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Birt–Hogg–Dubé (BHD) syndrome is a multiorgan disorder
caused by inactivation of the folliculin (FLCN) protein. Previ-
ously, we identified FLCN as a binding protein of Rab11A, a key
regulator of the endocytic recycling pathway. This finding
implies that the abnormal localization of specific proteins
whose transport requires the FLCN-Rab11A complex may
contribute to BHD. Here, we used human kidney-derived
HEK293 cells as a model, and we report that FLCN promotes
the binding of Rab11A with transferrin receptor 1 (TfR1),
which is required for iron uptake through continuous traf-
ficking between the cell surface and the cytoplasm. Loss of
FLCN attenuated the Rab11A–TfR1 interaction, resulting in
delayed recycling transport of TfR1. This delay caused an iron
deficiency condition that induced hypoxia-inducible factor
(HIF) activity, which was reversed by iron supplementation. In
a Drosophila model of BHD syndrome, we further demon-
strated that the phenotype of BHD mutant larvae was sub-
stantially rescued by an iron-rich diet. These findings reveal a
conserved function of FLCN in iron metabolism and may help
to elucidate the mechanisms driving BHD syndrome.

Loss of folliculin (FLCN) has been associated with Birt–
Hogg–Dubé (BHD) syndrome, which is characterized by
frequent development of skin tumors, lung cysts, and a high
risk of kidney cancer. FLCN regulates a wide range of cellular
processes, such as amino acid homeostasis, energy meta-
bolism, biogenesis of lysosomes and mitochondria, membrane
transport, cytoskeletal remodeling, and primary cilia formation
(1). However, the primary cause of BHD is still unknown. This
uncertainty is partially due to the observation that both the
growth-promoting protein mTOR (2–9) and the energy sensor
AMP-activated protein kinase (10–13) can be either activated
or suppressed upon FLCN loss. It has thus been speculated
that FLCN regulates these two pathways through varied
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mechanisms, depending on the specific cellular and tissue
contexts.

FLCN is conserved from yeast to humans, implying that it
necessarily regulates certain fundamental cellular processes.
Consistent with this hypothesis, emerging evidence has
revealed important roles of FLCN during vesicular trafficking,
which is a highly conserved process in eukaryotic cells. Indeed,
before FLCN was initially identified in humans and subse-
quently linked to BHD, the Kaiser group had identified a group
of yeast genes governing the movement of the amino acid
permease Gap1p from the Golgi apparatus to the plasma
membrane (14). Among these genes are LST7, an ortholog of
the mammalian FLCN (15), and LST4, an ortholog of FNIP1/2
(16, 17); the latter has been found to form a complex with
FLCN in most (if not all) functions of FLCN (18–21). Both
LST7 and LST4 had been believed to be components of spe-
cific transport machinery (14), but the precise mechanisms
remained unknown. In 2012, a structural study uncovered a
differentially expressed in normal cells and neoplasia (DENN)
domain in the FLCN C terminus (22). Because some DENN-
containing proteins are activators of Rab proteins (Rabs),
which are key regulators of vesicular trafficking, FLCN has
been suspected to regulate protein transport via Rabs (22).
Shortly after this discovery, two studies demonstrated that
FLCN regulates the intracellular transport of EGFR. In one
study (23), FLCN was found to promote the movement of
EGFR from early endosomes to the cell surface by acting as a
guanine nucleotide exchange factor (GEF) of Rab35; in the
other study, FLCN was found to be a GTPase-activating pro-
tein (GAP) of Rab7 and to prevent the transport of EGFR from
early to late endosomes (24). At almost the same time, our
group found that the amino acid permease PAT1 (also called
slc36A1) is a cargo protein of FLCN (9). We further demon-
strated that FLCN promotes the localization of PAT1 on the
plasma membrane and inhibits its localization on lysosomes
through the Rab11A-mediated pathway (25). This relocaliza-
tion of PAT1 helps cells to acquire amino acids from the
environment while maintaining a robust lysosomal amino acid
pool that stimulates mTOR. This function of FLCN seems to
be conserved in yeast (14), fly (26) and human cells (25).
Regarding the underlying mechanism, we did not find clear
GEF or GAP activity of FLCN toward Rab11A. Instead, we
found that FLCN promotes the binding of PAT1 to Rab11A in
a dose-dependent manner (25). Through a similar mechanism,
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FLCN regulates iron metabolism
FLCN has been found to promote the interaction between
Rab34 and its effector, RILP, during the positioning of lyso-
somes (27). Based on these findings, one appealing hypothesis
is that the diversified BHD phenotypes might be due to the
abnormal localization of specific FLCN substrates. In the
current study, we identified transferrin receptor 1 (TfR1, or
CD71) as a new substrate of FLCN and thus linked FLCN to
iron metabolism.

Iron is an essential nutrient for many biological processes,
such as oxygen delivery and storage, DNA metabolism, and
energy production. Both iron deficiency and iron overload
can cause pathological changes (28). TfR1 is a ubiquitously
expressed membrane protein. Most mammalian cells obtain
iron from plasma via TfR1. Most Fe3+ ions in the plasma are
loaded on transferrin (Tf), a ferric iron carrier produced
mainly in the liver. The Tf-Fe3+ complex (called holo-Tf)
binds to TfR1 and then enters the cell through membrane
invagination. Once Fe3+ is released inside the cell, free Tf-
TfR1 is sent back to the cell surface for another round of
iron uptake. Blocking the cellular trafficking of TfR1 inhibits
iron uptake and causes iron deficiency disorders (29, 30). On
the other hand, high iron can be toxic by generating dele-
terious reactive oxygen species (ROS). Therefore, cells have
evolved sophisticated mechanisms to control the iron pool
(31). The promoter region of the TfR1 gene contains a
hypoxia response element (HRE). Hypoxia-inducible factor
(HIF) family transcription factors bind this HRE and directly
activate TfR1 transcription (32). Via a feedback mechanism,
iron deficiency can stabilize the HIF protein by inactivating
prolyl hydroxylases (PHDs), which utilize iron as a cofactor
to target HIF for degradation (33). The 3’ noncoding region
of TfR1 mRNA forms stem-loop structures called iron-
responsive elements (IREs). Iron regulatory proteins (IRP1
and IRP2) bind these IREs and prevent degradation of the
mRNA (34). A robust iron pool increases iron–sulfur cluster
production. The binding of IPRs with iron–sulfur clusters
either converts IRP1 into a functional aconitase, which
translocates to mitochondria to catalyze respiratory chain
reactions, or directs IRP2 for degradation (35, 36). TfR1 can
be regulated at the protein level. The TfR1 protein is
constantly degraded in lysosomes (37–39). Depletion of iron
by iron chelators such as desferrioxamine (DFO) increases
the TfR1 protein level, but the mechanism is not fully un-
derstood (40).

Here, we report that FLCN regulates TfR1 transport
through the Rab11A-mediated pathway. Loss of FLCN delays
the recycling of TfR1 and decreases the iron pool. These
findings provide new insights for deciphering the mechanisms
underlying BHD syndrome.

Results

FLCN promotes the binding of TfR1 to Rab11A

In a previous study, we carried out coimmunoprecipitation
(co-IP) assays and discovered that FLCN promotes the binding
of PAT1 to Rab11A (25). To determine whether FLCN spe-
cifically regulates PAT1, we also examined TfR1, which is
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continuously transported by Rab11A. Surprisingly, we found
that FLCN also bound to TfR1, and loss of FLCN decreased
the TfR1-Rab11A interaction (Fig. 6D in (25)).

However, these data were obtained in cells with GFP-
Rab11A overexpression. To eliminate the potential artifacts
caused by GFP-Rab11A, we repeated these assays in normal
HEK293 cells using a monoclonal anti-TfR1 antibody for the
precipitation experiment. Under steady-state conditions, TfR1
showed little interaction with endogenous Rab11A or FLCN
(Fig. 1A), probably because under physiological conditions,
only a small amount of TfR1 is transported by Rab11A and
FLCN. Then, we decided to induce iron deficiency before the
assay, based on the following two considerations. First, low
iron levels can increase TfR1 expression (31); thus, co-IP
would be easier to perform under these conditions. Second,
we speculated that low iron levels may stimulate iron uptake
by enhancing the TfR1-Rab11A interaction. To decrease the
iron pool, we incubated cells with DFO, which is a clinically
used iron chelator (41). We detected both Rab11A and FLCN
in the TfR1 precipitates from cells treated with 100 μM DFO
for 12 h. Moreover, the amount of TfR1-bound Rab11A was
decreased in FLCN−/− cells (Fig. 1B). These results demon-
strate that FLCN promotes the TfR1-Rab11A interaction,
particularly under the iron-deficient conditions.

FLCN has been found to bind to different Rabs via its C-
terminal DENN domain (23–25, 27). It is thus conceivable that
FLCN might bind to TfR1 via a region other than its DENN
domain. To test this hypothesis, we constructed plasmids
expressing different forms of FLCN proteins, including wild-
type FLCN (1–579), the N-terminal region (1–340), and the
DENN domain (341–579), fused to a C-terminal HA tag. To
exclude the influence of endogenous FLCN, we transfected
these plasmids into FLCN−/− cells. Twenty-four hours after
plasmid transfection, the cells were deprived of iron by incu-
bation with 100 μM DFO for 12 h. The cell lysates were
precipitated with an anti-HA antibody, followed by western
blot (WB) analysis. As anticipated, both FLCN and its N-ter-
minal region bound to TfR1; however, there was only a weak
interaction between TfR1 and the FLCN DENN domain
(Fig. 1C).

Loss of FLCN delays the recycling transport of TfR1

We used a fluorescence conjugated transferrin (FITC-Tf) to
monitor the trafficking of TfR1. Cells were incubated with
20 μg/ml FITC-Tf on ice for 20 min. At low temperatures, Tf
still bound to TfR1 on the cell surface, but endocytosis was
terminated. After the unbound FITC-Tf was washed away, the
cells were transferred to 37 �C to reinitiate endocytosis.

When the cells were transferred to 37 �C for 5 min, we
observed similar levels of FITC-Tf in both wild-type and
FLCN−/− cells. In addition, FITC-Tf translocated to an intra-
cellular location very similar to the perinuclear recycling
center (PRC, arrows in Fig. 2A), where Rab11A normally ac-
cumulates (42, 43). This finding implies that FLCN has little
influence on the translocation of TfR1 from the cell surface
into the cell. After membrane trafficking was reinitiated by



Figure 1. Co-IP assays of the protein–protein interactions. A, cells cultured under normal conditions were lysed. The cell lysates were precipitated with
monoclonal antibodies against either LAMP1 (negative control) or TfR1, followed by western blotting with the indicated antibodies. B and C, similar assays
as described in A, except that cells were deprived of iron by incubation with 100 μM DFO for 12 h. In C, plasmids containing different FLCN-HA constructs
were transfected into FLCN−/− cells to exclude the influence of endogenous FLCN.

FLCN regulates iron metabolism
incubation at 37 �C for 50 min, the level of FITC-Tf was
markedly decreased in wild-type cells (Fig. 2A), but a sub-
stantial amount of FITC-Tf was retained in FLCN−/− cells
(Fig. 2, A and B), suggesting that loss of FLCN delayed the
recycling of TfR1.

Uptake of Tf-bound iron is decreased by FLCN loss

To examine the uptake rate of Tf-bound iron, we employed
a recently developed method using calcein-AM, a membrane-
permeable, fluorescent iron probe whose fluorescence is
quenched by binding with iron.

Cells were first stained with 0.4 μM calcein-AM for 10 min
and then incubated with 10 μg/ml holo-Tf for 3 h. After holo-
Tf enters the cells and releases the Tf-bound iron, the intra-
cellular calcein-AM signal decreases. The calcein signal can be
measured by flow cytometric analysis, and the reduction in the
signal after incubation with holo-Tf (representing the
quenchable iron pool, QIP) correlates with the amount of
holo-Tf taken up by the cells (44). The results revealed that the
QIP was decreased in FLCN−/− cells, indicating reduced uptake
of holo-Tf (Fig. 2C).

Suppression of FLCN decreases the iron pool

We carried out a colorimetric ferrozine-based assay to
measure the total cellular iron concentration directly.
Compared with wild-type cells, FLCN−/− cells exhibited a trend
of reduced total iron levels (Fig. 3A), although the difference
was not statistically significant (p = 0.136, based on three
repeated experiments).

We used calcein-AM staining to assess the labile iron pool.
FLCN−/− cells had stronger calcein signals than wild-type cells,
suggesting that the labile iron pool was decreased by FLCN
loss (Fig. 3B). When the iron pool is depleted, the cellular
ferritin is degraded to release stored iron. Indeed, the level of
FTH, a component of the ferritin protein complex, was
decreased in FLCN−/− cells (Fig. 3C).

In response to iron deficiency, the expression of iron
assimilation genes, including TfR1 and the ferrous iron (Fe2+)
transporter, also called divalent metal transporter 1 (DMT1, or
SLC11A2), increases. These increases can be achieved through
multiple mechanisms, including transcriptional activation by
HIF (32, 45) and inhibition of mRNA degradation by the IRP-
IRE system (34). The mRNA levels of these genes can be used
as indicators of the iron status.

We performed real-time PCR (RT-PCR) to measure
mRNA levels. A control assay showed that deprivation of
iron by DFO chelation increased the expression of both
TfR1 and DMT1 (Fig. 3D). Importantly, loss of FLCN
produced a similar result but to a lesser extent than DFO
treatment, suggesting that FLCN deficiency is less potent
than DFO in decreasing the iron pool. Consistent with
previous reports that FLCN inhibits the transcriptional
coactivator PGC-1α (12, 13, 46–48), PGC-1α expression
was increased in FLCN−/− HEK293 cells. In addition, DFO
increased PGC-1α expression but to a lesser extent than
FLCN loss (Fig. 3D), probably indicating that FLCN in-
hibits PGC-1α mainly through iron-independent mecha-
nisms. We analyzed two cell lines expressing different
short hairpin RNAs (shRNAs) of FLCN (shFLCN) (9) and
found that the expression of both TfR1 and DMT1 was
increased (Fig. 3E).

We searched the published databases for expression data
related to the genes downstream of FLCN. Interestingly, we
J. Biol. Chem. (2021) 296 100426 3



Figure 2. FLCN regulates the recycling transport of TfR1 and the uptake of Tf-iron. A, wild-type (WT) and FLCN−/− cells were labeled with FITC-Tf, and
confocal images are displayed. The arrows indicate the putative PRC sites at which Rab11A normally accumulates. Scale bars: 20 μm. B, the intensity of the
FITC-Tf signal as shown in A was measured with Nikon confocal software. At least 30 cells from each panel were evaluated. C, cells were stained with calcein-
AM and were then incubated with holo-Tf for 3 h. Calcein fluorescence was measured by flow cytometry. Uptake of Tf-iron was indicated by the QIP (ΔMFI).
MFI, median fluorescence intensity. *p < 0.05; **p < 0.01.
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found that the expression of both TfR1 and DMT1 was
increased in several types of FLCN-deficient cells (49–51),
including the patient-derived kidney tumor cell line UOK257
(Fig. 3F). We suspect that FLCN may regulate iron levels in a
wide range of cell types.

In a previous study, we demonstrated that overexpression of
FLCN promoted PAT1 recycling and amino acid absorption
(9, 25). If FLCN regulates TfR1 transport in a similar dose-
sensitive manner, increasing FLCN expression should accel-
erate TfR1 transport and iron uptake. Indeed, the expression of
both TfR1 and DMT1 was decreased in three different FLCN-
overexpressing cell lines, suggesting that these cells have high
iron levels (Fig. 3G).

FLCN and Rab11A cooperatively regulate iron uptake

The current evidence suggests that FLCN promotes iron
uptake through the Rab11A-mediated pathway. According to
this model, depletion of Rab11A should inhibit iron uptake.
Consistent with this hypothesis, both TfR1 and DMT1 were
upregulated by Rab11A knockdown (Fig. 4A). In addition, this
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effect was reversed by the addition of ferric ammonium citrate
(FAC), a commonly used iron supplement (Fig. 4A).

Similar to other Rab GTPases, Rab11A is switched between
an active GTP-bound and an inactive GDP-bound state.
Overexpression of an active mutant of Rab11A (Q70L,
Rab11A-act) counteracted FLCN knockdown by decreasing
the expression of both TfR1 and DMT1 (Fig. 4B). This result,
combined with the finding that FLCN physically interacts with
Rab11A (Fig. 1), indicates that these two proteins probably
cooperate to regulate iron uptake.

Increased HIF activity in FLCN−/− cells is induced by low iron
stress

FLCN can regulate many signaling pathways. Which of these
pathways is responsive to the low iron status caused by FLCN
loss? To address this question, we examined the expression of
FLCN downstream genes in five different pathways: the cell
adhesion (CDH1) (51), TGF-β (TGFB2 and INHBA) (51), PGC-
1α (PGC-1α and PDK4) (10), TFEB/TFE3 (GPNMB) (52), and
HIF (BNIP3, VEGFA, and G6PD1) pathways (53).



Figure 3. FLCN regulates the cellular iron pool. A, ferrozine assay of the total cellular iron concentration (n = 3 repeated experiments). B, assay of the
labile iron pool by calcein-AM staining. Calcein fluorescence was measured by flow cytometry. FMI, median fluorescence intensity. C, WB showing that FTH
expression was decreased by FLCN loss. D, E, and G; RT-PCR analysis of mRNA levels. In E, shN indicates the nonsense shRNA (negative control). In G, FLCN
OE indicates FLCN overexpression. F, a brief summary of the published data showing the expression of TfR1 and DMT1 in different types of FLCN-deficient
cells. *p < 0.05; **p < 0.01; ***p < 0.001.

FLCN regulates iron metabolism
The activity of three pathways, including PGC-1α, TFEB/
TFE3, and HIF, was changed in the same direction (increased)
in both FLCN−/− cells and wild-type cells deprived of iron
(Fig. 5A). We then focused on these three pathways. We
speculated that if the low iron pool is a main signal for acti-
vation of these pathways, increasing the iron supply (+FAC)
should reverse these results. Indeed, the addition of FAC to
FLCN−/− cells had little influence on the PGC-1α expression
(Fig. 5B) and the TFEB activity (Fig. 5C), indicating that
decreased iron pool is not the major activator of PGC-1α and
TFEB in FLCN−/− cells (Fig. 5A, and see Fig. 3D).

In contrast, the increased HIF activity in FLCN−/− cells was
reversed by FAC to a level similar to that in control cells
(Fig. 5D). Moreover, iron deficiency (+DFO) induced HIF
J. Biol. Chem. (2021) 296 100426 5



Figure 4. FLCN and Rab11A cooperatively regulate iron homeostasis
(RT-PCR analysis). A, Rab11A knockdown (shRab11A) increased the
expression of both TfR1 and DMT1, and this effect was reversed by FAC
supplementation. B, increasing Rab11A activity by Rab11A-act expression
counteracted the effect of FLCN knockdown. The stable cell lines of shFLCN
(9) and shRab11A (25), and the Rab11A-act plasmid (active form of Rab11A)
(25) have been described before.

FLCN regulates iron metabolism
activity more strongly than FLCN loss (Fig. 5A), and HIF ac-
tivity in FLCN−/− cells was further increased by DFO chelation
(Fig. 5E). Taken together, these results strongly suggest that
the increased HIF activity in FLCN−/− cells was due mainly to
low iron stress.

FLCN regulates iron metabolism in Drosophila

Previously, we constructed a Drosophila model of BHD
syndrome by genetic deletion of the FLCN homolog, DBHD
(26). Homozygous DBHD mutants (DBHD−/−) could hatch
from eggs, but the hatched larvae grew slowly and eventually
died with small and thin bodies.

To explore whether iron metabolism is disrupted by DBHD
deletion, we tried to rescue DBHD mutant larvae by feeding
iron-rich food (normal food supplemented with FAC). FAC
supplementation had no apparent toxicity in DBHD hetero-
zygotes (+/−) because after supplementation with different
doses of FAC, they could develop into healthy adults with no
abnormalities in either development time (�10 days from eggs
to adults) or body size. Interestingly, a small but considerable
number of DBHD mutant larvae fed the FAC-supplemented
diet developed into pupae, although the development time
was prolonged (up to 3 weeks). Moreover, the rescued mutants
could complete metamorphosis without noticeable develop-
mental defects (Fig. 6A), but they could not eclose and even-
tually died as pharate pupae.

Another interesting observation is that the rescue efficiency
seemed to be sensitive to the FAC dose. For example, at
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0.4 mM FAC, approximately 43% of DBHD−/− larvae devel-
oped into pupae; however, this percentage decreased when the
FAC dose was either too low or too high (Fig. 6B). Because
excess iron is toxic, we believe that the mutants may have
defects in shutting down iron uptake systems and/or expelling
excess iron from their bodies. Taken together, these results
demonstrate that DBHD regulates iron metabolism in
Drosophila.

Discussion

Our data reveal TfR1 as a new substrate transported by
FLCN. An important finding is that TfR1 can physically
interact with both Rab11A and FLCN, particularly under low-
iron conditions (Fig. 1B). This result not only supports a role
for FLCN in iron metabolism but also suggests that acceler-
ating TfR1 transport might be an adaptive mechanism to
promote iron uptake. FLCN preferentially binds with TfR1 via
its N-terminal region, which contains a longin domain (LD).
Because LDs have been found in several proteins involved in
the membrane docking/fusion process, the last step of vesic-
ular trafficking (54), FLCN is probably a scaffold protein
mediating the interactions between Rabs and other transport
machinery components.

Consistent with the role of FLCN during the Rab11A–TfR1
interaction, loss of FLCN delayed the recycling of TfR1, while
the internalization of TfR1 from the cell surface was unaf-
fected. These results are very similar to those of Rab11A
suppression (55, 56). However, FLCN is unlikely to be a
ubiquitous Rab11A-binding protein, because Rab11A−/− mice
died earlier than FLCN−/− mice during embryonic stages due
to the abolition of matrix metalloproteinase secretion upon
Rab11A loss (55). We suspect that FLCN is one of the
Rab11A-interacting proteins that determines cargo specificity.

Although our data were obtained mainly in HEK293 cells,
FLCN may also regulate iron homeostasis in other cell types.
By searching published databases, we found that both TfR1
and DMT1 were upregulated in several different types of
FLCN-deficient cells from both humans and mice (Fig. 3F).
However, other cell and animal models are needed to confirm
whether regulation of iron homeostasis is a general function of
FLCN. Using a Drosophila model of BHD syndrome, we
demonstrated that loss of DBHD disrupted iron homeostasis
in fruit flies. First, the DBHD mutants suffered from low-iron
stress, which was relieved by feeding iron-rich food (Fig. 6A).
Second, the mutants were intolerant to high levels of iron
(Fig. 6B), probably because they could not eliminate the toxic
iron. We previously showed that amino acids can rescue the
development of most DBHD mutants into early pupae, albeit
with failure to undergo metamorphosis (26). Compared with
amino acids, iron rescued the development of only a small
portion of DBHD−/− larvae into pupae, and the duration of this
developmental phase was prolonged. However, mutants
rescued by iron supplementation could complete meta-
morphosis. These results suggest that amino acids and iron
play different but partially redundant roles during Drosophila
development. Amino acids contribute mainly to growth



Figure 5. The increase in HIF activity upon FLCN loss is due to the iron deficiency condition (RT-PCR analysis). A, the activity of PGC-1α, TFEB, and HIFs
was increased under both iron depletion (DFO chelation) and FLCN loss (FLCN−/−) conditions. Note that DFO chelation increased the expression of both
iron metabolism genes (TfR1 and DMT1) and HIF target genes more strongly than FLCN deficiency. B and C, iron supplementation (30 μM FAC for 4 h) had
no effect on PGC-1α expression (B) or TFEB (C) activity in FLCN−/− cells. D, The increase in HIF activity in FLCN−/− cells was reversed by FAC supplementation.
E, HIF activity in FLCN−/− cells was increased further by DFO chelation.

FLCN regulates iron metabolism
(increasing cell number and size). This role is consistent with
the classical amino-acid-activated mTOR pathway. In contrast,
iron is indispensable for morphogenesis, and this role cannot
be substituted by amino acids. Notably, iron also plays a role in
growth, as supported by the following findings. First, iron
rescued the development of a small portion of DBHD−/− larvae
into pupae with almost normal body sizes. Second, a previous
study showed that iron can stimulate the proliferation of
cultured Drosophila cells (57).

Our finding that FLCN regulates iron metabolism is
consistent with the prediction that FLCN regulates funda-
mental biological processes. In fact, some of the FLCN−/−

phenotypes might be related to aberrant iron homeostasis. For
example, blood cells are highly sensitive to the iron supply.
Deletion of FLCN in mouse bone marrow exhausted the
population of hematopoietic stem/progenitor cells and
depleted all hematopoietic cell lineages (58). In another study,
loss of FNIP1 killed mouse B lymphocytes (59). An interesting
question arises as to whether these hematopoietic phenotypes
are caused by iron insufficiency. In addition, iron is important
for the health of the tissues most commonly affected in BHD
syndrome, including the skin, lung, and kidney. The skin is an
organ that affects the systematic iron level; iron can be lost by
sweat and desquamation of epidermal cells. The level of iron in
the skin is variable and is associated with wound healing and
skin aging. Both iron deficiency and iron overload can damage
skin and skin appendages (60). The lung is constantly exposed
to environmental stimuli, including various pathogens and
iron-containing compounds. Iron metabolism in the lung must
be tightly controlled to alleviate the oxidative stress caused by
J. Biol. Chem. (2021) 296 100426 7



Figure 6. A, representative images of two male Drosophila pupae
collected from the same tube of food supplemented with FAC. The
mutant (DBHD−/−) can be distinguished from the heterozygote (+/−) by the
white eyes and long bristles (arrows). Note that the mutant has completed
metamorphosis. B, quantification of the adults (+/−) and the rescued
mutant pupae (−/−) from the same food tubes. The rescue efficiency was
calculated as the ratio of the number of DBHD−/− pupae to 1/2 the number
of (+/−) adults. Note that high concentrations of FAC (>0.4 mM) were toxic
to the mutants.

FLCN regulates iron metabolism
active immune and detoxification reactions (61). The kidney
has been found to play important roles in the reabsorption of
renal iron. Disruption of this process can result in systematic
iron loss, which in turn impairs kidney function (62).

Iron is a critical nutrient for cell proliferation, and it is
generally acknowledged that the iron level is increased in tu-
mor cells because of their high demand for iron. However,
there are some reports showing that the iron level is decreased
in certain tumors (63, 64). Alternatively, the iron level in tu-
mors may be variable, depending on the tumor stage and type.
It is known that iron negatively regulates HIF. PHDs, which
require iron as a cofactor, can modify key proline residues in
the HIF protein, leading to recruitment of the tumor sup-
pressor VHL and degradation of HIF through the ubiquitin-
dependent proteasome pathway. In the absence of iron,
PHDs are inactive, and HIF is stabilized (33). Loss of FLCN has
been shown to activate HIF by increasing the ROS level (53).
Here, we provide evidence that iron-deficient conditions are
probably a major signal for HIF activation in FLCN−/− cells.
First, DFO chelation decreased the iron level and activated HIF
more strongly than FLCN loss (Fig. 3A). Because the iron level
was only slightly decreased in FLCN−/− cells, HIF protein
expression may not have been markedly induced (53). Second,
the increased HIF activity in FLCN−/− cells was reversed to the
level in wild-type cells by iron supplementation (Fig. 3D). We
propose that targeting iron metabolism to cure BHD lesions
with increased HIF activity deserves further investigation.
8 J. Biol. Chem. (2021) 296 100426
Experimental procedures

Reagents

Antibodies specific for the following proteins were used:
FLCN (Cell Signaling Technology; #3697), TfR1 (Santa Cruz;
#3B82A1), HA (Abcam; #9110), GFP (TransGen Biotech;
#HT801), beta-actin (Sungene Biotech; #KM9001T), and
Rab11A (BD Biosciences; #610656).

FITC-conjugated ChromPure Human Transferrin was
purchased from Jackson ImmunoResearch Laboratories (;
#009-090-050). DFO was purchased from Santa Cruz
Biotechnology (#sc203331). Ferrozine (S30675) and neo-
cuproine (#S30420) were purchased from Yuanye Bio-
Technology. Propidium iodide (PI, #ST511) and a Cell
Counting Kit-8 (#C0037) were purchased from Beyotime
Biotechnology.

Cell culture

HEK293 cells were normally cultured in the following
complete media: Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 8% fetal bovine serum (FBS),
4 mM L-glutamine, 4500 mg/l glucose, sodium pyruvate; or
RPMI 1640 medium (US Biological, R8999-04A). The cDNAs
encoding FLCN variants tagged with HA were cloned into the
pcDNA3.1(+) vector. The resulting plasmids were transfected
into cells using TurboFect transfection reagent (Life
Technology).

For the gene knockdown experiments, shRNA for either
shFLCN or shRab11A was cloned into the pCD513B-U6 vector
and cotransfected with the helper plasmids (GAG, REV, and
VSV-G) into HEK293 cells. Lentiviruses containing the
shRNAs were isolated and used to infect cells. Cells with stable
gene knockdown were selected with puromycin. The shRNA
target sequences were selected based on previous reports and
included the following: shFLCN (9), TCAGTATGCAGTCG-
CAATAAC and CTCTCAGCAAGTACGAGTTTG; Rab11A
(25), GTAACCTCCTGTCTCGATTTAC and GGAGTA-
GAGTTTGCAACAAGA. For DFO or FAC treatment, the
culture medium was replaced with complete DMEM con-
taining 100 μM DFO or 30 μM FAC and incubated for
different periods of time.

Co-IP and WB analysis

The co-IP assays were carried out essentially as described
previously (9, 25). In some experiments, the cells were pre-
treated with 100 μM DFO before lysis.

FITC-Tf tracing assay

Cells were seeded on clean 13 mm square cover slides in 24-
well plates. When the cells were �80% confluent, the medium
was replaced with serum-free RPMI 1640 medium for 45 min
to exhaust the cellular Tf. The cell plate was cooled on ice for
several minutes. Then, the medium was replaced with cold
serum-free 1640 medium containing 20 μg/ml FITC-Tf.
Twenty minutes later, the medium was removed, and the
cells were quickly washed twice with cold PBS and then for
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2 min with a cold acid solution (500 mMNaCl, 0.2 N acetic acid
(pH 2)) to block the FITC-Tf/TfR1 interaction. Cells were
washed with cold complete medium for 5 min to restore the pH
to neutral. Then, the cells were cultured in complete DMEM
and transferred to 37 �C to reinstate endocytosis. At different
time points, cells were fixed with 4% paraformaldehyde for
20 min at room temperature, washed with PBS, and imaged
using a Nikon A1R confocal microscope. At least 30 cells from
three repeated experiments in each assay were analyzed by one-
way ANOVA followed by Fisher’s least significant difference
test using SPSS software (20.0, SPSS, Inc).

Colorimetric ferrozine assay

The total cellular iron concentration was measured using a
ferrozine-based iron assay as described previously (65). Cells
plated in 60 mm dishes (�80% confluence) were washed twice
with cold PBS and lysed with 200 μl of 50 mM NaOH at −20
�C (or on ice) for 2 h. One-hundred microliters of cell lysate
was mixed with 100 μl of HCl (100 mM) and 100 μl of fresh
iron release solution (1.4 M HCl and 4.5% KMnO4 in H2O)
and incubated at 60 �C for 2 h. After cooling to room tem-
perature, 30 μl of iron detection reagent (6.5 mM ferrozine,
6.5 mM neocuproine, 2.5 M ammonium acetate, and 1 M
ascorbic acid dissolved in H2O) was added to each tube. After
30 min, 280 μl of the reaction solution was transferred into a
well of a 96-well plate, and the absorbance was measured at
570 nm in a Bio-Rad Model 680 microplate reader. A standard
curve was generated using FeCl3 (0–100 μM) solutions. The
iron concentration was normalized to the total protein con-
centration in the sample (as measured by the bicinchoninic
acid method).

Calcein-AM staining and flow cytometric analysis

Cells were cultured in 6-well plates to �80% confluence.
Then, the culture medium was replaced with iron-free RPMI
1640 medium, and the cells were cultured for 40 min to
deplete serum Tf. Then, the cells were stained with 0.4 μM
calcein-AM (Beyotime Biotechnology, #C2012) at room tem-
perature for 10 min. After several washes with warm PBS, the
cells were incubated in RPMI 1640 medium with or without
10 μg/ml holo-Tf (Sigma-Aldrich Corp, #T0655) for 3 h.

The calcein-AM fluorescence signal in single cells was
measured by flow cytometry in a BD FACSAria III system
(�490 nm excitation and �510 nm emission). For each sam-
ple, approximately 1 × 104 cells were measured, and the data
were analyzed using FlowJo Software. The QIP (ΔMFI) was
calculated as follows: MFI (without holo-Tf chasing)-MFI
(with holo-Tf chasing), where MFI is the median fluorescence
intensity. The MFI value without holo-Tf chasing was also
used to indicate the labile iron pool.

RT-PCR

Total cellular RNA was isolated using TRIzol reagent. One
microgram of total RNA was used to synthesize first-strand
cDNA using the Evo M-MLV system (Accurate Biotech-
nology; #ag11705). Real-time quantitative PCR (qPCR) was
performed based on SYBR Green detection (ABI) in a Bio-Rad
CFX Connect system. The sequences of the primers used for
RT-PCR are provided in the Supplementary File.

Drosophila experiments

The DBHD knockout stock (w; DBHD−/TM3, Sb, Kr-GFP)
was assayed (26). Because TM3 chromosome homozygosity is
lethal, only heterozygotes (+/−) can survive to adulthood, and
heterozygotes were thus used as the control in this study.
Heterozygous (+/−) flies have red eyes, GFP expression, and
abnormal bristles (Sb), by which they can be easily distin-
guished from their mutant (−/−) siblings. Flies were main-
tained at 25 �C with 60% humidity. The fly food generally used
in our laboratory contains 8% sugar, 10% corn flour, 1.5%
baker’s yeast, 1% agar, 0.4% propionic acid, and 0.1% Nipagin.
To prepare the FAC food, the food vials were heated in a
microwave oven, and FAC was added into the melted food to
the indicated concentrations. Embryos were collected every
�12 h by transferring the parent flies into a new food vial. The
rescue efficiency was calculated as the ratio of the number of
DBHD−/− pupae to 1/2 the number of (+/−) adults.
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