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Abstract

Analysis of biological processes is frequently performed with the help of phenotypic assays where data is mostly acquired in
single end-point analysis. Alternative phenotypic profiling techniques are desired where time-series information is essential
to the biological question, for instance to differentiate early and late regulators of cell proliferation in loss-of-function
studies. So far there is no study addressing this question despite of high unmet interests, mostly due to the limitation of
conventional end-point assaying technologies. We present the first human kinome screen with a real-time cell analysis
system (RTCA) to capture dynamic RNAi phenotypes, employing time-resolved monitoring of cell proliferation via electrical
impedance. RTCA allowed us to investigate the dynamics of phenotypes of cell proliferation instead of using conventional
end-point analysis. By introducing data transformation with first-order derivative, i.e. the cell-index growth rate, we
demonstrate this system suitable for high-throughput screenings (HTS). The screen validated previously identified inhibitor
genes and, additionally, identified activators of cell proliferation. With the information of time kinetics available, we could
establish a network of mitotic-event related genes to be among the first displaying inhibiting effects after RNAi knockdown.
The time-resolved screen captured kinetics of cell proliferation caused by RNAi targeting human kinome, serving as a
resource for researchers. Our work establishes RTCA technology as a novel robust tool with biological and pharmacological
relevance amenable for high-throughput screening.
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Introduction

RNA interference has developed into a powerful technology for

high-throughput screening. Numerous studies have uncovered novel

functions of genes in biological processes within a number of species

and conditions. However, most studies have used single end-point

analysis as readout for the characterization of the respective

phenotypes [1,2,3,4,5,6,7,8,9]. An end-point analysis provides merely

a ‘‘snapshot’’ of the respective analyzed phenotype, neglecting its

development over time. Moreover, in many studies pre-labeling,

fixation or cell destruction is required prior to the assay. Few screens

have been performed, mostly using high-content screening micros-

copy, where cellular phenotypes were detected with time resolution

[10,11,12,13,14]. However, even there the timing of events was

mostly not considered. Recently, real-time and label-free monitoring

of cell proliferation that is based on electrical impedance real-time cell

analysis (RTCA) has become available and is just starting to be

employed in phenotypic analyses of perturbed cells [13].

The RTCA system is based on the fact that cell membranes

consist of a lipid bilayer having high electrical resistance, and

that the adhesion of cells can be steadily detected by the gold

micro-electrodes at the bottom of wells with electrical impedance as

read-out [15,16,17]. The strength of impedance is positively

correlated with the number of cells having attached to the electrodes

and is recorded as cell index (CI) values (Figure S1a). Among other

factors, the impedance mainly refects the attached cell number as

well as the quality of the cells’ interaction with their substrate [10].

Therefore, this method is suitable for quantifying cell proliferation

without the need for tagging or modifying the sampled cells, as

shown in other technologies relying on cell-impedance [18].

We have exploited such a system to collect continuous and

quantitative information on the changes in the electrical impedance

that are imposed by RNAi-induced knockdown of genes. Since

human kinases and cell cycle proteins are important for cell

proliferation and often employed as drug targets, we carried out a

human kinome RNAi screen to test the biological and pharmaco-

logical relevance of the RTCA system. In this study, we first

established impedance measurement as a novel, robust screening

tool to monitor cell proliferation by performing screening quality

controls (QC) after proper data transformation. Then we integrated

the RTCA system into a high-throughput workfow for siRNA

transfections. Subsequently, we utilized a human siRNA library
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targeting 779 kinases and 80 cell cycle genes to analyze cell

proliferation in real-time, and monitored the dynamics of the

cellular response to knockdown of the respective genes. The

obtained real-time profiles of the phenotypes provide novel, direct

insights into the dynamics of the knockdown of the involved genes

and proteins as well as their impact on the cell system.

Results

Cell impedance refects time-resolved cell proliferation
With the ability to analyze cell proliferation in a time-resolved

manner, we first determined the reproducibility and robustness of

the RTCA system. To test three known effectors of cell viability in

HeLa cells, PLK1 [19], WEE1 [20,21] and COPB2 [22], we

performed RNAi experiments in 18 biological replicates on six

individual microtiter plates. Knockdown of these positive controls

for cell proliferation inhibition indeed reproducibly induced a

strong reduction of the cell index (Figure 1a) when compared to a

non-targeting negative control (siAllStars). The RTCA data was

next validated utilizing a WST-1 quantitative colorimetric assay

that refects cell viability and proliferation [23]. Very similar

phenotypes were observed in the RTCA and WST-1 assays

(Figure 1b). The highly reproducible profiles of the positive and

negative controls suggest that the onset and dynamics of cellular

responses to knockdown of the respective genes are different and

specific for the individual targeted genes.

Data transformation with Cell-Index Growth Rate
The initial outputs from the commercial software shipped with

the RTCA system, the time-series cell index (CI), posed challenges

on data analysis that needed to be solved prior to being able to

analyze data from high-throughput screens, for instance the

reference time point has to be chosen arbitrarily, and the

measurement error accumulates at later time points (see Material

and Methods). As a solution we introduced the cell-index growth

rate (referred to as CIGR later) transformation, by transforming

cell index into the point-wise first-order derivative, i.e., the slope of

CI curve at each time point (see details in Material and Methods

and Figure S2). Analogous to the relationship between velocity

and distance in physics, CIGR is the rate of change of cell index

and describes the transient status of cell proliferation at any time.

The transformation overcomes main pitfalls of using cell index,

and we could show that the maximum CIGR in the exponential

cell-growth phase is linearly correlated with the cell number

(Figure S1b), therefore establishing CIGR as the measure of

transient cell proliferation. Figure 2a shows the cell-index growth

rate curves by transforming the data presented in Figure 1a. Major

differences in the growth characteristics are confined to the first

20–40 hours. The CIGR transformation does not only separate

apoptosis inducing siRNAs from the negative control, but also

distinguishes different time-kinetics between the cell proliferation

inhibitors more clearly. For example, the effect of COPB2

knockdown manifests at later time points (30–60 hours) compared

to PLK1 or WEE1, refected by continuous lower CIGR.

Time-dependent Z-factor establishes RTCA system as a
robust tool for high-throughput screening

In order to verify that RTCA is indeed suitable for high-

throughput screening, we next estimated time-dependent Z-factors

for the data obtained upon knocking down control genes (Material

and Methods). The time-dependent Z-factor curves (Figure 2b)

indicate that this factor equals or is stably greater than 0 over a

Figure 1. Time kinetics of cell growth after knock-down of indicated control genes and a negative control captured with RTCA
system and WST-1 assay. (a) The RTCA system monitors cell growth after transfection of non-targeting control (siAllStars) and cell-growth
inhibitors (COPB2, WEE1 and PLK1) from 8 hours up to 68 hours. It records the electrical impedance of growing cells and reports it as cell index. The
normalization has been performed according to the manufacturers instructions (Materials and Methods). Three time points at which the WST-1 assay
was performed in parallel experiments are indicated in dotted lines. Each curve represents one siRNA knockdown sample, and the error bars indicate
the standard deviation of individual cell impedance measurements (N 18). (b) WST-1 assay was performed with the same set of siRNA at 16, 40 and
64 hours respectively, supporting the profiles observed with RTCA system (N = 18)
doi:10.1371/journal.pone.0022176.g001
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large time window (.20 hours) when comparing negative control

with each of the three positive control siRNAs. This shows that

RTCA indeed allows for the identification of time-resolved

significant hits in high-throughput screens. We also observed that

the time-windows of maximum effect sizes were shifted among

positive controls, indicating distinct kinetics of each gene, and

suggesting different time points at which the genes exert their

maximum effect on cell proliferation. Together, RTCA allows for

the identification of significant hits in real-time high-throughput

screens with data transformation.

Human kinome screen with the RTCA system identifies
inhibitors and activators of cell proliferation

Encouraged by the above results, we next performed a whole

human kinome screen. In this screen, we knocked down 779 kinases

as well as 80 cell cycle genes (referred to as kinases hereafter) in

HeLa cells using siRNA libraries. Every knockdown was repeated in

two biological replicates with control genes and their biological

replicates positioned on each 96-well plate (Table S1).

In order to test for the presence of global trends in the phenotypes

of kinome knockdown, we visualized the time-series CIGR for all

tested genes. This generated a population average over all

knockdown effects as well as standard deviation bars describing

the range of the effects for each time point (Figure 3a). The trend

line that was fitted to the data indicated that perturbed cells

continue growing, after having passed a lag phase that lasted for

about 30 hours post transfection. However, the majority of kinases

displayed weak inhibiting phenotypes as compared to the negative

control. In contrast, the COPB2 positive control was indeed a

strong inhibitor of cell proliferation as the CIGR did not pass the

zero line. Interestingly, both negative controls, as well as the

population average showed oscillation with a period of approx-

imately 17 hours. This had a strong amplitude at the beginning and

became weaker later on. This cycling might reflect the cell cycle

synchronization induced by the transfection procedure.

To allow for comparison of different siRNAs across plates, as

well as to compare the results of RTCA measurements with that

from conventional end-point analysis, we calculated the average

CIGR and normalized the data with the z-score method.

Normalization proved to efficiently overcome unspecific effects

that had not originated from target gene knock-down (Figure S3).

This conclusion is supported by the robustness analysis where the

separation of controls was monitored across the plates in the

screening order (Figure S4). The biological replicates of negative

and positive controls in most plates were well distinguished by

their z-score, indicative of the assay being robust.

The derived z-scores of average CIGR were used to identify

constant modulators of cell proliferation. Top hits from the screen

were identified by ranking the genes according to the absolute

values of the z-scores and selecting the upper 5% of the genes (i.e. all

|z| = 1.96 equivalently p , 0.05, 45 genes in total). These were

clustered into inhibitors and activators of average cell proliferation,

respectively (Tables S2 and S3). Time-resolved data on CI and

CIGR for each siRNA are provided in Tables S1 and S4,

respectively. The average CIGR as well as the z-scores obtained

for all siRNAs tested in the screen are provided in Table S5. To test

the overlapping of hits with end-point analysis we determined to

Figure 2. Cell-index growth rate transformation and time-dependent Z-factors of siRNA screen with the RTCA system. (a) The point-
wise derivative transformation was applied to the raw data shown in Figure 1 (a), and we name the transformed measure as cell-index growth rate
(CIGR). The magnitude of CIGR (its absolute value) measures the transient cell growth rate and its direction (positive, negative and zero) indicates the
status of cell growth: in increasing, in recession or constant. Each siRNA sample is represented in one color, with dots indicating mean and error bars
indicating standard deviation (N = 18). (b) Time-dependent Z-factors calculated with the data of subfigure (a). We have extended the classical Z-factor
into time-dependent Z-factor to allow presenting the effect sizes at different time points. The time-dependent Z-factor has been estimated for each
positive control of cell growth inhibition. For all the three positive controls, we observed at least one large time window in which the Z-factor is larger
than 0, indicating a very robust assay with siRNA. The shifting of these time windows reflects the fact that each positive control has its unique kinetics
and distinct time when the maximum effect is reached.
doi:10.1371/journal.pone.0022176.g002
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apply an independent cell titer blue (CTB) cell viability screen

(Tables S6 and S7). We initially compared the list of siRNAs and

their respective target genes that had inhibited cell proliferation in

the RTCA screen with the hits from CTB analysis. Of 20 inhibitors

identified by RTCA (|z| = 1.96), four showed a marginally

significant inhibiting effect in the CTB screen (false-discovery rate q

, 0.10, Figure 3b), while the other RTCA-hits did not.

Furthermore, we took advantage of an independent data set to

test the relevance of our hits. Schlabach et al. [24] had used pooled

shRNAs for knockdown of 2,924 genes and tested phenotypic

effects in four cell lines using half-hairpin barcodes and microarray

deconvolution. Out of the 20 significant inhibitors in the RTCA

screen, 11 (55%) showed inhibition in at least one of the cell lines

tested by Schlabach et al. (Figure 3b). Another four (20%) of the 20

genes identified by us had not been tested by Schlabach et al. and

the remaining five hits were not significant in the shRNA dropout

screen. This suggests that RTCA is a highly potent and sensitive

screening-tool, and demonstrates the ability to efficiently pick up

inhibitors of cell proliferation.

Next, we sought to evaluate the potential activators of cell

proliferation that had been identified in the RTCA screen. Again,

we compared the RTCA results to data obtained in the CTB-

screen as well as to the shRNA dropout screen [24]. Out of 25

siRNAs activating cell proliferation in the RTCA screen, seven

(28%) showed an activating effect also in the CTB screen (p ,

0.05, Figure 3c), and six more (24%) showed marginal activation

effects (p , 0.10, Figure S5). No activators of cell proliferation had

been reported from the shRNA dropout screen.

We next wished to investigate whether genes we found to inhibit

or activate cell proliferation would be enriched in functional

categories. To address this question we performed enrichment

analysis with Gene Ontology (GO) biological process (BP) terms

and indeed found the inhibitors enriched of GO-terms associated

with M-phase and mitosis while the activators of cell proliferation

were enriched for GO-terms such as locomotion and positive

regulation of migration (Table 1). While these GO-terms and their

association to the respective phenotypes are well in line with the

biology, the adjusted p-values are (especially in the activator case)

only indicative of marginal significance likely because of the small

number of genes in the respective categories.

In all, the cross-validation with two independent end-point

datasets and the functional enrichment suggest that RTCA is a

powerful tool that is able to identify inhibitors as well as activators

of cell proliferation with high sensitivity.

Analysis of dynamic phenotypes identified a network of
mitotic entry and exit genes as early regulators of cell
proliferation

Having identified inhibitors and activators of cell proliferation,

we next asked whether the timing of individual phenotypes could

be related to the respective functions of targeted genes. To address

this question we first clustered the hits depending on inhibiting and

activating effects and according to the time-point where the

maximal effect, i.e. the maximum z-score, had been observed

(Figure S6). Figure 4a shows inhibitors as well as activators of cell

proliferation (p , 0.05, the minimum time-window of significance

Figure 3. Dynamics of the kinome screen and the overlapping results with conventional end-point assays. (a) The mean cell-index
growth rates of all kinase knock-downs (dots) are plotted against time. The error bars (6 population standard deviation) indicate the range of CIGR
after kinase knock-down, and the dash line by fitting the mean values with a second-order linear model suggests the trend. The dynamics of negative
control and one positive control (COPB2) are shown in solid lines for comparison. (b) Overlap of constant hits modulating cell growth identified by
the RTCA system and other end-point screens. CTB stands for the cell titer blue viability assay, and Dropout refers to the published drop-out screen
with shRNA pools to identify regulators of cell growth by Schlabach et al. [24]. Inhibitors in the CTB screen having marginal significant effects (false-
discovery rate q,0.10) and having been identified in RTCA or Dropout are indicated. For activators, uncorrected p-values were employed as
otherwise no activating hits would have been obtained. In both activator and inhibitors over 50% of the hits were overlapping between the RTCA
system and the conventional end-point screens. (c) Inhibitor (left panel, false-discovery rate of q,0.10) and activator (right panel, one-sided t-test
p,0.05) hits of the CTB screen (see Figure S5 for results with one-sided t-test p,0.10). The values are shown in the percentage of non-targeting
negative controls without transformation, each in three replicates (crosses). The mean values are shown with short horizontal bars.
doi:10.1371/journal.pone.0022176.g003
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was 3 hours) ordered by the time-points of their respective

maximum effects. While inhibiting phenotypes were observed for

several genes already shortly after transfection, the first activating

effects took longer to develop. The delay of activators reaching

maximum effects compared to inhibitors is robust against

algorithms parameter selection (Figure S7).

Table 1. Function enrichment analysis of both inhibitor and activator hits of cell growth identified during the kinome screening
with the RTCA system.

Type GO ID GO Biological Process Term Count/Expected/Size BH-adj. p value

Inhibitor GO:0000279 M phase 7/0.8/50 3.961024

GO:0007067 Mitosis 6/0.7/50 4.961024

GO:0000280 Nuclear division 6/0.7/43 4.961024

GO:0051301 Cell division 4/0.9/55 3.061022

Activator GO:0007626 Locomotory behavior 4/0.5/18 3.661022

GO:0006935 Chemotaxis 3/0.4/14 3.861022

GO:0051090 Regulation of transcription factor activity 3/0.5/18 3.861022

GO:0030335 Positive regulation of migration 3/0.7/21 4.061022

GO:0007267 Cell-cell signaling 5/1.3/45 4.061022

See the Method section for the description of the testing procedure. Identifiers (ID) and descriptions (Term) of over-represented biological process function groups
defined by the Gene Ontology (GO) are listed. The column Count/Expected/Size shows (1) the actual count of genes labeled with the GO term/(2) expected count under
the null hypothesis of the hypergeometric model/(3) number of genes labeled with the term in all the screened genes. Benjamini-Hochberg multiple-testing correction
was applied to the p-values returned by the topGO software and the adjusted p-values are reported.
doi:10.1371/journal.pone.0022176.t001

Figure 4. Transient cell-growth modulators identified by the RTCA screen and the interaction network discovered among hits.
(a) The time-heatmap showing the kinetics of the significant transient cell-growth modulators identified during the screen (|z|.1.96, minimum time-
interval over significance level set to 3 hours), clustered into inhibitors (blue on the left side) and activators (red). The genes in each cluster are
ordered increasingly by the time at which the knockdown reaches its maximum effect on the cell-index growth rate (peak-time), indicated by the step
curve in blue or red. The color in each cell represents the time-series z-score. (b) The network regulating cellular mitosis event discovered by the
screen. Interactions among five inhibitory proteins in subfigure (a) have been reported before and are labeled in blue, the respective peak-time is
indicated in brackets. Grey nodes indicate the genes which are not present in the screened library. All three genes that were present and reported to
be proteolyzed by the APC-Cdh1 complex and therefore crucial for mitotic exit (in the blue box) were successfully identified. The edges with stunt
endings indicate inhibition, and ‘‘+p’’ along the edge indicates effects by phosphorylation. Dotted arrows indicate the involvement of gene products
in the cell cycle events.
doi:10.1371/journal.pone.0022176.g004
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An early onset of some RNAi phenotypes (15 to 30 hours after

transfection) was only seen in the inhibitor set of target genes and

this let us then investigate whether the respective genes would be

associated with particular gene functions. Interestingly, GO-term

analysis revealed that the genes displaying early inhibitory

phenotypic effects in the assay, i.e. WEE1, MAP3K10, CENPE,

AURKA/STK6, AKAP11 and PLK1, were enriched for GO-

terms nuclear division (p,3.961023, hypergeometric test, Benja-

mini-Hochberg adjustment for multiple testing), mitosis

(p,3.961022), M phase of mitotic cell cycle (p,3.961022), and

mitotic cell cycle (p,4.961022). In contrast to early-onset

inhibitors, genes displaying maximum effects at intermediate and

late time points (Figure S8a) were not enriched in particular GO-

terms. This could indicate that the early-onset phenotypes reflect

more direct effects (interruption of cell-cycle mechanisms) while

phenotypic changes are increasingly affected by secondary effects

at later time points.

To elucidate the biological functions and effects transient

modulators have on cell proliferation, data mining tools including

STRING [25], Reactome [26,27] as well as R packages

KEGGgraph [28] and RpsiXML [29] were used to query the

functional relationships between the hits. By mapping biochemical

protein-protein interactions among transient hits, we identified a

network of eight cell-proliferation modulators which interact

directly and regulate cell proliferation in the HeLa cell system

(Figure 4b). Most strikingly, a network of three key genes for

mitosis exit, which are rapidly proteolyzed upon induction by

APC-Cdh1: AURKA/STK6, PLK1 and CDC20 [30], were

identified. All three genes were identified as early (AURKA and

PLK1) or early-intermediate (CDC20, reaching the maximum at

32h) modulators, suggesting the sensitivity of the cell system to the

mitosis event and demonstrating the advantage of the RTCA

system to study transient and dynamic effects. The other two genes

having been associated with this pathway (PRC1 and CDCA3/

TOME-1) were not present in our screening library. Another gene

important for mitosis entry, WEE1, was discovered as the earliest

modulator, whereas WEE1s negative regulator CHEK1 (by

phosphorylation) reached its maximum effect much later (39h).

In order to validate these hits, we next deconvoluted the originally

employed pools of four siRNAs to target the indicated genes with

individual siRNAs. To this end, each of the four siRNAs contained

in the pools of the primary screen was transfected in independent

experiments. Figure S9 demonstrates that indeed most siRNAs

targeting the respective genes induced a similar phenotype as had

been observed with the pools. Normalized CI and CIGR values of

the deconvolution experiments are provided in Tables S8 and S9.

In order to prove efficient knockdown of the siRNA reagents we

performed qRT-PCR experiments after transfection of HeLa cells

with each of the individual siRNAs or with the pools. Figure S10

shows that almost all of the siRNAs led to greater than 60%

mRNA knockdown thus confirming the efficiency of RNAi.

In conclusion, the time-series cell-growth information gained

from RTCA demonstrates its power by discovering key genes

involved in cell mitotic entry and exit events as early regulators of

cell proliferation.

Discussion

Here we have described a time-resolved RNAi screen, testing

dynamic phenotypic effects that human kinases and cell-cycle

genes have on cell proliferation. By applying adequate transfor-

mation, we could show with time-dependent Z-factors that the

cell-index growth rate (CIGR) is reproducible and renders the

technology applicable for screening purposes. Consequently we

tested a human kinome siRNA library for dynamic effects of

knockdown on cell proliferation. While knockdown of the majority

of kinases indeed had slight inhibiting effects on cell proliferation,

the cells appeared to be able to overcome these effects and

continue growing once a lag phase variable in length has passed.

This let us conclude that HeLa cells are indeed sensitive to the loss

of these kinases, however, they are fit to overcome the initial effects

of the perturbations and they thus are robust from a systems point

of view. In addition, an oscillation with a period of 17 hours of

population could be observed with high amplitude at the

beginning, which becomes smaller at later time points. We assume

that the oscillation might visualize cell cycle of the cells, as the cells

might be partly synchronized by the transfection procedure. This

observation is also confirmed by the reduction of amplitude over

time as a de-synchronization of cell cycle will occur. Moreover, a

cell cycling time of 16,18 hours has been observed in HeLa

before [31], a similar frequency to that observed by us. We thus

conclude that RTCA might serve as a powerful tool to analyze cell

cycle changes.

Our screen identified genes having inhibiting as well as

activating phenotypes, with more than 50% of hits in both

categories validated by a cell titer blue assay or a published shRNA

dropout screen [24]. The overlap validates the relevance of RTCA

for screening purposes. Interestingly, our screen identified 25

genes having activating phenotypes upon knockdown on top of 20

inhibitor phenotypes. While some of these activators were only

marginally significant also in the CTB analysis and, hence, would

not have been followed up further, the shRNA screen was not able

to pick up any genes having activating phenotypes. RTCA thus

adds a new dimension in viability analysis as it allows to identify

activating phenotypes on cell proliferation in large-scale RNAi

screening with high significance.

We next analyzed the timing of inhibition as well as of

activation on cell proliferation. To this end, hits were ordered by

the time of their respective maximal effects. Strikingly, the first

inhibiting effectors became apparent shortly after transfection,

whereas activating effects took much longer to develop. The

selection of the assay time in an end-point screen thus reflects a

compromise that is likely not able to pick up all phenotypes and

thus misses a lot of useful information. GO-term analysis of the

early onset inhibitors of cell proliferation revealed an enrichment

for GO-terms such as cell cycle and mitosis, being consistent with

the transient expression of many cell cycle genes only at confined

phases of the cell cycle.

Utilizing this time-resolved data we identified transient cell

proliferation modulators and discovered a network of genes that

interact with each other and affect cell proliferation in our cell

system (Figure 4b). It would have been very difficult to pinpoint

this network with conventional end-point assays. The dynamics of

components in this network fits their biological functions well,

since we observed key cell cycle genes act as early inhibitors and

upstream signaling pathway genes as intermediate or late

activators. Strikingly we could identify and validate all the genes

known to be essential for mitosis exit that are represented in the

screening library (CDC20, AURKA/STK6 and PLK1) as early or

early-intermediate modulators.

Having determined a number of genes that are involved in

mitotic exit, this approach could be exploited in the future, e.g. for

improving cancer therapies. Specifically the targeting of the

mitotic exit is in line with current anti-mitotic development, as this

has been suggested to have enhanced therapeutic capacities than,

for example, targeting spindle assembly [32]. Therefore, the

RTCA system could potentially be used to discover compounds

that target mitotic events, since they may display early effects on

Time-Resolved Kinome RNAi Screen
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cell proliferation as the network of genes identified in this study.

This, however, would not easily be possible with traditional end-

point assays. Furthermore, it allows investigating cell proliferation

kinetics with combinational therapy by applying multiple com-

pounds or RNAi reagents, in order to overcome transient

inhibition or activation by single component and achieve constant

regulation of cell proliferation [33].

Commonly, protein half-lives are determined in order to predict

phenotypic changes. Instead RTCA provides information at what

time after the initial perturbation the concentration of a targeted

protein has reached a critical concentration below which it is not

able any more to perform its biological function. We thus render

this a biological half-life kind of information and to have superior

content over protein half-life measurements. We are aware that

both knockdown efficiency as well as the timing of siRNA-induced

silencing are additional parameters that need to be considered in

the dynamic analysis of phenotypes. The reagents utilized for the

candidates shown in Figure 4 and leading to early phenotypic

changes had all similar knockdown efficiencies suggesting that for

those genes the timing of RNA knockdown and protein

degradation might have similarly contributed to the phenotype.

For long-lived proteins, like some structural proteins, the onset of

phenotypes could, however, be at late time-points even though

RNA knockdown was efficient already early after transfection.

While high-throughput half-life data reported a positive correla-

tion between half-life and protein size [34], our data did not verify

this association (Figure S8b). This may be due to the small set of

proteins that we identified in this screen. However, as we have

indeed found a correlation with cell cycle associated GO-terms for

early-onset inhibitors and with migration terms for activators we

conclude that the biological half-life might be more relevant than

protein size. A combination of protein and biological half-life

information would nonetheless be ideal as the effects observed with

impedance measurement do not distinguish between direct and

indirect effects. For example, GO-term enrichment was only

visible among the early-onset inhibitors, while late-onset inhibitors

did not cluster into specific functional categories. There, the effects

of events downstream of the targeted gene could become

dominant. Such consecutive order of effects could explain also

biphasic dynamic profiles as were observed for some proteins. For

example, knockdown of COPB2 (Figure 1) has been described to

result in a slow accumulation in remnant structures of ER proteins,

eventually leading to a break down of protein secretion and to

apoptosis [22]. Loss of that protein thus leads to a consecutive

order of events that culminate in cell death while the retrograde

trafficking of vesicles from the Golgi complex to the ER has not

been reported to be involved in apoptotic pathways. Integration of

protein half-life and biological half-life data would thus allow for a

direct correlation between biochemical properties of targeted

proteins and the cellular fate. Until then, time-resolved analysis of

RTCA profiles is a powerful tool to identify the timing in end-

point assays, where the maximum effect sizes could be studied

(Tables S1 and S6).

In this study we aimed to test the capabilities of the RTCA

system in large-scale RNAi screening, using a RNAi-library

targeting the human kinome and testing for dynamic phenotypic

changes. Considering the limitations of any high-throughput

screening, we performed, on top of carrying out an independent

CTB screen and integrating a literature dataset, deconvolution

experiments that successfully verified some early inhibitors (Figures

S9 and S10). More such tests might potentially validate even more

modulators having scored less significant in our intial screen, as we

found indeed most RNAi-reagents to induce milder inhibiting or

activating effects as compared to the negative control. We thus

publicize the raw data for deeper mining as well as the R/

Bioconductor package RTCA to encourage further use of the data

and the software described here.

In summary, we have carried out a human kinome RNAi

screen, using RTCA with electrical impedance as output. This

screen has validated previously identified inhibitor genes as well as

activators of cell proliferation. The high-content of data with

respect to time-resolution permits to investigate the dynamics of

RNAi phenotypes. Thereby, we identified a network of mitosis-

related genes to be among the first displaying cellular effects upon

siRNA knockdown. Our data on one hand establishes RTCA

technology as a novel tool amenable for high-throughput

screening, and on the other hand opens new avenues in the

dynamic cellular analysis of phenotypes being induced by RNAi

and likely also other perturbations.

Materials and Methods

RNAi reagents and cell culture
Human siARRAY - Protein Kinase (G-003500-02) and human

siARRAY - Cell Cycle (G-003250-02) libraries were obtained from

Dharmacon (Lafayette, US). Catalog numbers of the individual

siRNA pools are given in Table S6. Deconvolution experiments

were performed with four individual siRNA reagents that had

been pooled in the original siARRAY libraries. Order numbers

and sequences of these individual siRNAs are provided in Table

S10. Negative control siRNA reagents were siAllStars (Qiagen,

Hilden, Germany), siGENOME Non-Targeting siRNA Pool #1

(Dharmacon, Lafayette, US). All negative control siRNA reagents

were tested side by side in RTCA and CTB assays to verify their

lack of effects in the HeLa cell line employed in the experiments

(Figure S11). HeLa cells (CCL-2, ATCC) were grown in DMEM

medium supplemented with 20 mM L-Glutamine and 10x MEM/

NEAA (all Fisher Scientific, Schwerte, Germany).

Automated siRNA-Transfection and RTCA measurements
The background impedance of the real-time cell analysis system

(RTCA, xCELLigence Roche, Penzberg, Germany) E-Plates 96

was performed using the standard protocol provided in the software

with 100 mL DMEM-medium containing penicillin/streptomycin,

L-Glutamin and 10% FCS (Gibco, Darmstadt, Germany).

Following trypsination, cell concentration was determined with a

CASY-TT CellCounter (Roche, Penzberg, Germany) and 10,000

HeLa cells were seeded in every well with 100 mL additional

DMEM-Medium. E-Plates were positioned in a xCELLigence

Real-Time Cell Analyzer MP (Roche, Penzberg, Germany) and

baseline levels were recorded. 24 hours later, plates were removed

from the incubator and transfection was carried out. Transfection of

siRNAs (human siARRAY -Protein Kinase and Cell Cycle libraries)

was carried out in a 96-well format using a Biomek FXP liquid

handling workstation (Beckman Coulter, Fullerton, US). Prior to

transfection, DMEM-medium was removed from the E-plates using

a 96 well pipetting head of the liquid handler without touching the

cells at the surface of the well bottom. Cells were washed once with

150 mL Optimem (Invitrogen, Karlsruhe, Germany) before adding

40 mL Optimem to each well. In parallel, 1.15 mL X-tremeGENE

(Roche, Penzberg, Germany) and siRNA were diluted in 20 mL

OPTIMEM, then mixed and incubated for 15 minutes before being

added to the E-Plates 96 by the liquid handlers 96 well pipetting

head, leading to a final volume of 80 mL per well and a final siRNA

concentration of 60 nM (both for pools as well as for individual

siRNAs). After 5 hours of incubation in the RTCA MP Station, the

transfection mix was removed with the liquid handler, and wells

were washed with 150 mL of DMEM-medium and then filled with
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200 mL of DMEM-medium before returning the plates to the Real-

Time Cell Analyzer MP. Cells were then incubated for 90 hours and

impedance was measured every 15 minutes for 25 hours. Thereafter

impedance measurement was continued in 60 minutes intervals for

another 36 hours. A spline model was built to interpolate the time-

series cell-index into a uniform time-interval of 30 minutes between

records in tandem. Different negative controls (siAllStars, siGEN-

OME Non-Targeting siRNA Pool #1) were tested side-by-side and

displayed similar phenotypes (Figure S11).

Cell Titer Blue assay
HeLa cells were counted and set to a concentration of 1.256105

cells/mL. Transfection of 50 nM individual siRNAs (human

siARRAY Protein Kinase and Cell Cycle libraries) was carried out

in a 96-well format using a Biomek FXP liquid handling

workstation (Beckman Coulter, Fullerton, US). siRNAs had been

complexed with DharmaFECT transfection reagent (20 mL total

volume) for 20 minutes at room temperature, and were then mixed

with 80 mL cells and incubated for 48 hours. CellTiter-Blue

viability assays (Promega, Mannheim, Germany) were carried out

according to the supplier’s instructions measuring three replicates

of every screening plate. Five mL of CellTiter-Blue reagent were

dispensed to every well of 96well plates, plates were gently mixed

and then incubated for two hours at 37uC and 5% CO2. Then,

fuorescence intensities were measured at 485 nm (excitation) and

530 nm (emission) using a Mitras LB940 microplate reader

(Berthold Technologies, Bad Wildbad, Germany). Raw-data of

the three replicates are provided in Table S6. The results of siRNA

transfected samples were then compared to that of non-targeting

controls after log-transformation with paired t-test. Multiple-

testing correction was performed with the Benjamini-Hochberg

method [35]) to yield an estimated upper boundary of local false-

discovery rates (q-values). Of activating genes, over 300 had q-

values very close to 0.10, which we believed to be caused by the

relative small sample size and the ranking approach of the

multiple-testing correction. To avoid this potential problem, we

made the comparison between result sets by using uncorrected p-

values, while reporting data (including the statistical test results) of

the CTB assay in the Table S7. Different negative controls

(siAllStars, siGENOME Non-Targeting siRNA Pool #1) were

tested side-by-side and displayed similar phenotypes (Figure S11).

WST1 cell proliferation Assay
Cell viability was assayed using the WST-1 Cell Proliferation

Reagent (Roche, Penzberg, Germany) according to the manufac-

turer’s instructions.

qRT-PCR
Total RNA of transfected cell lines was extracted using the

Invisorb Spin cell RNA mini kit (Invitek GmbH, Berlin, Germany)

and reverse transcribed with the RevertAidTM H Minus First

Strand cDNA Synthesis kit (Fermentas, St. Leon-Rot, Germany).

Ten ng total RNA was used for each qRT-PCR reaction.

Quantitative real-time PCR was performed with probes of the

Universal Probe Library (Roche, Penzberg, Germany) for target

genes CHEK1, WEE1, PLK1, AURKA, and CDC20 (sequences

and probe numbers given in Table S11) Transfections with non-

targeting siRNAs siAllStars, siGENOME Non-Targeting siRNA

Pool #1 were analyzed as negative controls. Quantification of

amplification products was performed with a ABI Prism 7900HT

Sequence Detection System (Applied Biosystems, Weiterstadt,

Germany). Data was analyzed using the Bioconductor ddCt

package [36].

Bioinformatic and statistical data analysis
Hereafter we use following definitions: in the real-time cell

analysis (RTCA) system, the time-series cell electrical impedance

is recorded and exported as the cell index (CI) vector

x~ xs,t0
,xs,t1

,:::,xs,tN{1

� �
in N time points (N = 91 in the

kinome screen, with a measurement time point every 30 minutes

from 13h to 58h post transfection) for sample s. We denote the set

of all screened kinases and cell-cycle related genes (short as kinases

hereafter) as S, and the complete time domain as T . xs is a unit-

less and non-negative xs,T§0ð Þ measurement of the electrical

impedance. The sample mean and variance between biological

replicates of sample s at time-point t are denoted as xs,t
and s2

xs,t
respectively, and the respective standard deviation

as sxs,t . The cell-index growth rate vector is denoted as vs~

(vs,t0
,vs,t1

,:::,vs,tN{1
), and its derivatives are denoted similarly as the

cell-index.

Transformation of Cell-Index (CI) into Cell-Index Growth

Rate (CIGR). Two main drawbacks, which prevent employing

the CI value directly in a high-throughput screening, are discussed

here. Since the CI value is positively correlated to the cell number

(Figure S1), and cell numbers vary from well to well on microtiter

plates due to the variances of initial seeding and medium change

after siRNA transfection, the CI vectors of different samples

cannot be compared directly. The manufacturer recommends the

normalization as follows: for any given sample set S, choose an

arbitrary time point (denoted as tnorm) as the normalization time

point, and normalize the cell-index for any s[S with:

~xxs,t~
xs,t

xs,tnorm

ð1Þ

for all t. The transformed value ~xxs,t is named as normalized cell index

by the manufacturer. It has the property that ~xxs,tnorm:1.

Although this transformation allows to compare the cell growth

among samples, it suffers from the arbitrary selection of the tnorm.

Practically tnorm is preferentially chosen at a time point shortly

after the siRNA transfection (for instance 10 hours). However,

there is no rule defining how it should be selected and we indeed

observed effects caused by the arbitrary selection of tnorm.

Besides the arbitrariness of tnorm, using (normalized) cell-index

directly as the measure of cell-growth causes the problem of the

error propagation in the time domain T . Figure S2(a) and S2(b)

show the distributions of xs,t (mean cell-index of kinase biological

replicates) and of sxs,t
(standard deviation of cell-index of kinase

biological replicates) over time for all s[S. Especially Figure S2(b)

suggests that in general the cell-index variance of biological

replicates increases along the time. This is most likely to be

explained by the error propagation in the time domain: the cell-

index measures the cell-growth in an accumulative manner, that is,

xs,tn
reflects the accumulative growth for T 0~ t0,:::,tnð Þ but not the

transient cell growth status (Figure S1). Trivial departures from

earlier time points will accumulate to large variances in later time

points, and causing the increasing sxs,t in the time domain T .

Data transformation with the Cell-Index Growth Rate

(CIGR). To overcome these challenges, we introduced the Cell-

Index Growth Rate (CIGR) transformation. We define the cell-

index growth rate as:

~vvs~(vs,t0
, . . . ,vs,tN{1

)~
Dxs

Dt
~

xs,ti
{xs,ti{1

ti{ti{1
ð2Þ

given sample s[S and 0ƒiƒN{1. Therefore the CIGR is the

rate of change of cell index. Note that by definition the CIGR is a
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vector physical quantity. The scalar absolute value (magnitude) of

~vvs,t measures the absolute transient cell growth at t, and its sign

(direction) determines the status of cell growth: increasing (.0), in

recession (,0) and constant ( = 0). Analogous to the relationship

between velocity and position in physics, the CIGR measures the

transient cell-growth independent of its history, namely all the time

points that have been recorded before a new time point is

observed, once the cell number has been fixed. In the following

discussions we use v instead of v! for simplicity.

Applied to the screening data, the CIGR transformation

calculates the point-wise first derivative for all t[T of sample

s[S (using diff function of base function in R, see the

documentation of RTCA software package for the computational

details). Figure S2(c) and S2(d) illustrate the distributions of vs,tand

svs,t
of all screened samples in the same way applied to the

untransformed cell-index. Figure S2(c) suggests that the CIGR of

all screened samples are evenly distributed in the time domain T ,

with the positive control (siRNA against COPB2) and the negative

control (non-targeting siAllStars) still well separated. We observe

that the variances of cell-index growth rate do not steadily increase

with the time (Figure S2(d)) but rather remain constant. We

observe, intriguingly, a moderate reduction of average sample

variances at about 30 hours after the transfection. We assume this

could have been caused by the time-lapse to establish stable siRNA

knockdowns.

Therefore the CIGR transformation is free of choosing tnorm

and prevents error propagation in the time domain. Another gain

of the transformation is that it is now possible to intuitively

compare the transient cell growth of sample s between any two

time points ti and tj ,0ƒi,jƒN{1, by comparing vs,ti
and vs,tj

directly.

Time-dependent Z-factor. The originally defined Z-factor

is a value between ({?,1� measuring the statistical effect size,

judging how well the negative and positive controls can be

separated in one assay and consequently whether the assay is

suitable for high-throughput screening [37]. To better utilize the

time-series information and to capture the statistical effect sizes in

the time domain, we have extended the Z-factor to a vector (tuple)

of Z-factors indexed by time. The conventional definition of

estimated Z-factor according to Zhang et al. [37] was

ẐZ~1{
3 ŝspzŝsn

� �
Dm̂mp{m̂mnD

ð3Þ

Four parameters are required to estimate the Z-factor: the

means and standard deviations of both the positive (p) and

negative (n) controls. By extending the Z-factor into the time

domain T , the time-dependent Z-factor for t[T is defined as

ẐZt~1{
3 ŝsp,tzŝsn,t

� �
Dm̂mp,t{m̂mn,tD

ð4Þ

The time-series Z-factor allows us to capture the statistical effect

size of the time-series high-throughput screenings. Since in the

RTCA we have used three positive inhibitory controls, we have

estimated the time-dependent Z-factor for each of them based on

the sample mean and standard deviation of cell-index growth rates

vs,t and illustrated them in Figure 2b. Z-scores of replicates were

summarized by the square root of the mean squared value of the

replicates (root mean square).

Average Cell-index Growth Rate. To compare the RTCA

screen with conventional end-point assays, we calculate the average

cell-index growth rate over the time domain T defined by N time

points, by

vs~
1

N

XN{1

i~0

vs,ti
ð5Þ

for all s[S. The average cell-index growth rate vs is equivalent to

the integral of the cell-growth

ðT

vdt

� �
, comparable to the results

of end-point analysis.

Since we observed effects of experimental condition’s change on

the average cell-index growth rate between different plates (Figure

S3), we performed the z-score normalization of vs in each 96-well

microtiter plate after checking the normality of the sample value

distributions [38,39]. The resulting z-scores based on the average

cell-index growth rate, zvs
, are then used to perform a ranking of

the samples. Hits were selected by setting a cut-off at 61.96,

corresponding z-scores deviating about two standard deviations

from the mean (equivalent to a significance level of a = 0.05

(p,0.05). Figure S4 demonstrates the robustness of the screening

by plotting the average cell-index growth rate against the screening

plates in the screening time order.

Time-series z-score of cell-index growth rate and

watershed algorithm. In order to identify transient cell-

growth regulators based on the CIGR, we have performed the

time-series z-score normalization described by the following formula:

zs,t~
vs,t{vSp,t

svSp,t

ð6Þ

where s[Sp, Sp defines the set of all the kinase siRNA samples on

one 96-well microtiter plate. The normalities of the distribution of

vs,t were checked with quantile-quantile-plots and Shapiro-Wilk

test. The distributions of resulting time-series z-scores are shown in

the Figure S2(e). And the distribution of standard variances of

biological replicates based on the time-series z-score is shown in

the Figure S2(f).

To identify transient activators/inhibitors, three significance

levels (a = 0.1, 0.05 and 0.01) and eight minimum time intervals

over significance level (1.5h-6h) were plugged in the fooding

watershed algorithm (Figures S6 and S7).

GO Enrichment Analysis. The enrichment analysis of GO-

terms was performed using both the DAVID Bioinformatics

Resources 6.7 [40] and the Bioconductor package topGO [41].

Overlapping significant GO terms are reported with the adjusted

p-value (Benjamini-Hochberg method [35]) of the results derived

from the topGO package.

Software availability. All computational and statistical

analysis was performed with R-packages of the Bioconductor

[42] platform, unless otherwise specified. To make high-

throughput data analysis with the RTCA system amenable for

public use, we implemented the open-source software package

‘RTCA’ in R on the Bioconductor platform. It imports primary

data from the RTCA system and performs data analysis and

visualization. The package is freely available at the Bioconductor

website [43].

Supporting Information

Figure S1 The cell impedance (cell-index) is positively correlated

with the cell number and the cell-index growth rate reflects the
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cell-growth rate. (a) Different numbers of HeLa cells (0, 100, 300,

1,000, 3,000, 10,000 and 30,000) were seeded in the xCELLigence

system and the cell growth was recorded by measuring the

electrical impedance (cell-index). We observe the initial number of

cells is indeed correlated with higher cell-indices. In case of too

many cells seeded, the cells enter stationary phase following the

exponential growth (10,000 and 30,000 cell group) after certain

time. (b) With the cell-index growth rate transformation, the data

of subfigure (a) is illustrated as the first-degree derivative of the

cell-index curve at each time point. It is to note that the maximum

cell-index growth rate in the exponential growth is linearly

positively correlated with the cell number in a certain range (the

three dash lines indicate the CIGR at 3, 1, and 0.33,

corresponding to the initial cell number group of 30,000, 10,000

and 3,000). This suggests that the cell-index growth rate reflects

the transient cell growth rate.

(PNG)

Figure S2 Cell-index growth rate (CIGR) transformation

stabilizes the variance over time, enabling background correction

and can be normalized by the z-score method. (a) The distribution

of cell-indices in the kinome screening represented by the average

value of biological replicates (dots) and the population standard

deviation of the average values (error bars indicate 6s.d., also

applied hereafter unless otherwise specified) over time. It is

obvious that the population standard deviation of the average cell-

index increase drastically over the time, and from the cell-index it

is not easy to intuitively tell the transient cell growth status at any

given time. Green and red curves indicate the average cell-indices

of negative control siAllStars and one positive control COPB2. (b)

The distribution of sample standard variations of biological

replicates over time. Similarly to the average cell-index, the

variance between the biological replicates of individual siRNAs are

increasing along the time, reflecting the fact that the variances of

cell-index measurements accumulates along the time and the

errors are propagated. (c) The distribution of transformed cell-

index growth rates in the kinome screening, represented by the

average value of biological replicates (dots) and the population

standard deviation. The transformation stabilizes the variance

along the time, and the positive and negative control can still be

well distinguished. No plate background correction is performed

here compared to the figure 3(a) in the main text. (d) The

distribution of standardized variances of biological replicates

suggest that the transformation also stabilizes the variances of

biological replicates. We note there is a reduction of variances at

about 30 hours, and speculate it might be caused by the

establishment of the stable siRNA knockdown. (e) The normali-

zation of the cell-index growth rates using the z-score method,

showing the average z-score of the kinases over time (dots) and the

population standard deviation (error bars), also with the negative

and positive controls. (f) The distribution of standardized variances

of z-scores of biological replicates over time. The reduction of

general variability at around 30 hours is still noticeable but

weakend.

(PNG)

Figure S3 The xCELLigence technology is highly sensitive to

perturbations and, hence, requires robust normalization to

compare data from different experiments. (a) Each dot indicates

the average cell-index growth rate (CIGR) of one siRNA

knockdown sample over the measurement time. The samples

from the same parent plate of the kinome library are depicted in

the same color. For each parent plate two biological replicates

were performed. The plates are shown in the same order of being

screened, and in each 96-well plate the samples are shown in the

order from A01 (top-left) to H12 (bottom-right). Thus the figure

shows the variances of the un-normalized average cell-index

growth rate within and across the screening plates. We observe

that the variances within plates are similar, whereas there was an

abrupt rise of the average CIGR from the middle of the screening.

This was a suspected surprise: our experiment protocol showed

that exactly before the screening of the parent plate 7 (orange), the

CO2 supplier was changed, resulting in an overall increase in

measured values. This reflects the sensitivity of the xCELLigence

system and calls for correction of plate effects and normalization

procedures. (b) Normalization with the z-score method overcame

the plate effect and made samples within and across plates

comparable. Note that here we have illustrated the process to

normalize the average cell-index growth rate as example by

reducing the time-series data to one dimension, but the z-score

normalization was also applied to the whole time-series data.

(PNG)

Figure S4 Robustness of the xCELLigence screen. Eleven

parental 96-well plates with siRNAs targeting 779 kinases as well

as 80 cell cycle genes were screened in duplicate. Biological

replicates of siRNAs targeting control genes (siCOPB2, siWEE1,

siPLK1) as well as a non-targeting control (siAllStars) were present

on all plates. Each vertical string (light gray) represents one 96-well

plate, and the distribution of the normalized average cell-index

growth rates (z-score) is shown with dots: gray dots indicate

samples, siAllStars in green, COPB2 in orange, WEE1 in blue and

PLK1 in violet. It can be observed that in most screening plates

the positive controls can be well separated from the negative

controls, and the samples are evenly distributed in the range of

normalized data, demonstrating the robustness of the screen.

(PNG)

Figure S5 Marginally significant activators (significance level

p,0.10 in one-sided t-test) identified in the CTB screening.

Crosses indicate the values of siRNA transfected samples as the

percentage of negative controls in three biological replicates, and

the short horizontal bars indicate the mean value of the replicates.

(PNG)

Figure S6 The principle of the flooding watershed algorithm

and the number of hits on different parameter selections. (a) For

the sake of simplicity, we only discuss selecting the positive

regulators, the sample principle however also applies to negative

hits. To select transient cell-growth modulators, one puts water

sources in each regional minimum (blue regions) of the curves in

positive, and flood the relief from the sources. To determine

whether a cell-index growth rate curve has a transient significant

region, two parameters have to be defined: the significance level

(analogously the water level) and the minimum time window in

which the CIGR is always over the significance level, both shown

in the figure. Using a time-window instead of a single time point

helps to eliminate too transient hits (for example those ones that

are significant at only one of the 91 measurement points). It is

obvious that the higher the significance level is, or the wider the

time window is, the less hits will be identified. (b) The number of

identified cell growth regulators (both activating and inhibiting)

when adjusting the two parameters of the algorithm introduced in

(a). The time-window has been set from 1.5 hours (3 measurement

points) to 6 hours (12 measurement points), and the p value cut-off

has been set to 0.01, 0.05 and 0.10 (corresponding to the z-score

cut-off of |z|.1.64, |z|.1.96 and |z|.2.33 respectively). As

expected, the number of hits reduce as the p-cutoff becomes more

strict as well as the minimum time interval over significance

becomes longer.

(PNG)
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Figure S7 The average time to reach the maximum effect on the

cell-index growth rate of inhibitors is shorter than that of

activators, independent of the parameter selection. Similar as in

the Figure S6, we tested 24 combinations of the significance level

(p,0.01, p,0.05 and p,0.10) and the time-window interval

(shortened as TW, 1.5 hour to 6 hours), and compared the

distribution of the time after transfection at which the siRNA

knockdown reaches the maximum effect on the CIGR. In all the

cases we observe the average time required by the inhibitors is

shorter than the activators (p,0.05 for all the combinations,

Student’ t-test).

(PNG)

Figure S8 Distribution of time after transfection at which the

siRNA knock-down reaches the maximum effect on the cell-index

growth rate (‘peak-time’) is linked to the biological function but not

the protein size. (a) The distribution of the ‘peak-time’ of all the

significant (p,0.05, time-window .3 h) transient modulators of

cell growth, which can be divided into three groups: early (,30

hour), intermediate (.30 and ,45 hour) and later effectors

(.45 hour). The early phase differ from the other two phases in

the way that it includes the inhibitory effectors exclusively. (b) The

time at which the siRNA knockdown reaching the maximum effect

is not significantly linearly correlated with the protein size, neither

for the activators or the inhibitors. However, as suggested by the

function enrichment analysis and the network analysis of hits

discussed in the main text, the peak-time is indeed correlated with

the biological function of the genes.

(PNG)

Figure S9 Normalized cell index for five genes identified in the

primary RTCA screen as inhibitors of cell proliferation (Figure 4).

Pools of four individual siRNAs had been transfected in the

primary screen and were deconvoluted to also test the siRNAs

(indicated with _1 to _4) individually. AllStars negative control was

included in all experiments as negative control. Dotted vertical

lines at the 8 hour timepoint indicate the time used for

normalization of data.

(PNG)

Figure S10 Efficiency of mRNA knockdown of RTCA inhibitor

hits measured by qRT-PCR. Pools of four individual siRNAs had

been transfected in the primary screen and were deconvoluted to

also test the siRNAs (indicated with _1 to _4) individually.

SiAllStars negative control as well as siGenome non-targeting

control pool #1 were included in all experiments as negative

controls. Data was normalized to the effects induced by AllStars

control. Results of three technical replicates are shown and error

bars indicate the standard deviation.

(PNG)

Figure S11 Comparison of negative control siRNAs. SiAllStars

and siGenome non-targeting control pool #1 siRNAs were

transfected into HeLa cells, and induced effects were monitored

by RTCA (a) and CTB (b) assays. Results of six biological

replicates are shown and error bars indicate the standard

deviation. In the CTB assay the indicated numbers of cells were

transfected, 10,000 cells were seeded in the RTCA assay.

(PNG)

Table S1 Normalized cell index (CI) obtained after knockdown

of 779 kinases (plates 1-10) and 80 cell cycle genes (plate 11) in the

RTCA screen. PLK1, WEE1 and COPB2 siRNAs were included

as targeting controls, while siAllStars was included as non-

targeting control on each plate. The screen was performed in

two biological replicates for every siRNA. Raw CI values obtained

for every sample at every timepoint were normalized to the CI at

8h after transfection.

(CSV)

Table S2 Kinases and cell cycle genes showing constant cell-

growth inhibiting effects in the RTCA screening. Annotation:

Rack: The parent plate in the kinome (or cell cycle) library, plates

1-10 include kinases, and 11 contains cell cycle related genes.

Well: The well position (A01-H12) on each 96-well microtitre

plate. CatalogNumber: Catalog number of the siRNA in the

library. GeneSymbol: Gene symbol annotation shipped along

with the library. EntrezGeneID: Entrez GeneID. Accession:

RefSeq accession number. Zscore: z-score of the siRNA

knockdown sample. OfficialGeneSymbol: Current official

HGNC Gene Symbol (May 2011). Identified in Ref 1. as
inhibitor of … cell line(s): In which cell line(s) were the

respective genes identified as cell-growth inhibitors in a shRNA

dropout screen (Schlabach et al, Science 319, 620 (2008)) (see the

main text for more details), ‘-’ indicates not significant in any of the

cell lines, ‘Not Tested’ indicate the gene was not tested in the

screening of reference. Identified as Inhibitor in the CTB
Screening: Whether the siRNA identified as cell-growth

inhibitors in the CTB screening (q,0.10), ‘-’ indicates not

significant in the CTB screening.

(XLS)

Table S3 Kinases and cell cycle genes showing constant cell-

growth activating effects in the RTCA screening. Annotation:

Rack: The parent plate in the kinome (or cell cycle) library, plates

1-10 include kinases, and 11 contains cell cycle related genes.

Well: The well position (A01-H12) on each 96-well microtitre

plate. CatalogNumber: Catalog number of the siRNA in the

library. GeneSymbol: Gene symbol annotation shipped along

with the library. EntrezGeneID: Entrez GeneID. Accession:

RefSeq accession number. Zscore: z-score of the siRNA

knockdown sample. OfficialGeneSymbol: Current official

HGNC Gene Symbol (May 2011). Identified as activator in
the CTB Screening: Whether the siRNA identified as cell-

growth activators in the CTB screening (one-sided t-test with

indicated p-values), ‘-’ indicates not significant in the CTB

screening.

(XLS)

Table S4 Normalized cell index growth rate (CIGR) obtained

after knockdown of 779 kinases (plates 1-10) and 80 cell cycle

genes (plate 11) in the RTCA screen. PLK1, WEE1 and COPB2

siRNAs were included as targeting controls, while siAllStars was

included as non-targeting control on each plate. The screen was

performed in two biological replicates for every siRNA. Raw CI

values obtained for every sample at every timepoint were

transformed to CIGR values as described in Materials and

Methods.

(XLS)

Table S5 Average normalized CIGR and z-scores obtained after

knockdown of 779 kinases (plates 1-10) and 80 cell cycle genes

(plate 11) in the RTCA screen. PLK1, WEE1 and COPB2 siRNAs

were included as targeting controls, while siAllStars was included

as non-targeting control on each plate. The screen was performed

in two biological replicates for every siRNA. Raw CI values

obtained for every sample at every timepoint were transformed to

normalized CIGR values and z-scores were calculated for every

siRNA as described in Materials and Methods.

(XLS)

Table S6 Raw data obtained after knockdown of 779 kinases

(plates 1-10) and 80 cell cycle genes (plate 11) in a CellTiter-Blue

Time-Resolved Kinome RNAi Screen
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viability screen. PLK1, GAPDH genes were included as targeting

controls, while siCONTROL TOX, siCONTROL RISC-free and

siCONTROL non-Targeting siRNA pool #1 were used as non-

targeting controls on all plates. The screen was performed in three

biological replicates for every siRNA. Fluorescence intensities were

measured at 530 nm and the recorded data for each replicate are

given in columns G-I.

(XLS)

Table S7 Results obtained from the CellTiter-Blue viability

screen. PLK1, GAPDH genes were included as targeting controls,

while siCONTROL TOX, siCONTROL RISC-free and siCON-

TROL non-Targeting siRNA pool #1 were used as non-targeting

controls on all plates. The screen was performed in three biological

replicates for every siRNA. Fluorescence intensities were measured

at 530 nm and values were transformed to the natural logarithm

(ln) for each replicate (given in columns D-F). These values were

compared to the corresponding values of the non-targeting control

and a two-sided student’s t-test was performed. In column G, the

values for the t-statistics, in column H the resulting p-values are

depicted. The Benjamini-Hochberg method was used to yield an

estimated upper boundary of local false-discovery rates (q-values,

depicted in column I).

(XLS)

Table S8 Normalized cell index (CI) obtained after knockdown

of five hits (depicted in figure 4(b)) obtained from the RTCA

screen. HeLa cells were transfected in two biological replicates

with the siRNA pools used in the screen as well as with each of the

individual siRNAs contained in the pools. SiAllStars and

siGenome non-targeting siRNA pool #1 were included as non-

targeting controls. Raw CI values obtained for every sample at

every timepoint were normalized to the CI at 8h after transfection.

(XLS)

Table S9 Cell index growth rate (CIGR) obtained after

knockdown of five hits (depicted in figure 4(b)) obtained from

the RTCA screen. HeLa cells were transfected in two biological

replicates with the siRNA pools used in the screen as well as with

each of the individual siRNAs contained in the pools. SiAllStars

and siGenome non-targeting siRNA pool #1 were included as

non-targeting controls. Raw CI values obtained for every sample

at every timepoint were transformed to CIGR values as described

in Materials and Methods.

(XLS)

Table S10 Gene Symbols, order numbers (Dharmacon), and

sequences of individual siRNA reagents employed in deconvolu-

tion experiments. The same siRNAs were contained in aequimolar

concentrations also in the siRNA-pools employed in the original

RTCA as well as the CTB screens.

(XLS)

Table S11 Gene symbols, Roche UPL probe numbers and

primer sequences employed in qRT-PCR verification of knock-

down after transfections with siRNAs targeting the respective

genes.

(XLS)
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