering from

poor oxygenation. Depending on the affected areas, STE and STD can occur in a variety of leads as

seen in the distribution of the model rankings. From the average perspective, lead II, aVR, V1, V2, V5,

and V6 are the most important leads in the 12-lead model. We also observe some leads (III, aVL) are asso-

ciated with a low contribution rate which means these leads are possibly neglected in the 12-lead ECG

model. This may be because of feature interactions among ECG leads (e.g., lead III is the difference be-

tween lead II and lead I).

Limitations of the study

In this paper, we developed a deep neural network for automatic diagnosis of cardiac arrhythmias from 12-

lead ECG recordings. The proposed model achieved state-of-the-art performance on the CPSC2018 data-

set and employed the SHAP method to enhance clinical interpretability. However, model generalization to

Figure 5. Explanation of the model’s prediction results for several ECG instances from different patients

The features with high contribution (i.e., SHAP values) are highlighted in orange. Only the last 10 s of top 2 influential leads

are displayed due to the limited space.
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patients of different races should be further validated since the CPSC2018 dataset is entirely collected from

China hospitals. Secondly, adversarial samples can lead to misbehaviors of deep learning models. It is

crucial to test the model’s robustness, protect from adversarial attacks, and avoid overoptimistic of the

model. Besides, there is no objective gold standard for ECG interpretation. What combination of ECG

leads could achieve better performance remains unexplored.

Resource availability

Lead contact

Ping Zhang, PhD, zhang.10631@osu.edu.

Materials availability

This study did not generate any new materials.

Data and code availability

The 12-lead ECG data set used in this study is the CPSC2018 training dataset which is released by the first

China Physiological Signal Challenge (CPSC) 2018 during the seventh International Conference on

Biomedical Engineering and Biotechnology. Details of the CPSC2018 dataset can be found at http://

2018.icbeb.org/Challenge.html. The source code is provided and is available at https://github.com/

onlyzdd/ecg-diagnosis.

METHODS

All methods can be found in the accompanying Transparent methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102373.
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Transparent Methods 
 
Data source 

CPSC2018 The 1st China Physiological Signal Challenge (CPSC) 2018 hosted during the 
7th International Conference on Biomedical Engineering and Biotechnology released a freely 
large multi-label 12-lead ECG database collected from 11 hospitals in China. This database 
comprises 6877 12-lead ECGs lasting between 6 s and 60 s at a sampling rate of 500 Hz. 
These ECGs are labeled with 9 diagnostic classes. Patient characteristics and diagnosis class 
prevalence of the CPSC2018 dataset are shown in Table S1. As shown in Table S1, data 
imbalance and insufficiency problem is severe for cardiac arrhythmias diagnosis. 
 
Data Preprocessing 

The CPSC2018 database comprises multi-label 12-lead ECGs with varying durations 
between 6 s and 60 s. As the deep neural network requires inputs to be of the same length, we 
preprocessed the dataset to make all inputs are of the same length nsteps. We tried different 
values for nsteps, and found that setting nsteps to 15000 (duration of 30 s, sampling rate of 
500 Hz) achieved the best performance. For ECGs with a duration of more than 30 s, they will 
be cropped and the last 30 s ECG data are kept. Otherwise, they will be padded to 30 s with 
zeros. 
 
Data Augmentation 

As shown in Table S1, data imbalance and insufficiency problem is severe for cardiac 
arrhythmias diagnosis. To address this problem, we applied scaling and shifting for data 
augmentation during the training phase. Scaling multiplies the ECG signals by a random factor 
sampled from a normal distribution 𝑁(1, 0.01) to stretch or compress the magnitude. Shifting 
randomly moves the time values a little bit. Data augmentation will introduce noise, but in 
practice, it can help reduce model overfitting and encourage robustness against adversarial 
examples. 
 
Network architecture 

The overview of the proposed network architecture is illustrated in Figure 2. The proposed 
network is developed using 1D CNNs. Similar to the original residual neural network for image 
recognition with 2D CNNs, residual blocks with shortcut connections are utilized in our model 
to make the model training tractable. The model takes the raw ECG signals 𝑥 ∈
ℝ{"#$%&×()}	(optimal value for nsteps is 15000) as input and outputs a multi-label classification 
result 𝑦2 ∈ ℝ(×+. 

As shown in Figure 2, the network consists of 34 layers. 4 stacked residual blocks are 
used to extract deep features. Within each residual block, there are two 1D convolutional 
(Conv1d) layers, two batch normalization (BatchNorm1d) layers, 1 dropout (Dropout) layer, and 
two rectified linear unit (ReLU) activation layers. Conv1d layers are used to automatically 
extract features, BatchNorm1d layers to make the model faster and stable, ReLU layers to 
perform non-linear activation, Dropout layer to reduce overfitting. 1 × 1 convolution is used to 
match the dimensions and skip connections. The features extracted by stacked residual blocks 
are pooled using adaptive max-pooling. The pooling results are sent to the output layer with 



sigmoid as activation function to make predictions. 
 
Evaluation metrics 

For each diagnostic class, we report Precision, Recall, F1 score (F1), area under the 
receiver operating characteristic curve (AUC), accuracy score (ACC). For class 𝑖, the metrics 
are calculated with the following equations: 

𝐴𝑐𝑐, =
𝑇𝑃, + 𝑇𝑁,

𝑇𝑃, + 𝑇𝑁, + 𝐹𝑃, + 𝐹𝑁,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, =
𝑇𝑃,

𝑇𝑃, + 𝐹𝑃,

𝑅𝑒𝑐𝑎𝑙𝑙, =
𝑇𝑃,

𝑇𝑃, + 𝐹𝑁,

𝐹(, =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, ∗ 𝑅𝑒𝑐𝑎𝑙𝑙,
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, + 𝑅𝑒𝑐𝑎𝑙𝑙,

 

where 𝑇𝑃, , 𝑇𝑁, , 𝐹𝑃, , and 𝐹𝑁,  represent the number of true positive samples, the 
number of true negative samples, the number of false positive samples, and the number of 
false negative samples for class 𝑖 respectively. Class 𝑖 can be one of the 9 classes: SNR, AF, 
IAVB, LBBB, RBBB, PAC, PVC, STD, and STE. 

To better evaluate the performance of multi-label classification, we adopt average (AVG) 
score of each metric on 9 classes (1 normal and 8 abnormal). Average F1 score is used to 
select the best-performing model. And the final score is the average over classes: 
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1
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Training and Evaluation 

For model training and evaluation, we applied a 10-fold cross-validation approach. The 
CPSC2018 dataset was randomly divided into 10 folds. At each round, 8 folds out of 10 folds 
are used for training, 1 fold for validation, and 1 fold for testing. The optimal threshold of each 
class is selected to achieve the best F1 score on the validation dataset. Then the selected 
thresholds are applied to the test dataset to produce results. The reported results are the 
average on the test dataset of 10 rounds. Adam optimizer is used as the optimization method 
and cross-entropy as the loss function to train the model. The optimal values for 
hyperparameters of the deep neural network are: the length of ECG input is set to 15000; the 
learning rate is 0.0001; the batch size is 32; the maximum number of epochs is 30; the kernel 
size of 1D CNNs is 15; the dropout rate of dropout layers is 0.2. Besides, our code is publicly 
available at https://github.com/onlyzdd/ecg-diagnosis. 
 
Interpretability 

Although deep learning models can achieve state-of-the-art performance in many 
predictive tasks, deep learning models are usually considered to be black boxes. Due to the 



multi-layer nonlinear structure, the decisions made by deep learning models are not traceable 
by humans. However, understanding the model's behavior when making predictions is as 
crucial as the accuracy of predictions in many applications, especially in clinical practice. To 
address this issue, we adopted the SHAP (SHapley Additive exPlanations) method to interpret 
the model's predictions. SHAP is a game-theoretic approach to explain the model predictions 
and has been applied to tree-based algorithms to enhance clinical interpretability. SHAP 
provides a unified way of interpreting predictions of any machine learning models, and satisfies 
the local accuracy, missingness, and consistency constrains. To be specific, SHAP assigns 
shap values, a unique additive feature importance measure (𝜙,), to each feature for a particular 
prediction: 

𝜙, = G
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|! [𝑓.∪{,}P𝑥.∪{,}Q − 𝑓.(𝑥#)]
.⊆1\{,}

 

where 𝐹 is the set of all features and 𝑆 is all feature subsets without the 𝑖th feature. 
Model 𝑓.∪{,} is trained with that feature present, while 𝑓. is trained with that feature withheld. 
The difference of predictions of these 2 model 𝑓.∪{,}P𝑥.∪{,}Q − 𝑓.(𝑥#) are compared on the input 
𝑥#, where 𝑥# represents the values of the input features in the set 𝑆. The effect of withholding 
a feature depends on other features in the model, and the preceding differences are computed 
for all possible subsets 𝑆 ⊆ 𝐹\{𝑖}. The shap values are then computed and used as feature 
contributions. To estimate 𝜙,, the SHAP approach approximates the Shapley value by either 
performing Shapley sampling or Shapley quantitative influence. 

The feature importance analysis can be used for patient level interpretation. Because shap 
values are directly additive, we eliminated the time factor and calculated the contribution rate 
of ECG leads towards diagnostic classes via the statistics of shap values. As shown in Figure 
4, we applied the SHAP method to the trained deep learning model to interpret the model's 
behavior at both patient level and population level by utilizing a gradient explainer. 

Patient level interpretation Firstly, we focus on patient-level interpretation to understand 
why the model is making a certain prediction for 12-lead ECG inputs. Given an ECG input 𝑥 ∈
ℝ(3444×() , the model outputs a multi-label classification result 𝑦2 ∈ ℝ(×+ . By applying the 
gradient explainer, a shap values matrix 𝑠𝑣 ∈ ℝ+×(3444×() is generated for each input where 
𝑠𝑣,,6,7  represents the feature contribution of the corresponding ECG input 𝑥6,7  towards the 
diagnostic class 𝑖. If 𝑠𝑣,,6,7 > 0, then 𝑥6,7 contributes positively towards the diagnostic class 𝑖. 
For the top-predicted class 𝑙 = argmax	𝑦2 , the submatrix 𝑠𝑣8  demonstrates why the deep 
learning model predicts 𝑙 given the ECG input 𝑥 and shows the contribution of features. 

Population level interpretation While patient level interpretation explains the model's 
behavior on a specific ECG input, population level interpretation shows the contribution of ECG 
leads towards each kind of cardiac arrhythmias over the entire dataset. As shown in Figure 4, 
population level interpretation is the summarization of patient level interpretation. Given the 
population of 𝐷 patients and the shap values matrix 𝑠𝑣𝑠 ∈ ℝ9×+×(3444×(), the contribution 𝑐,,7 
of lead 𝑘 for diagnostic class 𝑖 is defined as the sum of shap values: 

𝑐,,7 =G G 𝑠𝑣𝑠:,,,6,7

(3444

6-(

9
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The normalized contribution rate 𝑟,,7 of lead 𝑘 towards class 𝑖 is calculated as: 



𝑟,,7 =
𝑐,,7

∑ 𝑐,,7+
,-(

 

And the average contribution rate �̅�7 of lead 𝑘 in 12-lead ECG model is: 

�̅�7 =
1
9G𝑟,,7

+

,-(

 

The normalized contribution rate 𝑟,,7  shows which leads are playing an important role in 
diagnosing a particular cardiac arrhythmia 𝑖. The average contribution rate �̅�7  reflects the 
importance of each lead and implies possible feature interactions in the deep model. 
  



Supplemental Figures and Tables 
Figure S1. An example of 12-lead ECG with AF. Related to Figure 5. 
Figure S2. Multi-label confusion matrices of the best validation model predictions and ground 
truth. Related to Table 1. 
Figure S3. Examples of patient level interpretation. Related to Figure 4. 
Figure S4. Failed cases when the model makes incorrect predictions Related to Figure 4. 
Table S1. Patient characteristics and diagnostic class prevalence on the CPSC2018 dataset. 
Related to Figure 5. 
  



Figure S1. An example of 12-lead ECG with AF. Related to Figure 5. 

 
 
  



Figure S2. Multi-label confusion matrices of the best validation model predictions and ground 
truth. Related to Table 1. 

 

  



Figure S3. Examples of patient level interpretation. Related to Figure 4. 

 
  



Figure S4. Failed cases when the model makes incorrect predictions (Ground truth	→	incorrect 
prediction). In this figure, (a) The ECG shows mild ST elevations in V1-V3 with ST depressions 
in II, III, and aVF, consistent with poor oxygenation of the cardiac muscles. The mild ST 
elevations in V1-V3 were not picked up by the model; (b) Both IAVB and RBBB are seen in this 
example. In the figure provided, the model selected RBBB as the predominant diagnosis; (c) 
There is a clear PVC in the second QRS in the rhythm. The p-waves are not consistent with 
PAC. There is some artifact in the ECG (usually due to patient movement) which could be 
leading to incorrect classification; (d) This example shows LBBB (confirmed by deep S wave in 
V1 and monophasic R wave in V6) with STE (V1-V4). As previous examples showed, ECG 
interpretation is complex and multiple diagnoses may exist in a single study. Related to Figure 
4.  

 
  



Table S1. Patient characteristics and diagnostic class prevalence on the CPSC2018 dataset. 
Related to Figure 5. 

Class Count (%) Male (%) Age Duration 
SNR 918 (13.35%) 363 (39.54%) 41.56 (18.45) 15.43 (7.64) 
AF 1221 (17.75%) 692 (56.67%) 71.47 (12.53) 15.07 (8.73) 

IAVB 722 (10.50%) 490 (67.87%) 66.97 (15.67) 14.42 (7.08) 
LBBB 236 (3.43%) 117 (49.58%) 70.48 (12.55) 15.10 (8.10) 
RBBB 1857 (27.00%) 1203 (64.78%) 62.84 (17.07) 14.73 (9.00) 
PAC 616 (8.96%) 328 (53.25%) 66.56 (17.71) 19.30 (12.39) 
PVC 700 (10.18%) 357 (51.00%) 58.37 (17.90) 20.84 (15.39) 
STD 869 (12.64%) 252 (29.00%) 54.61 (17.49) 15.65 (9.79) 
STE 220 (3.20%) 180 (81.82%) 52.32 (19.77) 17.31 (10.74) 

Mean and standard deviation are reported for age and ECG duration (s). 
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