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Background: The construction of ferroptosis-related lncRNA prognostic models in
malignancies has been an intense area of research recently. However, most of the
studies focused on the exact expression of lncRNAs and had limited application
values. Herein, we aim to establish a novel prognostic model for gastric cancer (GC)
patients and discuss its correlation with immune landscapes and treatment responses.

Methods: The present study retrieved transcriptional data of GC patients from the Cancer
Genome Atlas (TCGA) database. We identified differentially expressed ferroptosis-related
lncRNAs between tumor and normal controls of GC samples. Based on a new method of
cyclically single pairing, we constructed a 0 or 1 matrix of ferroptosis-related lncRNA pairs
(FRLPs). A risk score signature consisting of 10 FRLPs was established using multi-step
Cox regression analysis. Next, we performed a series of systematic analyses to investigate
the association of the FRLP model and tumor microenvironment, biological function, and
treatment responses. An alternative model to the FRLP risk score signature, the gene set
score (GS) model was also constructed, which could represent the former when lncRNA
expression was not available.

Results: We established a novel prognostic signature of 10 ferroptosis-related lncRNA
pairs. High-risk patients in our risk score model were characterized by high infiltration of
immune cells, upregulated carcinogenic and stromal activities, and heightened sensitivity
to a wide range of anti-tumor drugs, whereas low-risk patients were associated with better
responses to methotrexate treatment and elevated immunotherapeutic sensitivity. The
practicability of the FRLP risk score model was also validated in two independent
microarray datasets downloaded from Gene Expression Omnibus (GEO) using the GS
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model. Finally, two online dynamic nomograms were built to enhance the clinical utility of
the study.

Conclusion: In this study, we developed a ferroptosis-related lncRNA pair-based risk
score model that did not rely on the exact lncRNA expression level. This novel model might
provide insights for the accurate prediction and comprehensive management for GC
patients.

Keywords: gastric cancer, ferroptosis, long non-coding RNA, prognostic model, tumor microenvironment,
immunotherapy

INTRODUCTION

Gastric cancer (GC) is one of the most common malignancies
worldwide. In consideration of its frequently advanced stage at
diagnosis, GC is also the fourth leading cause of cancer-related
deaths, with 768,793 deaths globally in 2020 (Sung et al., 2021). In
China, GC remains the second most deadly cancer. According to
statistics, there were 679,100 new GC cases and approximately
498,000 deaths occurred in 2015 (Chen et al., 2016). Currently,
surgical resection is still the first-line treatment for GC patients,
and the administration of adjuvant or neoadjuvant chemotherapy
and immunotherapy could further improve patients’ prognosis.
Unfortunately, resistance to chemotherapy occurs frequently,
which remains a major cause of GC metastasis or relapse.
Besides, the effect of immunotherapy is quite uncertain for GC
patients due to the highly variant tumor microenvironment
(TME) (Coutzac et al., 2019). Recent studies have linked
ferroptosis with immune factors and chemotherapy resistance.
Thus, it is necessary to further explore such an association in
detail in GC.

Ferroptosis was firstly proposed by Dixon et al., (2012) and
was described as an iron-dependent non-apoptotic cell death
triggered by the small molecule erastin. The team summarized in
another essay that ferroptosis was associated with reactive oxygen
species production and lipid peroxidation (Dixon, 2017). In the
past few years, ferroptosis has been implicated in multiple
diseases and functions as a tumor suppression mechanism
(Stockwell et al., 2020). Exploring the mechanisms underlying
susceptibility and resistance to ferroptosis in carcinogenesis has
been an intense area of research in the past few years (Friedmann
Angeli et al., 2019). It was revealed by some studies that some
tumor suppressor genes exert their anti-tumor function by
upregulating tumor cells’ sensitivity to ferroptosis. For
example, p53 (Wang et al., 2016) and BAP1 (Zhang et al.,
2018) were found to downregulate the expression of SLC7A11,
a negative modulator of ferroptosis. It was thus hypothesized that
these two tumor-suppressive genes executed their anti-tumor
function partly by enhancing cancer cells’ sensitivity to
ferroptosis. Conversely, carcinoma’s resistance to ferroptosis
was also reported to be connected with some of the malignant
signatures in tumorigenesis such as hypoxia (Luis et al., 2021),
EMT (Behan et al., 2019), and stemness (Wang et al., 2020).
Studies have already highlighted the possibility for ferroptosis to
be a novel target for cancer treatment (Liang et al., 2019; Koppula
et al., 2021). When it comes to gastric cancer, the induction of

ferroptosis has also been achieved in several studies (Hao et al.,
2017; Chen et al., 2020; Cai et al., 2021; Zhao et al., 2021). These
findings may provide new insights into ferroptosis-mediated
cancer treatment.

Long non-coding RNAs (lncRNAs) are defined as non-protein
coding transcripts of over 200 nucleotides. It was revealed that
lncRNAs were aberrantly expressed in tumor tissues and were
involved in the carcinogenesis of various cancer types (Bhan et al.,
2017). Up to now, there have been some studies establishing
lncRNA-based, ferroptosis-related risk signatures in relation to
GC prognosis (Pan et al., 2021; Wei et al., 2021; Xiao et al., 2021;
Zhang et al., 2022). Table 1 lists recent works that constructed
ferroptosis-related lncRNA risk score models in GC. It is worth
noting that some recent studies cyclically singly paired the
ferroptosis-related lncRNAs and constructed prognostic risk
score models of lncRNA pairs (Li et al., 2021; Tang et al.,
2021). Compared with the aforementioned risk score model
consisting of single lncRNA, these models did not rely on the
specific expression of lncRNA and had broader clinical
practicability, for it is unnecessary to transform data format
when the expression profiles were obtained from different
sequencing platforms.

In this study, we successfully established a novel ferroptosis-
related lncRNA pair (FRLP) risk score model of clinical
significance. An alternative gene set score (GS) model was also
built to represent the FRLP model when the lncRNA expression
profiles were not available. After confirming that the two models
shared a high degree of compliance, we validated the FRLP risk
score model in two external GEO cohorts using the GS model.
Our present work could provide not only an accurate prediction
for GC patients’ survival but also insightful strategies to optimize
GC patient’ treatment.

MATERIALS AND METHODS

Data Obtaining and Processing
The transcriptional data of 375 stomach adenocarcinoma
(STAD) tissues and 32 normal tissues were downloaded from
The Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov)
database. We also obtained the corresponding clinical data from
the University of California Santa Cruz (UCSC; https://xena.ucsc.
edu) database. Patients without clinical information were
excluded. Overall, a total of 334 cases were included. The
clinical information of patients, including age, gender, TNM
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status, stage, and tumor location, is listed in Table 2. Next, we
transformed the Ensembl ID to gene symbols and picked out the
lncRNAs using GTF annotation document downloaded from the
ensemble human genome browser GRCh38. p13 (http://asia.
ensembl.org/index.html). Ferroptosis-related genes were
retrieved from the FerrDb (http://www.zhounan.org/) database.

Screening of Ferroptosis-Related lncRNAs
The frlncRNAs were identified by the Pearson correlation
analysis (|R|>0.4 and p < 0.001). Next, we filtered out
differentially expressed lncRNAs between tumor and normal
controls using the “limma” package of R software under the
criteria of |log fold change (FC)|> 2 and adjusted p value< 0.05.
The volcano plot and heatmap of DEfrlncRNAs were depicted by
the “ggplot2” and “pheatmap” packages of R software.

LncRNA Pairing
All the DEfrlncRNAs were cyclically single-paired and a 0 or 1
matrix was established according to the following procedure (Luis
et al., 2021): if the expression of lncRNA a was higher than its
pairing lncRNA, lncRNA b, the value of this lncRNA pair was
defined as 1; conversely, we regarded the pair’s value as 0 if
lncRNA A’s expression was lower than lncRNA B. FrlncRNA
pairs (FRLPs) were excluded if there were too many (more than
80%) 0 or 1 values. In other words, only the lncRNA pairs with an
optimal 0 or 1 range (20%–80%) were sorted out for further

analysis. Univariate Cox regression analyses were performed to
evaluate the prognostic value of FRLPs (p < 0.01).

Risk Score Model Construction
Using R package “glmnet,” the least absolute shrinkage and
selection operator (LASSO) regression analysis was conducted
in TCGA cohort, and the lncRNA pairs filtered out were further
subjected to multivariate Cox regression analysis. The
multicollinearity of lncRNA pairs was estimated through the
variance inflation factor (VIFs), and we defined that VIF ≥2
was considered to indicate multicollinearity in the study (Yan
et al., 2021). LncRNA pairs that did not violate the
multicollinearity assumption were filtered out for model
construction. Risk scores were calculated based on the formula
below:

Risk score � ∑
n

i�1
Coef(lncRNApair i)pVal(lncRNApair i)

Coef (lncRNA pair i) and Exp (lncRNA pair i) indicated the
coefficient and value (0 or 1) of an individual lncRNA pair I,
respectively. Time-dependent receiver operating characteristic
(ROC) curve (Kamarudin et al., 2017) and decision curve
analysis (DCA) (Vickers and Elkin, 2006) were employed to
access the predictive efficacy of the FRLP risk score model.
Then, patients were divided into high- and low-risk groups
based on the maximum reflection point of the most suitable

TABLE 1 | Recent Works Constructing Ferroptosis-related lncRNA Risk Score Models in GC patients.

Title Risk score (RS) model Hybrid model Reference

Number of
lncRNAs

AUCs Significance Components AUCs

Construction of a ferroptosis-related
lncRNA-based model to improve
the prognostic evaluation of gastric
cancer patients based on
bioinformatics

17 0.750 for total OS High-RS patients exhibited
worse OS

Risk score Not mentioned Pan et al.,
(2021)Risk level

T stage
N stage
M stage
Age
Gender
Histological; Grade

A novel ferroptosis-related lncRNA
signature for prognosis prediction in
gastric cancer

4 0.636 for total OS High-RS patients exhibited worse
OS; the four lncRNAs were
validated to be aberrantly
expressed in GC tumor tissues by
RT-qPCR

Individual expression
level of three
lncRNAs; Risk score

Not mentioned Wei et al,
(2021)

A ferroptosis-related lncRNAs
signature predicts prognosis and
therapeutic response of gastric
cancer

17 0.811 for total OS;
0.809 for 1-year OS;
0.805 for 3-year OS;
0.776 for 5-year OS

High-RS patients exhibited worse
OS, higher tumorigenic events,
lower gene mutation rates, and
decreased sensitivity to anti-PD-
L1 treatment; analysis in pan-
cancer cell lines revealed that the
RS was associated with IC50s of
41 anti-tumor drugs

Not constructed Xiao et al,
(2021)

Establishment and validation of a
ferroptosis-related long non-coding
RNA signature for predicting the
prognosis of stomach
Adenocarcinoma

3 0.660 for 3-year OS;
0.756 for 5-year OS

High-RS patients exhibited worse
OS, advanced TNM stages, and
increased tumorigenic events;
the three lncRNAs were validated
to be aberrantly expressed in GC
cell lines by RT-qPCR

Risk score; TNM
stage; age; gender

0.635 for 3-year
OS; 0.661 for 5-
year OS

Zhang et al.,
(2022)
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ROC curve. Comparisons of differences in overall survival (OS)
were conducted using the Kaplan–Meier method.

Development and Evaluation of Nomogram
Based on the Risk Score
To quantitatively estimate our FRLP risk score model’s
prognostic potential in clinical practice, we created a
nomogram using “Survival” and “RMS” packages in R to
predict 1, 3-, or 5-year OS. The nomogram integrated risk
score and other clinicopathological variables, which were also
identified as independent risk factors by the Cox regression
analysis. In addition, using the “coxph” function of R package
“survival,” we performed Schoenfield’s residual test to decide
whether these risk factors met the equally proportional risk
hypothesis. Finally, the robustness of the nomogram was also
evaluated by the calibration curves, time-dependent ROC curves,
and DCA analysis (Vickers and Elkin, 2006).

Clinical Correlation Analysis
To explore the clinical significance of our risk score model, we
analyzed the difference in the clinicopathological characteristics
between the two risk groups by the chi-square test. The result was
depicted in a heatmap form using R packages “pheatmap” and
“ggpubr.” The clinicopathological characteristics include age,
gender, tumor grade, tumor location, and TNM status.
Moreover, we conducted a stratification analysis comparing
the risk score difference in different clinical groups: age (>65
and ≤65), gender (male and female), tumor stage (I–II and
III–IV), grade (G1–G2 and G3), tumor location (proximal,
body/fundus and distal), T status (T1–T2 and T3–T4), N
status (N0 and N1–N3), and M status (M0 and M1).

Somatic Variation Analysis
Using VarScan2 annotation files downloaded from TCGA
database, the tumor mutation burden (TMB) of each sample
was calculated through the VarScan2 pipeline somatic mutation

TABLE 2 | Characteristics of patients with STAD from TCGA database, GSE62254 and GSE84437.

Characteristics TCGA (n = 334) GSE62254 (n = 300) GSE84437 (n = 433)

No. of patients (%) No. of patients (%) No. of patients (%)

Age at diagnosis
≤65 152 (45.5) 172 (0.6) 150 (0.3)
>65 182 (54.5) 128 (0.4) 283 (0.7)

Gender
Male 217 (65) 199 (0.7) 296 (0.7)
Female 117 (35) 101 (0.3) 197 (0.3)

Tumor location
Proximal 80 (24.0) 32 (0.1) Not Available (NA)
Body/fundus 117 (35.0) 127 (0.4) NA
Distal 123 (36.8) 155 (0.5) NA
Others 14 (4.2) 6 (0.0) NA

Tumor grade
G1 198 (59.3) NA NA
G2 118 (35.3) NA NA
G3 9 (2.7) NA NA
unknown 9 (2.7) NA NA

Tumor stage
Stage I 44 (13.2) 30 (0.1) NA
Stage II 104 (31.1) 96 (0.3) NA
Stage III 139 (41.6) 95 (0.3) NA
Stage IV 34 (10.2) 77 (0.3) NA
unknown 13 (3.9) 2 (0.0) NA

T status
T1 14 (4.2) 0 (0.0) 11 (0.0)
T2 72 (21.6) 186 (0.6) 38 (0.1)
T3 157 (47.0) 91 (0.3) 92 (0.2)
T4 87 (26.0) 21 (0.1) 292 (0.7)
unknown 4 (1.2) 2 (0.0) 0 (0.0)

N status
N0 97 (29.0) 38 (0.1) 80 (0.2)
N1 91 (27.2) 131 (0.4) 188 (0.4)
N2 70 (21.0) 80 (0.3) 132 (0.3)
N3 66 (19.8) 51 (0.2) 33 (0.1)
unknown 10 (3.0) 0 (0.0) 0 (0.0)

M status
M0 299 (89.5) 278 (0.9) NA
M1 23 (6.9) 27 (0.1) NA
unknown 12 (3.6) 0 (0.0) NA

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8994194

Li et al. Prognostic Model for Gastric Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


calling workflow (Binatti et al., 2021). A comparison of TMB
between the two groups was carried out. Survival analysis
combining the risk score and TMB was performed. Spearman
correlation analysis was performed to test the relation between
TMB and risk scores. The top 20 genes with the highest mutation
frequencies were visualized using the “maftools” package in R.

Tumor Microenvironment Analysis
The stromal and immune cell content in the microenvironment
was quantified for every STAD patient using the “ESTIMATE”
algorithm, and a comparison was performed between the two risk
groups. Next, several currently acknowledged algorithms include
TIMER, xCell, quanTIseq, MCP-counter, EPIC, CIBERSORT-
ABS, and -CIBERSORT to calculate the contents of tumor
infiltrating immune cells (TIICs). The whole analysis process
was performed via the online platform Tumor Immune
Estimation Resource 2.0 (TIMER2.0, http://timer.cistrome.org/
). Spearman correlation analysis was further performed to analyze
the correlations between the risk score and immune cells. We set
“R> 0.1, p < 0.05” as the criterion and visualized our results in the
form of a lollipop diagram using the R package “ggplot2.”

Immunotherapeutic Sensitivity Analysis
To explore the correlation between risk score and response toward
the immune checkpoint blockage (ICB) treatment, we obtained 24
immune checkpoint genes (ICGs) from previous literatures (Garris
et al., 2018; Han et al., 2019; Nishino et al., 2017; Patel et al., 2017;
Yang et al., 2017). The tumor immune dysfunction and exclusion
(TIDE) score was defined by Jiang and his colleagues (Jiang et al.,
2018) and has been proved to be a reliable indicator for predicting the
ICB treatment response. We obtained the TIDE score, dysfunction
score, and exclusion score of each patient from the TIDE website
(http://tide.dfci.harvard.edu/). In addition, the immunophenoscore
(IPS), calculated by unbiased machine learning methods, is another
parameter reflecting immunogenicity. Higher IPS represents better
accuracy for the more corresponding result (Jiang et al., 2021). The
IPS results for anti-CTLA4 and anti-PD1 treatments of TCGA STAD
patients were downloaded from The Cancer Immunome Atlas
(TCIA, https://tcia.at/home). Two groups’ differences in IPS and
TIDE scores were compared.

Biological Function Analysis
To shed light on the difference in biological functions between the
two risk groups, “KEGG” gene sets “c2. cp.kegg.v7.0. symbol.gmt”
and “GO” gene sets “c5. go.v7.4. symbols.gmt” were downloaded
from the MsigDB (http://www.gsea-msigdb.org) database for
gene set enrichment analysis (GSEA) (Subramanian et al.,
2005). Besides, “Hallmark” gene set “h.all.v7.4. symbols.gmt,”
which contains 50 well-defined biological signatures, were also
available from MsigDB (Subramanian et al., 2005). We estimated
the enrichment score (ES) of each signature using single sample
gene set enrichment analysis (ssGSEA).

Chemotherapy Response Analysis
Half-inhibitory concentration (IC50) of different types of
chemotherapeutic drugs was estimated using R package
“pRRophetic.” The “pRRophetic” package selected 138 kinds of

drugs from more than 700 cell lines in the Genomics of Drug
Sensitivity in Cancer database (GDSC, https://www.cancerrxgene.
org/) and developed a ridge regression algorithm to predict treatment
responses. Here, we only chose gastrointestinal cell lines to ensure a
more accurate prediction by setting the parameter “tissueType” of the
“pRRopheticPredict” function as “digestive_system.” We compared
the difference of IC50, and the results were displayed in the form of
boxplots using R package “ggpubr.”

External Validation of the FRLP Risk Score
Model
Twomicroarray datasets for GC patients, GSE84437 and GSE62254,
were downloaded from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo) database and used for external
validation of the FRLP risk score model. The clinical information of
patients from these two cohorts is also listed in Table 2. An
alternative model to the FRLP risk score, the GS model was
established and used to conduct the external validation (Zhang
et al., 2021). Differentially expressed genes (DEGs) between high-
and low-risk score groups were screened out based on |logFC|>0.585
(|FC|>1.5), p < 0.05 criteria. Gene set A comprised DEGs
upregulated in the high-risk group, while low-risk group’s highly
expressed DEGs were classified into gene set B. We performed
ssGSEA to calculate the enrichment score (ES) of gene sets A and B
in each sample. Consequently, the gene set score (GS), namely the
subtraction of gene set B ES from gene set A ES, was estimated and
used to represent the risk score when lncRNA expression profiles
were not available. We performed the Spearman correlation analysis
to show the relevance of the two scores (Zhang et al., 2021). Using
the cut-off of the ROC curves for GS model, we classified patients
into high- and low-risk groups. Then, we compared the patients’
stratification between the FRLP risk score model and the alternative
GS model. A Sankey diagram was drawn to demonstrate the
intersection of the two models using R package “Director” (Icay
et al., 2018; Xiang et al., 2021; Tang et al., 2021). Finally, we calculated
the GS of each sample in twoGEO cohorts and stratified the patients
using the same cut-off value mentioned above. We analyzed the
differences in survival, TIDE score, and drug sensitivity between
high- and low-risk groups. Additionally, a nomogram based on the
GS model was constructed to enhance the clinical utility.

Development of Dynamic Nomograms
Based on FRLP Risk Score Model and GS
Model
To further enhance the clinical utility of the two aforementioned
nomograms, we sought to visualize them in an interactive form.
Using R package “DynNom” (Jalali et al., 2019; Yin et al., 2022),
we generated two dynamic nomograms with interactive interfaces
for clinical application based on the FRLP risk score model and
GS model, respectively.

Statistical Analysis
All statistical analyses were performed in R version 4.1.2.
Wilcoxon test was performed to conduct numerical difference
comparisons of two groups. Log-rank test was performed to
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FIGURE 1 | Identification of differentially expressed ferroptosis-related lncRNAs (DElncRNAs) and differentially expressed ferroptosis-lncRNA pairs (FRLPs). (A)
Heat map of 112 DElncRNAs. Red dots and blue dots represent upregulated and downregulated lncRNAs in tumor samples, respectively. (B) Volcano map of 112
DElncRNAs. (C) Forest plot showing 47 prognostic FRLPs identified by univariate Cox analysis.
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evaluate the differences in survival, and Kaplan–Meier plots were
drawn to visualize the comparison. Univariate and multivariate
Cox proportional hazard regression analyses were used to assess
the predictive efficacy of the risk score. Statistical significance was
set at p < 0.05.

RESULTS

Identification of FRLPs in TCGA Cohort
The entire analytical process of the study is presented in
Supplementary Figure S1. Our study included the transcriptome

FIGURE 2 |Construction and evaluation of the FRLP risk score model in TCGA cohort. (A) Least absolute shrinkage and selection operator (LASSO) coefficients of
27 prognosis-related FRLPs. (B) Tenfold cross-validation for tuning parameter selection in the LASSOmodel. (C) Forest plot showing 10 FRLPs identified bymultivariate
Cox regression analysis. (D) Receiver operating characteristic (ROC) comparing the risk score and other clinical factors in predicting total OS. (E) Decision curve analysis
(DCA) curves estimating the predictive efficacy of the risk score from the perspective of clinical benefit. The y-axis refers to the net benefit. The x-axis refers to the
predicted OS. The black line represents the hypothesis that all patients survive in 5 years. The gray line represents the hypothesis that no patients stay alive for more than
1 year. (F)ROC curve for predicting 1-, 3-, and 5-year overall survival (OS) of the FRLP risk scoremodel. (G)Cut-off point of the risk scoremodel. (H)Kaplan–Meier plot of
high- and low-risk patients. (I) The risk score distribution. Green dots represent risk scores for low-risk patients; red dots represent risk scores for high-risk patients. (J)
The relationship between survival status and risk score. The horizontal ordinate represents the number of patients; the vertical ordinate represents risk score (AUC: area
under curve; CI: confidence interval).
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data of 375 STAD samples and 32 normal samples from the TCGA
database and identified 14,086 lncRNAs. A total of 382 ferroptosis-
related genes were downloaded from the FerrDb, and their expression
was analyzed in the TCGA STAD expression matrix. We conducted
the Pearson correlation analysis and screened out 1,343 ferroptosis-
related lncRNAs. Then, 112 differentially expressed lncRNAs (DELs)
were filtered out according to the |logFC|>2 criteria, of which 92 were
upregulated and 20 were downregulated in tumor samples,
respectively (Figures 1A,B). After pairing analysis of the 112
DELs, a 0 or 1 matrix of 4,722 FRLPs was established. Finally, the
univariate Cox analysis identified 47 prognostic FRLPs (Figure 1C).

Construction of FRLP Risk Score Model
To further explore the prognostic value of FRLPs inGC, a stepwiseCox
regression procedure was performed. Firstly, to reduce the overfitting
among 46 prognostic FRLPs, we conducted a LASSO Cox regression
analysis and 27 FRLPs were filtered out according to the minimum
partial likelihood deviance (Figures 2A,B). Then, we performed
multivariate Cox analysis on these 27 FRLPs and finally obtained
10 prognostic FRLPs (Figure 2C). The list of 10 FRLPs and their
corresponding calculation coefficients are shown in Table 3. As VIFs
were all <2, there wasn’t any multicollinearity relationship between
these FRLPs (Table 4). Compared with other clinical factors, our risk
scoremodel wasmore accurate to predict the overall survival according
to multi-factor ROC analysis (Figure 2D). Then, we conducted DCA
to explore the clinical significance of the risk score. As shown in
Figure 2E, the risk score displayed better net benefit than other factors,
which indicated that the risk score was competent to help clinicians
make more accurate assessment of patient prognosis compared with
the age-, gender-, grade-, location-, or stage-only model. Moreover, the
time-dependent ROC analysis revealed that the area under curves
(AUCs) for 1-, 3-, and 5-year overall survival (OS) were 0.738, 0.795,
and 0.787, respectively (Figure 2F).

Predictive Assessment of the FRLP Risk
Score Model
We identified the maximum inflection point of 1.925 as the optimal
cut-off point on the 3-year ROC curve (Figure 2G). Subsequently, 148
patients were classified into the low-risk group and 186 into high-risk
group. The OS of the low-risk group was significantly longer than that
of the high-risk group (Figure 2H). The distribution of patients’ risk
score is depicted in Figure 2I. Based on the scatter plot, the number of

deaths increased as the risk score increased (Figure 2J). To figure out
whether the risk score model is independent of other
clinicopathological parameters, univariate and multivariate Cox
analyses incorporating age, gender, tumor location, and tumor stage
were adopted. It was revealed that the FRLP model is an independent
prognostic factor for STAD patients (univariate Cox p < 0.001, HR =
1.265, 95% CI 1.195–1.339; multivariate Cox p < 0.001, HR = 1.241,
95% CI: 1.171–1.315; Figures 3A,B). Subsequently, we built a
nomogram that integrated tumor stage and risk score to predict
patients’ 1-, 3-, and 5-year OS (Figure 3C). The AUCs of the
nomogram for predicting 1-, 3-, and 5-year OS rates were 0.768,
0.775, and 0.766, respectively (Figure 3D). According to Schoenfield’s
residual test, the individual p-value for age, stage, and risk score was
0.97, 0.80, and 0.80, respectively, while the global p-value was 0.95
(Figure 3E). These results indicated that the nomogrammodelmet the
equally proportional risk hypothesis. The total point of the nomogram
(nomoscore) had higher efficacy in predicting GC patients’ 1, 3, and 5-
year OS than age or stage (Figure 3F). Moreover, DCA analysis also
revealed that the nomoscore displayed better net benefit than the age-
or stage-alone model (Figure 3G). The calibration curve also
confirmed the predictive value of the nomogram in predicting 1-,
3-, and 5-year OS (Figure 3H).

The Clinical Significance of the FRLP Risk
Score Model
To evaluate the relationship risk score and clinicopathological
characteristics, chi-square test was performed and the results are
demonstrated in Figure 4A, which indicated that tumor grade
and tumor stage were closely linked to the FRLP risk level. In
addition, we analyzed the risk score differences between groups
stratified by different clinicopathological factors. As shown in
Figures 4B–H, a high-risk score with statistical significance was
more common to see in patients with higher tumor grades as well
as more advanced N stages and TNM stages. Nevertheless,
patients in different gender, age, M status, and T status groups
exhibited no differences in risk scores.

The Correlation of the FRLP Risk Score
Model and Somatic Variance
To investigate the gene mutation landscape of the FRLP risk score
model, we performed TMB and gene mutation frequency analysis.

TABLE 3 | lncRNA pairs used for the construction of the FRLP risk score model.

lncRNA pairs Coefficient

AL356299.3|AF124730.2 0.545
AC007128.2|AL354928.1 0.505
KCNMB2-AS1|AL117382.2 0.448
AL354928.1|MIR1-1HG-AS1 −0.447
HHLA3-AS1|LINC01614 −0.580
C5orf66-AS1|AC112484.3 0.301
LNCAROD|AC007277.1 0.616
AL161729.4|CFAP61-AS1 −0.401
HAND2-AS1|TSPEAR-AS2 0.380
LINC00941|AC120498.4 0.410

TABLE 4 | The variance inflation factors (VIFs) of 10 lncRNA pairs.

lncRNA pairs VIFs

AL356299.3|AF124730.2 1.048
AC007128.2|AL354928.1 1.063
KCNMB2-AS1|AL117382.2 1.049
AL354928.1|MIR1-1HG-AS1 1.424
HHLA3-AS1|LINC01614 1.047
C5orf66-AS1|AC112484.3 1.079
LNCAROD|AC007277.1 1.058
AL161729.4|CFAP61-AS1 1.064
HAND2-AS1|TSPEAR-AS2 1.465
LINC00941|AC120498.4 1.06
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FIGURE 3 | Evaluation of FRLP risk score model’s predictive efficacy. (A) Univariate Cox analysis of risk score and other clinicopathological factors. (B)Multivariate
Cox analysis of risk score and other clinicopathological factors. (C)Nomogram integrating risk score, age, and tumor stage for predicting 1-, 3-, and 5-year OS. (D) Time-
dependent ROC curve of the nomogram for predicting 1-, 3-, and 5-year OS. (E) Schoenfield’s residual test of age, stage, and risk score. (F) Calibration curves of the
nomogram for predicting 1-, 3-, and 5-year OS. The gray lines represent the ideal predictive model, and the red lines represent the observed model. (G) Time-
dependent ROC curves evaluating the efficacy of the nomogram to predict 1-, 3-, and 5-year OS. (H) DCA curves estimating the predictive efficacy of the nomogram
from the perspective of clinical benefit.
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As shown in Figure 5A, low-risk STAD patients had higher TMB
levels than high-risk patients. And a negative correlation between
TMB levels and risk score was found according to the Spearman
correlation analysis (R = −0.17, p = 0.0016) (Figure 5B). The
Kaplan–Meier analysis suggested that STAD patients with high

TMB had longer OS than low TMB patients (Figure 5C). Stratified
survival analysis further confirmed that the survival benefits for
high TMB patients still exist in both high- and low-risk groups
(Figure 5D). In general, genemutation frequency was higher in the
low-risk group than that in the high-risk group (Figures 5E,F).

FIGURE 4 | Clinical correlation of the FRLP risk score model. (A) Heatmap showing the clinical relevance of the risk score model (*p < 0.05). (B–H) Boxplots
showing risk score differences in different age, gender, tumor grade, tumor stage, T status, N status, and M status groups.
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FIGURE 5 | Tumor mutation burden (TMB) analysis of the FRLP risk score model. (A) TMB difference between high- and low-risk groups. (B) Correlation between
the risk score and TMB. (C) Kaplan–Meier plots of patients with high and low TMB. (D) Kaplan–Meier curves of patients stratified by both TMB and the risk score. (E,F)
Gene mutation analysis of patients in low- and high-risk groups.
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The Correlation of the FRLP Risk Score
Model and Tumor Microenvironment
To shed light on the model’s association with tumor
microenvironment, we estimated the stromal scores, immune
scores, and ESTIMATE scores of two risk groups by the R

package “ESTIMATE.” These three scores were reflections of
stromal contents, immune cell contents, and the aggregation of
the two contents. Then, we calculated the content of tumor
infiltrating immune cells (TIICs) using diversified algorithms
online and discussed the correlation between the risk score

FIGURE 6 | Tumor infiltrating immune cells (TIICs) and immunotherapeutic sensitivity analysis of the FRLP risk score model. (A) The correlation between risk score
and TIICs analyzed by seven different quantification methods of immune infiltration estimations including TIMER, xCell, quanTIseq, MCP-counter, EPIC, CIBERSORT-
ABS, and CIBERSORT. (B) Boxplots showing immune score, stromal score, and ESTIMATE score in high- and low-risk groups. (C) Expression of 24 immune
checkpoint genes in high- and low-risk groups. (D) Boxplots showing dysfunction score, exclusion score, and tumor immune dysfunction and exclusion (TIDE)
score differences between high- and low-risk score groups. (E) Immunophenoscore (IPS) differences for ICB treatment between high- and low-risk groups;
ips_ctla4_neg_pd1_pos refers to CTLA4-negative response and PD1-positive response; ips_ctla4_pos_pd1_neg refers to CTLA4-positive response and PD1-negative
response; ips_ctla4_pos_pd1_pos refers to CTLA4-positive response and PD1-positive response (pp < 0.05, ppp < 0.01, pppp < 0.001).
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and tumor-infiltrating immune cells via Spearman correlation
analysis. The results demonstrated that the stromal score and
ESTIMATE score were higher in the high-risk group, while there
was no significant difference in the immune score between the
two groups (Figure 6A). High-risk scores were more closely
linked with high TIICs (Figure 6B). We specified the
MCPcounter algorithm result, and it was indicated that
immunosuppressive cells (e.g., endothelial cells, fibroblasts,
monocytes, and neutrophils) were more densely infiltrated in
the high-risk group, whereas there was no statistical significance
of anti-tumor immune cells (e.g., B lineage, CD8 T cells, cytotoxic
lymphocytes, NK cells, and T cells) infiltration between the two
groups (Supplementary Figure S1).

The Correlation of the FRLP Risk Score
Model and Immunotherapeutic Sensitivity
Of all the 24 selected ICGs, CD28, CD86, FGL2, HAVCR2,
PDCD1LG2, TNFSF4, and TNFSF18 were highly expressed in
the high-risk group (Figure 6C). These results further confirmed
the immunosuppressive phenotype of the high-risk patients.
Intriguingly, according to the TIDE analysis, which suggested

that high-risk patients had a heightened level of dysfunction
score, exclusion score, and TIDE score (Figure 6D), high-risk
patients might not actually benefit from ICB treatment though
highly expressed in ICGs. On the contrary, the IPS scores of anti-
CTLA4+ anti-PD1+, anti-CTLA4- anti-PD1+, and anti-CTLA4+
anti-PD1- were all higher in low-risk subgroups (Figure 6E),
implying low-risk patients’ better responses toward anti-CTLA4
and/or anti-PD1 immunotherapy.

The Correlation of the FRLP Risk Score
Model and Biological Function
To investigate different risk groups’ enriched biological function,
GSEA using “KEGG” and “GO” gene sets was conducted to
compare the enrichment differences between two risk groups. As
shown in Figures 7A,B, KEGG pathways in relation to stromal
activity and diseases including “ECM–receptor interaction,”
“focal adhesion,” and “dilated cardiomyopathy” were enriched
in the high-risk group. Meanwhile, GO items in relation to cell
migration such as “ameboidal-type cell migration,” “cell junction
assembly,” and “cell matrix adhesion” were enriched in the high-
risk group. For the low risk group, we found an enrichment

FIGURE 7 | (Contiued).

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 89941913

Li et al. Prognostic Model for Gastric Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


tendency toward KEGG metabolism-related pathways (e.g.,
“nitrogen metabolism,” “ribosome,” and “peroxisome”) and
GO metabolism-related items (e.g., “rRNA metabolic process,”
“mitochondrial-protein containing complex,” and “structural
constituent of ribosome”). In addition, we performed ssGSEA
using the “Hallmark” gene sets. As revealed by Figure 7C, the
high-risk group was markedly correlated with carcinogenic
activities (e.g., “Wnt beta catenin,” “myc targets,” “kras
signaling,” etc.) and stromal pathways (e.g., “hypoxia,”
“angiogenesis,” and “epithelial–mesenchymal transition”),
whereas the low-risk group was characterized by its
enrichment in cell cycle-related events (e.g., “DNA repair,”
“G2M checkpoint,” and “E2F targets”).

External Validation of the FRLP Risk Score
Model
The lncRNAs in our FRLP risk score model could not be detected
in two GEO microarray datasets due to limited sequencing
depth. Therefore, we constructed gene set A and gene set B,
which were composed of genes significantly upregulated in high-
and low-risk groups, respectively (Supplementary Figure S3A,
Supplementary Table S1). KEGG analysis suggested that the
two gene sets targeted at different pathways, with gene set A

associated with stromal and carcinogenic pathways and gene
set B targeted at immune-related pathways. (Supplementary
Figures S3B,C). Then, we developed a novel gene set score
(GS) model that was defined as the subtraction of gene set B
enrichment score (ES) from gene set A ES. The distribution of
GS and the ES of two gene sets was significantly between high-
and low-FRLP risk score groups, and the high-FRLP risk score
group also exhibited a higher GS score (Supplementary Figure
S3D). Moreover, there was a positive correlation between risk
score and GS score (Spearman correlation R = 0.57;
Supplementary Figure S3E). Subsequently, patients were
divided into high- and low-GS groups according to the cut-off
value of 3-year ROC curves, which was identical to the method we
used to construct the FRLP risk score model (Supplementary
Figure S3F). There was a significant overlap between the
established FRLP risk score model and the GS model: over
70% of the high-FRLP risk score patients could be classified
into a high-GS group, and the proportion of low-FRLP risk score
patients falling to the category of low-GS group is over 75%
(Supplementary Figures S3G,H). Since the GS model had a high
degree of compliance with the FRLP risk score model, it is
reasonable to regard the GS score as an alternative to FRLP
risk score in distinguishing GC patients’ survival, biological
function, tumor microenvironment, etc.

FIGURE 7 | (Continued). Biological function analysis of the FRLP risk score model. (A) Gene set enrichment analysis (GSEA) analysis using KEGG gene sets for
high- and low-risk groups. (B) GSEA analysis using GO gene sets for high- and low-risk groups. (C) ssGSEA analysis using Hallmark gene sets for high- and low-risk
groups. Gene sets markedly enriched in high- or low-risk groups were marked red and blue, respectively (pp < 0.05, ppp < 0.01, pppp < 0.001, ns: not significantly).
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We calculated the GS of each sample in two GEO cohorts, and
the classification of distinct risk groups was also conducted using
the same cut-off value in the TCGA cohort (Supplementary
Figure S3D). High-risk patients were validated to have worse OS
in GSE84437 (n = 433, log rank p < 0.001), GSE62254 (n = 300,
log rank p < 0.001), and shortened disease-free survival (DFS) in
GSE62254 (log rank p < 0.001) (Figures 8A–C). Time-dependent
ROC analysis also identified the efficacy of the alternative GS

model in predicting patients’ survival. In GSE62254, the AUCs
for 1-, 3-, and 5-year’s OS were 0.681, 0.660, and 0.661,
respectively; the AUCs for 1-, 3-, and 5-year’s DFS were 0.632,
0.660, and 0.701, respectively. In GSE84437, the AUCs for 1-, 3-,
and 5-year’s OS were 0.578, 0.612, and 0.630, respectively
(Figures 8D–F). Specifically, in GSE62254, stage III/IV
patients tended to exhibit higher GS (Figure 8G). Moreover,
GSE62254 contains information of two classification systems for

FIGURE 8 | External validation of the FRLP risk score model in two GEO cohorts using the alternative GS model. Kaplan–Meier plots comparing OS of high- and
low-risk patients in GSE84437 (A) and GSE62254 (B). (C) Kaplan–Meier plots comparing disease-free survival (DFS) of high- and low-risk patients in GSE62254. ROC
analysis of the GS model in predicting 1, 3, and 5 year OS in (D) GSE84437 and (E) GSE62254. (F) ROC analysis of the GS model in predicting 1, 3, and 5 year DFS in
GSE62254. (G) Boxplots comparing GS score differences among different stages of patients in GSE62254. (H,I) Barplots showing the relative proportion of four
Asian Cancer Research Group (ACRG) subtypes and three Lauren subtypes in high- and low-risk patients in GSE62254.
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GC patients: the Asian Cancer Research Group (ACRG) subtype
(Cristescu et al., 2015) and Lauren subtype. By inspecting the
intersection of our GS model and these two subtypes, we found
that there were a larger proportion of high-risk patients classified
into “EMT” ACRG subtype and “diffuse” Lauren subtype
(Figures 8H,I), which were both subtypes indicating worse
clinical outcomes. In addition, TIDE analysis also showed
elevated dysfunction, exclusion, and TIDE scores in high-risk
groups in both of the two cohorts (Supplementary Figure S4).

The Correlation of the FRLP Risk Score
Model or GS Model and Chemotherapy
Sensitivity
The ssGSEA analysis revealed a higher enrichment level of
carcinogenic pathways in the high-risk group. This indicated
that high-risk patients may exhibit better responses toward
chemotherapy. We estimated the IC50 of six anti-tumor drugs
in samples from the TCGA cohort and two GEO cohorts. For
TCGA patients, we compared the sensitivity between high- and

low-risk groups of the FRLP risk score model. For GEO patients,
we compared the sensitivity between high- and low-risk groups of
the alternative GS model. As demonstrated in Figure 9, the
sensitivity to imatinib, bosutinib, vinblastin, doxorubicin, and
cisplatin was significantly higher in the high-risk patients than
that of the low-risk patients. On the other hand, low-risk patients
only displayed higher sensitivity to methotrexate.

Construction of a Nomogram Based on GS
Model
Considering the inconvenience of using GS score directly in
predicting patient’ prognosis, we constructed a nomogram
integrating GS score, age, and tumor stage based on TCGA
cohort and GSE62254 (GSE84437 was excluded for lack of
tumor stage profile) (Figure 10A). AUC analysis (Figures
10B,C) and calibration curves (Figures 10D,E) confirmed the
high accuracy of the nomogram for predicting OS at 1, 3, and
5 years in both of the two cohorts. Furthermore, time-dependent
ROC (Figures 10F,G) and DCA analysis (Figures 10H,I) was

FIGURE 9 | Chemotherapeutic response analysis. Boxplots comparing differences in half-inhibitory concentration (IC50) values of six anti-tumor drugs between
high- and low-risk score groups in (A) TCGA, (B) GSE84437, and (C) GSE62254 (pp < 0.05, ppp < 0.01, pppp < 0.001, ppppp < 0.0001).
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FIGURE 10 | Construction of a nomogram using GSmodel. (A) Nomogram integrating GS score, age, and tumor stage for predicting 1, 3, and 5 year OS in TCGA
and GSE62254. 1, 3, and 5 year ROC analyses of the nomogram in (B) TCGA and (C)GSE62254. Calibration curves of the nomogram for predicting 1, 3, and 5 year OS
in (D) TCGA and (E) GSE62254. Time-dependent ROC curves evaluating the efficacy of the nomogram to predict 1, 3, and 5 year OS in (F) TCGA and (G) GSE62254.
DCA curves estimating the predictive efficacy of the nomogram in (H) TCGA and (I) GSE62254.
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also performed in each of the cohort, which all confirmed the
superior predicting ability of the nomogram compared with the
age- or stage-only model.

Development of Dynamic Nomograms
Based on FRLP Risk Score Model and GS
Model
At the end of the study, we generated two online dynamic
nomograms based on FRLP risk and GS score model,
respectively (https://ljzwhdx.shinyapps.io/FRLPdynanomo/;
https://ljzwhdx.shinyapps.io/GSdynanomo/). Both of the two
nomograms were in interactive forms, which could facilitate
clinician’s prediction for prognosis. Supplementary Figure S5
displays the interface of the nomogram based on the FRLP risk
score model. Predicted values of time-dependent survival
probability could be easily obtained after selecting risk score
or GS score, stage, and age of a specific GC patient.

DISCUSSION

Ferroptosis is a form of programmed cell death intimately associated
with iron metabolism and peroxidation of polyunsaturated fatty
acids (Stockwell et al., 2017). LncRNAs were able to regulate gene
expression at both transcriptional and post-transcriptional levels
(Statello et al., 2021). In recent years, the construction of prognostic
prediction models based on ferroptosis-related lncRNAs has
attracted particular attention of researchers (Table 1). However,
these risk models concentrated on the specific expression of
lncRNAs, which limited their clinical practicability. Two recently
established risk score models independent of the exact lncRNA
expressions caught our attention (Li et al., 2021; Tang et al., 2021). In
the present study, we demonstrated that the similar risk score model
of ferroptosis-related lncRNA pairs (FRLP) could also be applied to
GC patients. The AUCs for the risk score to predict 1, 3, and 5 years’
OS were all over 0.70 according to the ROC curves. Aside from the
high accuracy in predicting GC patients’ clinical outcomes, the FRLP
risk score model was also closely connected with tumor
microenvironment, biological function, and responses to chemo-
and immunotherapies. High-risk patients of our FRLP risk score
model were characterized by higher infiltration of immune cells
(especially immunosuppressive and pro-tumorigenic cells), higher
carcinogenic and stromal activities, and better sensitivity to some
types of anti-tumor drugs. On the other hand, low-risk patients
displayed better treatment responses to methotrexate and higher
immunotherapy sensitivity. Considering that lncRNA expression
profiles in the FRLPmodel were not available inmicroarray datasets,
we also introduced an alternative gene set score (GS) model. We
performed a series of analyses to confirm the high degree of
compliance between FRLP and GS models. Subsequently, we
validated the robustness of our FRLP risk score model in two
external GEO cohorts using the alternative GS score, which
confirmed the potential of applying the risk score model to a
wider range of patients. Moreover, to enhance the clinical utility
of the FRLP and the alternative GS risk score model, we also built
two nomograms based on the two models, respectively. Finally, two

dynamic nomograms with interactive interfaces based on the FRLP
model and GS model were also constructed to further facilitate
clinician’s prediction for prognosis.

The interaction between tumor cells and tumor infiltrating
immunes (TIICs), namely the tumor microenvironment (TME),
has been proved to play a crucial role in tumorigenesis. Some types of
infiltrating immune cells have anti-tumor activities, such as CD8+

cytotoxic T lymphocytes (CTL), CD4+ T helper cells, natural killer
cells, and dendritic cells. Conversely, regulatory T cells (Treg) and
myeloid-derived suppressor cells (MDSCs) are regarded as “bad
guys” in the TME (Pitt et al., 2016). Besides, some immune cells
undergo polarization in the development of cancer and can exhibit
either anti-tumor or tumor-promoting function depending on
different cancer stages, such as neutrophils and macrophages
(Ngambenjawong et al., 2017; Giese et al., 2019). Some works
still regard these two kinds of cells tumor-promoting as their
high infiltration level was frequently correlated with poor
prognosis of many human tumor types (Mantovani et al., 2017;
Shaul and Fridlender, 2019). Cancer-associated fibroblasts (CAFs)
are another important kind of immunosuppressive cells that
promote tumor progression by modulating angiogenesis and
epithelial–mesenchymal transmission of cancer cells (Sahai et al.,
2020).

Currently, the relationship between ferroptosis and immunity is
quite ambiguous. Experimental evidence has already shown that
interferon gamma (IFN-γ) released by CD8+ T cells promotes tumor
cell ferroptosis (Wang et al., 2019). The negative association between
CD8+ T cell infiltration, IFN-γ expression, and the expression of
SLC3A2 and SLC7A11 was also shown in human melanoma tissues
(Wang et al., 2019). A recent study revealed that CAFs exerted the
tumor promoting role in gastric cancer by inhibiting ferroptosis in
GC cells (Zhang et al., 2020). However, it is still immature to classify
ferroptosis into the category of “immune-related cell death.” In the
current study, we identified that the TME of high-risk group was
characterized by higher stromal contents, as demonstrated by
ESTIMATE and biological function analysis: high-risk patients
exhibited higher stromal scores, and KEGG stromal-related
pathways including “ECM–receptor interaction,” “focal adhesion,”
“dilated cardiomyopathy,” “epithelial–mesenchymal transition,”
“hypoxia,” and “angiogenesis” had a higher enrichment level in
the high-risk group. As for the immune cells in TME, despite a
positive correlation between the risk score and TIIC infiltration,
there were no significant differences in the anti-tumor immune cell
content between the two risk groups. On the other hand, pro-
tumorigenic cells were more densely infiltrated in the TME of high-
risk patients. It is also noteworthy that “GO” items related to cell
migration and “Hallmark” items related to oncogenic activities were
also enriched in the high-risk group. Thus, we speculated that the
TME of the high-risk group was stroma-related and
immunosuppressive, which may closely be linked with
tumorigenesis.

Immune checkpoint is capable of inhibiting the over-
activation of T cells and preventing autoimmune diseases. But
under tumor circumstances, it will prevent T cells from
approaching the tumor, weakening the ability of the immune
system to recognize and destroy tumor cells (Tan et al., 2020). In
recent years, immunotherapy targeting immune checkpoint
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modulation, namely the immune checkpoint blockage (ICB), has
shown promising efficacy in cancer treatment (de Miguel and
Calvo, 2020). However, the benefit, to date, has been limited to a
minority of patients with certain cancer types (Sharma et al.,
2017). TMB and TIDE scores are two effective methods to
evaluate responses to ICB treatment. TMB is a quantitative
measure of the total number of somatic non-synonymous
mutations per coding area of a tumor genome (Melendez
et al., 2018). Generally, high TMB suggests better OS in cancer
patients after receiving ICB (Cao et al., 2019; Samstein et al., 2019;
Valero et al., 2021). TIDE score was a computational method that
combines two primary mechanisms in tumor evasion, T cell
dysfunction and T cell exclusion. A higher tumor TIDE score is
associated not only with worse ICB response but also with worse
patient survival under anti-PD1 and anti-CTLA4 therapies (Jiang
et al., 2018). In the present study, we observed a heightened
expression of six ICGs in the high-risk group. To figure out which
group of GC patients displayed better ICB treatment response, we
performed TMB and TIDE analyses in two groups of patients.
Intriguingly, we found that high-risk STAD patients exhibited
lower TMB and higher TIDE, which indicated that high-risk
STAD patients may not actually benefit from ICB treatment
though highly expressed six ICGs. On the contrary, patients in
low-risk groups may exhibit better immunotherapeutic response
due to the relatively high TMB and low TIDE scores. IPS data
collected from TCIA database also demonstrated that TCGA low-
risk score or GEO low-GS patients were more likely to benefit
from anti-CTLA4 and (or) anti-PD1 immunotherapy.

Finally, high-risk patients were demonstrated to exhibit higher
sensitivity toward five kinds of chemotherapeutic or targeted drugs
including vinblastin, cisplatin, doxorubicin, immatinib, and
bosutinib. In contrast, low-risk patients solely responded to
methotrexate. This perhaps could be attributed to two group’s
discrepancy in ssGSEA analysis. The overactivity of carcinogenic
pathways in high-risk patients, on the one hand, contributed to the
shortened survival. On the other hand, however, this may also confer
high-risk patients exhibiting better responses to awider range of anti-
tumor drugs. For instance, protein tyrosine kinase-associated
pathways, such as IL6/JAK/STAT and PI3K/AKT, were highly
enriched in high-risk patients, which may account for high-risk
patients’ elevated sensitivity to tyrosine kinase inhibitors (TKIs) such
as immatinib and bosutinib. Item “E2F target” was markedly
enriched in the low-risk group according to ssGSEA analysis.
Transcriptional factor E2F family plays a critical role in
determining the time point of cell division. The expression of E2F
targets gradually increases during G1 and must reach a threshold
level in order for cells to pass the restriction point and progress to S
phase. It was revealed that the activity of E2F peaks at G1-S transition
gradually decreases during the phase and is totally repressed in both
G2 and M phases (Kent and Leone, 2019). Therefore, the above
analysis probably could explain why low-risk patients exhibited
higher sensitivity to G1/S specific drug, methotrexate. Besides, the
proportion of tumor cells arrested in the G2 phase was higher in low-
risk patients due to higher enrichment level of “G2M checkpoint.”
Hence, low-risk patients were less sensitive to the M phase-specific
drug vinblastin. Our findings may help to optimize current
chemotherapeutic strategy for GC patients.

There are several limitations of our present study. First, limited by
the sequencing depth of GEO dataset, our external validation of the
FRLP risk score signature used an alternative GS score, instead of the
risk score, which may affect the robustness of the validation results.
Second, all of our conclusions were drawn based on public databases;
future large-scale and real-world studies are thus warranted.

CONCLUSION

In this study, we developed an FRLP risk model composed of 10
differentially expressed ferroptosis lncRNA pairs that does not rely
on the exact lncRNA expression level in the TCGA cohort. An
alternativeGSmodel, which shared a high degree of compliancewith
the FRLP model, was also constructed and used it to validate the
application value of the FRLP model in two GEO microarray
datasets. Two online dynamic nomograms with interactive
interfaces were finally generated to facilitate clinician’s prediction
for prognosis. The novel FRLP risk score signature established in the
current study might provide insights for the accurate prediction and
comprehensive management for GC patients.
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sets A and B, GS score in TCGA high- and low-FRLP risk groups. (E) Spearman
correlation analysis of FRLP risk score and GS score. (F) Cut-off of the GS model.
(G) Barplot and (H) Sankey diagram showing GS model’s representing ability of
FRLP risk score model (*** p<0.001, **** p<0.0001).

Supplementary Figure S4 | Boxplots showing differences in dysfunction score,
exclusion score, and TIDE score of high- and low-GS groups in (A) GSE84437 and
(B) GSE62254 (**** p<0.0001).

Supplementary Figure S5 | The interface of online dynamic nomogram (https://
frlp-nom.shinyapps.io/FRLPdynanomo/) integrating FRLP risk score, tumor stage,
and age for predicting time-independent survival probabilities in TCGA. (A) Input

area for users to select stage (stages I–IV) or age (>65 or ≤65) as well as input the risk
score and the follow-up time (futime). (B) Survival plots showing patients’ survival
probabilities at different time points. (C) Predicted survival probabilities with 95%
confidence interval (CI), which could be obtained after finishing the input of patients’
information in the input area. For example, when selecting “>65” for age, “stage III”
for stage, and entering “3” for risk score, then the patient’s 1-, 3-, and 5-year survival
probabilities with 95% CI were displayed in black line, blue line, and red line,
respectively. (D) Numerical summary showing the exact values of survival
probabilities with 95% CI.

Supplementary Table S1 | Lists of genes in gene set A and gene set B.
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