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Abstract: Here, based on self-assembly of carbon quantum dots (CDs), an innovative method to
prepare nanomaterials under the action of a metal catalyst was presented. CDs were synthesized
by a one-step hydrothermal method with citric acid (CA) as the carbon source, ethylenediamine
(EDA) as the passivator and FeSO4•7H2O as the pre-catalyst. In the experiment, it was found that
the nano-carbon films with a graphene-like structure were formed on the surface of the solution. The
structure of the films was studied by high-resolution transmission electron microscopy (HRTEM),
Fourier transform infrared (FT-IR), etc. The results demonstrated that the films were formed by the
self-assembly of CDs under the action of the gas–liquid interface template and the metal catalyst.
Meanwhile, the electrochemical performance of the films was evaluated by linear cyclic voltammetry
(CV) and galvanostatic charge discharge (GOD) tests. In addition, the bulk solution could be further
reacted and self-assembled by reflux to form a bifunctional magnetic–fluorescent composite material.
Characterizations such as X-ray diffractometer (XRD), fluorescence spectra (FL), vibrating sample
magnetometer (VSM), etc. revealed that it was a composite of superparamagnetic γ-Fe2O3 and CDs.
The results showed that self-assembly of CDs is a novel and effective method for preparing new
carbon nanomaterials.

Keywords: carbon quantum dots; self-assembly; graphene-like nano-carbon films; bifunctional
magnetic-fluorescent composite; electrochemistry

1. Introduction

In recent years, carbon nanomaterials composed entirely of sp2 bonded graphitic
carbon, including zero-dimensional fullerenes, one-dimensional carbon nanotubes (CNTs),
and two-dimensional graphene, have attracted particular attention due to their unique
structural and physical properties. Among these materials, graphene, a monolayer graphite,
is one single-atom thick, has presented with excellent conductivity, a large surface area,
good mechanical properties, cost effectiveness, and feasibility toward chemical modifica-
tions, and it has already been widely applied in diverse fields, including energy storage
device [1,2], biomedical science [3], barrier Polymers [4], and adsorption of gases [5].

On the nanoscale, the electronic structure is strongly related to the dimension and size
of the specific object. For example, CDs have bandgaps, whereas graphene usually does not.
In view of the pronounced quantum confinement effect, CDs have shown excellent proper-
ties, such as high aqueous solubility, high resistance to photo bleaching, strong and tunable
photoluminescence, good electrical conductivity, chemical stability and benignity. Therefore,
CDs have been widely used in various fields, such as bioimaging [6,7], sensors [8], drug
delivery [9,10], chemiluminescence [11,12] and energy storage [13]. Synthetic approaches
for CDs can be classified into two categories, viz. top-down and bottom-up methods.
Among them, the hydrothermal method has been widely used in the preparation due to its
simplicity and low cost [14,15]. In particular, CDs prepared hydrothermally, using citric
acid (CA) as a carbon source and organic amine compounds as passivators, have exhibited
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excellent photoluminescence properties. The typical structure of CDs was treated as a
core–shell model, consisting of a carbon core with a graphite lattice structure and a shell
made of various surface functional groups, such as amino, carboxyl, and amide groups. The
photoluminescence characteristics were jointly determined by the two parts of the struc-
ture [16,17]. Specifically, there were two different theories about the reaction mechanism of
such CDs. First, non-conjugated molecules (such as CA) could form ammonium salts with
ammonia compounds. Second, the ammonium salts were further cyclized and aromatized
by direct amidation reaction to generate a conjugated sp2 structure, which contained hete-
rocyclic compounds such as imidazole, pyridine, etc. Finally, on this basis, it was further
carbonized to form CDs [16,18,19]. Some researchers also believed that CDs prepared from
CA and ethylenediamine (EDA) could form amorphous linear polymers or cross-linked
polymers via amidation reaction due to the abundant carboxylic acid and amine groups on
the surface and then carbonize to form the carbon core on this basis [19,20]. The size could
be well controlled below 10 nm (usually between 2 and 5 nm) without adding surfactants or
other size-limiting techniques. Furthermore, CDs themselves would not grow up, and the
amino and carboxyl groups between CDs would hardly undergo amidation reaction; that
is, there would be no polymerization reaction between CDs. Guo et al. [21] tried to improve
the optical properties of the material by coupling CDs together through amide bonds.
Wei et al. [22] used the simple CDs as a template to induce hydrothermal self-assembly of
ultrathin Ni(OH)2 nanosheets. However, no attempts have been made to use CDs as basic
units to construct carbon nanomaterials by self-assembly.

In the field of organic synthesis, catalysts were usually added to the system to improve
the efficiency of the amidation reaction, which was also called the catalytic direct amidation
reaction. The main function of the catalyst was to reduce the salt-forming reaction and
enhance the electrophilicity of the carboxy group as much as possible, such that the nucle-
ophilic addition-α elimination reaction could proceed smoothly [23–28]. Transition metal
catalysts such as iron salts could be used as electrophiles to provide empty orbitals in the
reaction, form complexes with the substrate, reduce the activation energy of the reaction,
and catalyze the progress of the reaction. Basavaprabhu et al. [23] chose phenylacetic acid
and aniline as model substrates and investigated the effects of direct amidation catalyzed
by different metal iron salts. They reported that FeCl3 had the best catalytic effect, and the
iron coordination increased the electrophilicity of the carbonyl group, thereby triggering
the nucleophilic attack of the amine.

Inspired by the catalytic direct amidation reaction in organic synthesis, we envisaged
introducing the catalyst to promote the amidation reaction between CDs and construct new
carbon materials through the self-assembly of CDs. In this work, two-dimensional carbon
nanofilms and bifunctional magnetic–fluorescent composites were prepared by a one-step
hydrothermal method and hydration method, with CA as the carbon source, EDA as the
passivator and FeSO4•7H2O as the catalyst. We analyzed the structure and put forward the
possible synthesis mechanism of nanomaterials and initially tested the relevant properties.

2. Results and Discussion
2.1. Structure of GN-1.5

As shown in Figure 1a, when only citric acid and ethylenediamine were used as
reactants, hydrothermal treatment resulted in a reddish-brown colidal liquid, and no film
appeared at the gas–liquid interface. When FeSO4•7H2O (acting as a catalyst) was added,
the metallic luster films (called GN-1.5) were produced under the same process conditions.
The morphology and size of GN-1.5 were obtained from HRTEM images. As shown
in Figure 1, both monolayer (in Figure 1c) and multilayer (in Figure 1b,d) transparent
wafers were presented in the transparent wafer GN-1.5. Figure 1b presents the features
of multilayer sheets and regular edges of GN-1.5. As can be seen in Figure 1c,d, GN-1.5
had the characteristics of bending and folding, which might have been caused by the
superposition of graphene-like sheets or the coiling of the edges. It can be seen from
Figure 1e,f that GN-1.5 was assembled by circular structures. The lattice spacing of circular
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structures was 0.21 nm, which was a typical characteristic lattice spacing of CDs. Moreover,
the connected part between the CDs also presented a complete lattice structure. The well-
resolved lattice fringe of 0.21 nm was the result of the d-spacing of graphene (100 facet),
which corresponded to the hexagonal lattice [29,30]. As shown in Figure 1g, in order to
reduce errors and facilitate repeated verification, five rectangular regions were selected
for fast Fourier transform (FFT), and all of them presented a hexagonal diffraction pattern,
which corresponded to the lattice fringe spacing [30].
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The XRD spectrum revealed the high crystallinity of GN-1.5, as shown in Figure 2a.
The diffraction peaks appearing at 35.0◦ and 62.7◦ corresponded to the (111) and (440)
crystal planes of Fe(OH)3 (JCPDF card no. 22-0346). The diffraction peak appearing at 26.5◦

corresponded to the (002) crystal plane of graphene (JCPDF card no. 41-1487).
FT-IR spectroscopy was conducted to analyze the structure and surface functional

groups of GN-1.5, as shown in Figure 2b. In regard to GN-1.5, O-H and N-H (3271cm−1, a
broad band), C-NH [31]/CH2 [17] (1396 cm−1), C-NH-C [32] (1128 cm−1) and the skeleton
vibration of C-N [33] (1025 cm−1) were observed. The peak at 1616 cm−1 corresponded
to the C=C stretching vibration and C=N stretching vibration of the aromatic ring, which
confirmed the presence of carbon atoms in sp2 graphene and the nitrogen doping of
graphene. In particular, the C=O stretching vibration of amide also appeared in this wave
number [34]. This might have been because that the amide bond connected to the sp2

conjugated structure, and the conjugation effect produced caused the blue shift of the C=O
wave number. The peaks at 711 and 484 cm−1 were the characteristic peaks of Fe and
Fe-OH, respectively [35]. These results indicated that iron hydroxide and nitrogen-doped
graphene-like were successfully combined.

The EDS spectrum (in Figure 2c) showed that the surface of GN-1.5 contained five
elements: C, N, O, Fe, and S. Among them, the contents of O, Fe and S were relatively high,
while the contents of C and N were relatively low. Combined with the XRD and FT-IR
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analysis results, it was speculated that iron hydroxide was formed and some iron sulfate
salts were attached to GN-1.5, which made O, Fe, and S inevitably cover the two elements
of C and N.
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2.2. Electrochemical Property Study for GN-1.5

The potential range of 0.1 to 0.4 V was selected. As can be seen in Figure 3a, the CV
curves exhibited typical pseudo-capacitive behavior, showing the volt–ampere character-
istics of a pair of obvious redox peaks. With the increase in the scan rate, the shapes of
the CV curves were almost unchanged, indicating that the composite material was a good
electronic conductor with a small equivalent series resistance. With the increase in the scan
rate, the anode peak and cathode peak did not shift, indicating that the internal resistance
of the GN-1.5 electrode was relatively small.
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The GOD measurements were performed when the charging voltage was 0 V and the
discharging voltage was 0.4 V. As shown in Figure 3b, the GOD curves of GN-1.5 electrode
displayed a sudden potential drop followed by a slow potential decay, which was the
inherent characteristic of pseudocapacitative materials. The specific capacitance from the
GOD measurements can be evaluated from the following Equation (1):

CS =
I × t

m × V
(1)

where Cs is the specific capacitance (F g−1), I is the charge–discharge current (A), t is the
charge–discharge time (s), m is the mass of the active material in the electrode (g) and V is
the charge–discharge potential range (V). With the increase in current density, the specific
capacitance gradually decreased to 218.00, 176.64, 160.83, 126.66 and 110.83 F g−1 at 2, 4,
5, 8 and 10 A g−1, respectively, which was probably because some parts of the surface of
GN-1.5 were inaccessible at high charge and discharge rate. However, the specific capaci-
tance of GN-1.5 was still as high as 110.83 F g−1 even at a high current density of 10 A g−1.
As shown in Figure 3c. The sample GN-1.5 shows a much better cycling stability, with
83.92% retention of the initial capacity after 2000 cycles at 0.5 A g−1.The results showed
that the films were expected to be applied in electrochemical fields such as supercapacitors.

2.3. Self-Assembly Mechanism of the Graphene-like Monolayer Film

The basic premise for constructing high-dimensional (one-dimensional, two-dimensional
or three-dimensional) nanostructures based on self-assembly of zero-dimensional materials
such as nanocrystals is the asymmetry of the structure [36–38]. This is the physical basis for
the faster growth of nanocrystals in one dimension. CDs, with anisotropic geometry, are
made up of a carbon core with a graphite lattice structure and various surface functional
groups such as amino, carboxyl and amide groups. The shape of CDs is similar to an
ellipsoid, which means smaller dimensions perpendicular to the direction of the layered
structure [16,17,37,38]. First, FeSO4•7H2O is ionized in water to produce Fe2+. The presence
of the pre-catalyst catalyst (called Fe2+) is conducive to catalyzing the direct amidation
reaction between CA and EDA and improving the catalytic efficiency [23]. The coordination
of Fe2+ with the carbonyl group in CA increases the electrophilicity of carbon in the carbonyl
group, thereby triggering the nucleophilic attack of EDA to form CDs. At the same time,
hydroxyl radicals generated by the hydrolysis of EDA may oxidize Fe2+ to Fe3+. Fe3+

is adsorbed on the surface functional groups of CDs, which can significantly reduce the
growth potential energy of CDs and further limit the size of CDs [39].

The surface structure of CDs is similar to polycyclic aromatic hydrocarbon (PAH),
and the hydrophilic functional groups are mainly concentrated on the edge of the sheet
structure. The direction perpendicular to the layer is the hydrophobic surface, while the
sheet edge parallel to the layer contains a large number of hydrophilic groups as the
hydrophilic surface. When CDs move to the gas–liquid interface, the hydrophobic surface
and the gas–liquid interface are arranged in parallel. Under the catalysis of Fe3+ and
guided by the layered graphite structure, the amide bonds are first formed between CDs,
and then CDs undergo dehydration for self-assembly [23]. As the hydrophobic interface
expands, the formed sheet-like film can no longer enter the body of the solution but floats
above the liquid surface. Due to the guidance effect of graphite layered structure, which is
similar to the role of seed crystal in the growth process of a single crystal, the connecting
parts between CDs present a complete lattice structure, making the nanofilm present a
lattice similar to that of graphene. However, limited by the thickness of CDs (2–3 nm), the
thickness of the single-layer film is equivalent to 6–9 layers of graphene. In the body of the
solution, Fe3+ is combined with the hydroxyl radicals generated by the hydrolyzation of
ethylenediamine to form ferric hydroxide and adheres to the surface of the film.



Molecules 2022, 27, 1690 6 of 12

2.4. The Structure and Properties of MFN

To analyze the chemical structure of MFN-1.5, we characterized them by XPS. As
shown in Figure 4a–e, the XPS spectra showed four major binding energy peaks: 297.98,
544.98, 739.98, and 410.03 eV, which corresponded to the binding peaks of C 1s (49.65%),
O 1s (33.35%), Fe 2p (8.79%) and N 1s (7.18%). The binding energy peak of S 2p at 175.03 eV
cannot be separated due to its extremely low sulfur content, accounting for 1.04% of the
total. Specifically, the C 1s spectra (in Figure 4b) showed peaks at 284.8, 288.2, 286.2 and
287.0 eV, which were attributed to C-C/C=C [40], C=O, C-N and C-O, respectively. The
fitted peaks at binding energies of 399.8, 401.7 and 401.0 eV in the N 1s region (Figure 4c)
originated from C-N-C [41], N-H [42] and C-NH2, respectively. The XPS spectrum of O 1s
is presented in Figure 4e, which was divided into two peaks located at 531.1 and 529.8 eV,
corresponding to C=O and Fe-O, respectively. In Figure 4e, two main peaks at 710.6 and
724.6 eV were separate for Fe 2p3/2 and Fe 2p1/2, which matched with the reported value
for Fe2O3. The binding energies of 718.8 and 733.4 eV corresponded to the Fe 2p3/2 and Fe
2p1/2 satellites of Fe2O3, respectively [43–45]. No Fe2+ peaks (ca. 716 eV) were observed
in the spectrum, confirming the high purity of the Fe2O3 crystalline structure without the
interference of Fe3O4 [44].
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To further study the crystal structure and phase composition of MFN-1.5, the synthe-
sized product MFN-1.5 was analyzed by XRD, as shown in Figure 4f. The well-resolved
diffraction lines in the pattern could be represented by γ-Fe2O3 (JCPDF card no. 39-1346).
The diffraction peaks of γ-Fe2O3 appeared at 18.3◦, 30.2◦, 35.6◦, 43.2◦, 57.2◦ and 62.9◦,
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which could be perfectly consistent with (111), (220), (311), (400), (511) and (440) crystal
planes. No additional signals of possible impurities were detected, such as the characteristic
peaks of β-FeOOH or α-Fe2O3, indicating that the product had high purity. No diffraction
peaks of carbon were observed, which indicated that the samples were pure γ-Fe2O3, and
the carbon produced by the reaction was amorphous carbon.

FT-IR spectroscopy was conducted to analyze the structure and surface functional
groups of MFN, as shown in Figure 5a. In regard to MFN-0, the strong peaks at 2926,
1653, 1573 and 1388 cm−1 were attributed to the C-H stretching vibration of alkane, C=O
stretching vibration in amide [46], C=C stretching vibration in the aromatic ring [46] and
C-NH bending vibration [31]. The peak at 1055 cm−1 belonged to the C-N framework
vibration [33]. The wide band with the center of 3278 cm−1 indicated the presence of -OH
and N-H. The peaks at 3396 and 3278 cm−1 could be attributed to the O-H/N-H stretching
vibration of the amino group and the hydroxyl group. These data indicated that there were
amino groups on the surface of MFN-0 in addition to carboxyl and hydroxyl groups. The
peak positions of MFN-1.5 and MFN-0 were basically the same (above 1000 cm−1), and
they had good hydrophilicity and stability in water systems.
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Figure 5. (a) FT-IR spectra of MFN-0 and MFN-1.5; (b) UV–Vis spectra of MFN-0 and MFN-1.5; (c)
fluorescence emission spectra of MFN-0 and MFN-1.5; (d) magnetization hysteresis loop of MFN-1.5,
inserts (d-1) and (d-2) state diagrams of MFN-1.5 after being attracted in ultrapure water when the
magnet was placed on the left side and directly below the petri dish.

Differently, the C=C stretching vibration peak of MFN-1.5 overlapped with C=O
stretching vibration at 1631 cm−1 [34]. The peaks at 635 and 596 cm−1 belonged to the
Fe-O bond vibration of iron oxide. The peak at 850 cm−1 was attributed to the residual
peak of maghemite. These three peaks confirmed the formation of γ-Fe2O3 [47–49]. At the
same time, it was found that the bending vibration peak intensity of C-NH of MFN-1.5 was
significantly stronger than that of MFN-0, which proved that iron ions effectively catalyzed
the formation of amide bonds.

The optical properties of the MFN were characterized by means of UV–Vis and fluo-
rescence emission spectra, as shown in Figure 5b,c. The UV–Vis absorption measurement
showed two characteristic absorption peaks at 239 and 343 nm, which were attributed to
the π_π* transition of aromatic sp2 domains from the carbon core and the n_π* transition of
C=O, respectively [50]. The absorption peak at 343 nm came from the capture of the excited
state energy by the n-state on the surface, resulting in a strong blue light emission [51]. In
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addition, we found that the absorption value of MFN-1.5 at 239 nm was slightly higher than
that of MFN-0, when the UV–Vis absorption value at 343 nm was controlled to be the same.

The fluorescence emission peaks of MFN-0 and MFN-1.5 at the maximum excitation
wavelength of 343 nm was located at 439 nm in Figure 5c. Both had broad emission spectra
and exhibited strong blue emission under 365 nm ultraviolet lamp. We found that the
fluorescence intensity of MFN-1.5 was significantly lower than that of MFN-0 when the
UV–Vis absorption value was the same at 343 nm. It was speculated that the decrease in
fluorescence intensity may be caused by the adsorption of a large amount of iron ions.

The magnetic properties of MFN-1.5 at room temperature were studied, as shown in
Figure 5d. An appropriate amount of ultrapure water was added to the petri dish, and
then MFN-1.5 was added to the dish. When the magnet was placed on the left (inset (d-1)
in Figure 5), MFN-1.5 was observed to move toward the magnet under the irradiation
of an ultraviolet lamp with the selected wavelength of 365 nm. When the magnet was
placed under the dish (inset (d-2) in Figure 5), the diffusion of MFN-1.5 was limited to
the area above the rectangular magnet, which avoided overflowing of the edge. These
phenomena proved the successful combination of MFN-1.5 magnetism and fluorescence.
The hysteresis loop showed that MFN-1.5 had superparamagnetic properties and that the
saturation magnetization was 11.14 emu/g in Figure 5d.

The morphology and size of MFN-1.5 were obtained from HRTEM images. As shown
in Figure 6a,b, MFN-1.5 was amorphous and gel-like in shape, with overlapping accumu-
lations. Many small black dots were attached to the amorphous colloidal substance in
Figure 6c. These dots were spherical in shape and uniformly dispersed, with an average
diameter of 2.83 nm. According to the above results, it could be proven that the dots were
superparamagnetic γ-Fe2O3 nanoparticles.
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As shown in Figure 6d, the HRTEM image showed that MFN-1.5 had no clear lattice
fringes, which was attributed to the amorphous substance. The inability to form graphene-
like films such as GN-1.5 was related to the template effect of the gas–liquid interface. CDs
were anisotropic [37,38]. When CDs moved to the gas–liquid interface, the hydrophobic
surface of CDs was aligned parallel to the gas–liquid interface. Under the catalysis of iron
ions and guided by the layered graphite structure, the amide bonds were first formed
between CDs, and then CDs dehydrated and self-assembled into a graphene-like film.
However, during the formation of MFN-1.5, the first step hydrothermal method did not
directly combine magnetism with fluorescence. The magnetic particles gathered at the
bottom of the reactor and the supernatant only had fluorescence. The second step of reflux
provided the reaction system with a suitable temperature and sufficient oxygen, which not
only redissolved the large magnetic particles, but also made the unreacted raw materials in
the solution body form an amorphous colloidal substance under the action of the catalyst.
Metal oxides and CDs were stuck together by an amorphous colloidal substance to form a
magnetic fluorescent dual-functional composite.

3. Materials and Methods
3.1. Materials

FeSO4•7H2O was purchased from YongDa Chemical Reagent Co., Ltd. (Tianjin, China).
Citric acid (CA), KBr and ethanol absolute were purchased from Aladdin Chemical Reagent
Co., Ltd. (Shanghai, China). Acetylene black and polytetrafluoroethylene (PTFE) emulsion
were purchased from Shengernuo Technology Co., Ltd. (Suzhou, China). All the reagents
mentioned above were of analytical grade, expect for the spectrally pure KBr, and were
used without further purification. Ultrapure water was used throughout the experiments.

3.2. Synthesis of the Graphene-like Nano-Carbon Films

First, 5.2 mmol CA was dissolve with 0 and 5.4 mmol FeSO4•7H2O in 29 mL of
ultrapure water, respectively, and then 1 mL of ethylenediamine was added and mixed
well. Next, the mixture was transferred into a 50 mL Teflon-lined stainless-steel autoclave
and heated for 5 h at 180 ◦C. After the reaction finished, the obtained product was naturally
cooled to room temperature and left to stand for 12 h. The samples were denoted as GN-0
and GN-1.5. Without the catalyst of FeSO4•7H2O, no films appeared at the gas–liquid
interface of the reactor. When 5.4 mmol FeSO4•7H2O was added, the metallic luster films
(called GN-1.5) were produced. Then, the films were repeatedly washed with ultrapure
water and ethanol until there was no blue fluorescence on the surface. Finally, they were
stored in a 3 mL centrifuge tube filled with ethanol absolute.

3.3. Synthesis of the Composite of γ-Fe2O3 and CDs

This preparation procedure was exactly the same as that of graphene-like films, except
that the product in the autoclave was naturally cooled to room temperature, and the
solution and magnetic solid precipitate in the autoclave were quickly transferred to a
three-necked flask. The thermometer was placed on the left branch of the three-necked
flask (above the liquid level), the condenser was connected to the middle of the flask, and
the right branch was sealed with a rubber stopper. The stirring button was turned to
the maximum value, and the temperature of the system was stably controlled at 98 ◦C
and refluxed for two hours. Next, the contents of the flask were transferred to a 50 mL
transparent centrifuge tube and cooled naturally to room temperature. They were then
centrifuged at 10,000 rpm for ten minutes by utilizing a high-speed centrifuge. Finally,
the supernatant was taken out by a disposable dropper, and the samples were denoted as
MFN-0 and MFN-1.5. In order to remove other small organic impurities and most of the
water, all prepared MFN were repeatedly extracted and purified with n-butanol. Finally,
the purified MFN were placed in the dark at room temperature for further experiments.
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3.4. Characterization

High-resolution transmission electron microscopy (HRTEM) was performed with a
JEOL JEM 2100F microscope at an accelerating voltage of 200 kV. The energy dispersive
X-ray spectrometer (EDS) was equipped to obtain the mapping spectrum. X-ray photoelec-
tron spectroscopy (XPS) was performed with a Thermo Scientific Escalab 250Xi (Thermo
Fisher Scientific, Waltham, MA, USA). Fourier transform infrared (FT-IR) spectroscopy
was conducted with a Magna-IR560 FT-IR spectrometer (Nicolet Co., Madison, WI, USA).
UV–Vis absorption spectroscopy was conducted on a UV-2550 spectrophotometer (Shi-
madzu, Kratos, Japan). Fluorescence spectra (FL) of the MFN were recorded with an
LS-55 fluorescence spectrometer (PerkinElmer, Boston, MA, USA). Both GN-1.5 and MFN-
1.5 samples were identified by X-ray diffraction (XRD, Bruker D8 Advance). The scanning
angle was 5–90◦, and the scanning rate was 2◦/min. The room temperature magnetic behav-
ior of the sample (called MFN-1.5) was investigated using a vibrating sample magnetometer
(VSM, Quantum Design-PPMS).

3.5. Electrochemical Measurements

The CDs on the surface of GN-1.5 were cleaned by ethanol absolute, and then the
ethanol was cleaned by ultrapure water. The working electrode was prepared as follows:
First, 85 wt% of active material and 15 wt% of acetylene black were ground into a uniform
black powder in a mortar. Then, an appropriate amount of PTFE emulsion and a few drops
of ethanol were added into the mixed-powder and sonicated to form the slurry. After
mixing together, the resulting slurry was coated onto nickel foams (about 2 mg of active
material and with a geometric surface area of about 1 cm2). Finally, the electrodes were
dried for 8 h at 60 ◦C in air and pressed at 10 MPa.

All electrochemical measurements were carried out on an electrochemical working
station (CS35OH, Wuhan, China) in a three-electrode system in 3 M KOH aqueous elec-
trolyte at room temperature. The saturated calomel electrode (SCE) and Pt electrode were
utilized as the reference and counter electrode, respectively. Cyclic voltammetry (CV)
and galvanostatic charge/discharge (GCD) were used to determine the electrochemical
performance of GN-1.5.

4. Conclusions

Using citric acid as a raw material and ethylenediamine as a nitrogen source, CDs
were self-assembled at the gas–liquid interface to form the composite of Fe(OH)3 and
graphene-like. The thickness of the unilaminar film was about 6–9 layers of graphene,
which provided a new idea for the synthesis of high-quality multilayer graphene-like
under simple and mild conditions. The CV as well as GOD studies of the composite of
Fe(OH)3 and graphene-like demonstrated that the films delivered a specific capacitance of
218.00 F g−1 at the current density of 2 A g−1. The results showed that the composite of
Fe(OH)3 and graphene-like held great potential as high-performance electrode materials
for supercapacitors. The bulk solution successfully combined magnetism with fluorescence
via hydrothermal and reflux to prepare the water-soluble, superparamagnetic γ-Fe2O3-CDs
composite. Briefly, under the action of a catalyst, self-assembly with carbon quantum dots
as basic structural units through direct amidation reaction is a novel and effective method
for preparing carbon nanomaterials and composite functional materials.
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