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Abstract: Mutations in the gene encoding amyloid precursor protein (APP) cause autosomal domi-
nant inherited Alzheimer’s disease (AD). We present a case of a 68-year-old female who presented
with epileptic seizures, neuropsychiatric symptoms and progressive memory decline and was found
to carry a novel APP variant, c.2062T>G pLeu688Val. A comprehensive literature review of all
reported cases of AD due to APP mutations was performed in PubMed and Web of Science databases.
We reviewed 98 studies with a total of 385 cases. The mean age of disease onset was 51.3 ± 8.3
(31–80 years). Mutations were most often located in exons 17 (80.8%) and 16 (12.2%). The most
common symptoms were dementia, visuospatial symptoms, aphasia, epilepsy and psychiatric symp-
toms. Mutations in the β-amyloid region, and specifically exon 17, were associated with high
pathogenicity and a younger age of disease onset. We describe the second reported APP mutation in
the Greek population. APP mutations may act variably on disease expression and their phenotype
is heterogeneous.

Keywords: amyloid precursor protein; mutation; duplication; phenotype

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized
by the accumulation of insoluble forms of β-amyloid (Aβ) in plaques in extracellular
spaces and in the walls of blood vessels as well as the aggregation of hyperphosphorylated
protein tau in neurofibrillary tangles in neurons [1,2]. AD has a prevalence of 10–30% in the
population over 65 years old [1]. The disease is characterized by progressive memory loss
and the disturbance of other cognitive functions, namely word-finding, spatial cognition,
reasoning, judgment and problem solving [2]. The disease has a long prodromal phase,
which can occasionally extend over two decades and an average disease duration of
8–10 years [1].

A small proportion of patients (<1%) have autosomal dominant inherited AD [1,3].
This form is characterized by disease onset at a relatively young age (before 65 years of age)
and usually positive family history for dementia [2,4]. It may manifest with atypical symp-
toms such as apraxia, aphasia, dyscalculia, visual symptoms or seizures [2]. It is caused
by autosomal dominant penetrant mutations in the genes encoding amyloid precursor
protein (APP) (OMIM 104760), presenilin 1 (PSEN1) (OMIM 104311) and 2 (PSEN2) (OMIM
600759), leading to overproduction of Aβ [1,2]. APP mutations or duplications are the
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second most common cause of monogenic forms of AD following PSEN1 mutations [5,6]
and are responsible for approximately 15–20% of early-onset cases [4,5].

APP is a type I transmembrane protein with a large extracellular domain and a short
cytoplasmic region; its coding gene is located on chromosome 21 (21q21.2-3) [7]. The
APP gene contains 18 exons and encodes an alternatively spliced transcript, which in
its longest isoform expresses a polypeptide of 770 amino acids [6]. Aβ is released from
APP through two cleavage events, one in the extracellular area (β-secretase cleavage)
and one in the transmembrane area (γ-secretase cleavage) [5,7]. If cleavage occurs at
residue 712–713 the most common Aβ40 is produced, whereas if it occurs after residue
714 the longer Aβ42 is generated, which is prone to fibril formation and promotes Aβ

aggregates [5]. Presenilins, the proteins encoded by PSEN1 and PSEN2 genes, are main
components of the γ-secretase complex, responsible for the cleavage of APP into Aβ

peptides [5,8]. PSEN mutations cause a shift of γ-secretase cleavage, increasing Aβ42
production [5,9]. APP and Aβ are the cornerstone of the ‘’amyloid cascade hypothesis” [10],
which states that the accumulation of Aβ initiates a cascade of pathological processes such
as tau hyperphosphorylation, neurofibrillary tangles formation, neuroinflammation, loss
of synaptic junctions and neuronal death [4].

Here, we present a case of a female patient with disease onset at the age of 58 years
who was found to carry a novel APP variant, c.2062T>G pLeu688Val. Moreover, we
reviewed all existing literature reporting AD cases due to APP mutations and discuss
phenotype–genotype correlations.

1.1. Case Report

We describe the case of a 68-year-old woman, who was admitted to the Neurological
Department of the University Hospital of Larissa in Greece with severe dementia for further
examination. She developed epileptic seizures as the first symptom at the age of 58. The
patient has also developed depression and anxiety in the past 5 years according to her hus-
band. The neurological examination revealed brisk tendon reflexes, bilateral Babinski sign
and palmomental reflex. The patient’s Mini-mental state examination (MMSE) score was
11/30. Brain magnetic resonance imaging (MRI) revealed severe leukoencephalopathy and
global brain atrophy especially in the temporal region and hippocampus (Figure 1). Brain
perfusion single-photon emission computerized tomography (SPECT) was performed. The
evaluation of perfusion in the whole brain cortex was made using the Stereotactic Surface
Projection (SSP) method and the cerebellum as reference, which is considered to be the least
affected area in degenerative dementias [11,12]. The SPECT study revealed hypoperfusion
in the posterior temporal and parietal lobes, bilaterally (Figure 2). EEG showed epileptic
discharges mainly located on the temporal lobes. Routine cerebrospinal fluid (CSF) testing
was normal. She reported a family history of young onset dementia and gait disorder in
her father as well as dementia in her older brother (75 years old).

Based on the MRI findings, a full screening including complete blood count, erythro-
cyte sedimentation rate, glucose level, renal and liver function tests, serologic tests for
syphilis, vitamin B12, folate levels, thyroid function tests, HIV serology, lupus anticoagu-
lant, antiphospholipid antibodies, antinuclear and antineutrophil cytoplasmic antibodies,
were performed. Cardiac echocardiography, holter monitoring and carotid ultrasound
showed normal findings.

During her second evaluation, 7 years ago, a next generation sequencing (NGS) panel
for leukodystrophy and leukoencephalopathy was performed without any pathogenic
variants. The patient was put on levetiracetam 1000 mg twice daily and was evaluated
again a year later. In the meantime, she developed difficulties with calculation, showed
disorientation in new surroundings and progressive memory decline. Her relatives re-
ported that she had become impatient and irritated. Detailed neuropsychiatric examination
revealed severe memory impairment, concentration difficulties, disorientation, visuospatial
deficits and depression. Based on the cognitive deterioration, we performed a CSF analysis
examining the validated AD CSF biomarkers Aβ1-40, Aβ1-42, total tau (T-tau), and phos-
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phorylated tau (P-tau181) as well as 14-3-3 and total prion protein (t-PrP), that revealed
an AD profile with decreased Aβ42/Aβ40 ratio and increased T-tau (T-Tau 634 ng/L
(normal range <400), P-Tau 75 ng/L (<80), Aβ42 546 ng/L (>330), Aβ40 12,456 ng/L (>330),
Aβ42/Aβ40 ratio 0.043 (>0.7)). Clinical examination, assisted by SPECT scan, as well as
CSF biomarkers classified this patient as mixed dementia, that is, a combination of AD and
vascular dementia.
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Stereotactic Surface Projection (SSP) method and cerebellum as reference standard, showing bilat-
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the image represents perfusion in the brain cortex compared with perfusion of cerebellum in de-
scending order from the top (red color, corresponding to normal perfusion) to the bottom (blue 
color, corresponding to severely reduced perfusion). 

Based on the MRI findings, a full screening including complete blood count, eryth-
rocyte sedimentation rate, glucose level, renal and liver function tests, serologic tests for 
syphilis, vitamin B12, folate levels, thyroid function tests, HIV serology, lupus anticoag-
ulant, antiphospholipid antibodies, antinuclear and antineutrophil cytoplasmic antibod-
ies, were performed. Cardiac echocardiography, holter monitoring and carotid ultra-
sound showed normal findings. 

During her second evaluation, 7 years ago, a next generation sequencing (NGS) 
panel for leukodystrophy and leukoencephalopathy was performed without any patho-
genic variants. The patient was put on levetiracetam 1000 mg twice daily and was eval-

Figure 1. Structural MRI sequences of the patient with APP mutation presenting with Alzheimer’s disease. (A,B) Axial
Flair with severe leukoencephalopathy and symmetrically increased signal intensity in the thalamus (C) Axial T2-weighted
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1.2. Genetic Analysis

In view of the above findings, the positive family history and the early onset dementia,
a genetic screening of the patient and her family (daughter, siblings) was performed after
written informed consent. Our study was approved by the Ethics Committee of the Univer-
sity Hospital of Larissa. Genomic DNA of all available family members was extracted from
peripheral white blood cells according to standard protocol. We performed whole exome
sequencing (WES); sequencing raw data was conducted on Torrent Suite 5.10 software
using default parameters. The resulting variants (vcf file) were imported for filtering,
prioritization and evaluation into the ClinGenics Exome Management Application-EM®

pipeline software (v.1.0.0.1) (ClinGenics Ltd., London, UK). Selected clinically significant
variants were confirmed by standard DNA Sanger sequencing. Primer sequences and
polymerase chain reaction conditions are available upon request.

2. Methods
2.1. Review of the Literature

A comprehensive literature review of all reported cases of AD due to APP mutations
was performed. We searched PubMed and Web of Science databases in English using the
following search terms: “Alzheimer’s disease”, “dementia”, “APP or Amyloid precursor
protein mutation”, “APP or Amyloid precursor protein duplication” “APP or Amyloid pre-
cursor protein gene” in order to identify all published studies in humans before May 2021.
Additional articles were identified by hand-searching of the references of included articles.
The flow chart of the studies included in this review can be seen in Figure 3. We included
98 studies with a total of 385 cases. Patients’ characteristics such as gender, ethnicity, age at
presentation, age of onset, symptoms, MMSE score, family history of dementia, imaging
findings as well as mutation type were retrieved from the included studies.
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2.2. Statistical Analysis

The analysis was carried out with SPSS version 25.0. We used descriptive statistics
to calculate the demographic, clinical and imaging characteristics of patients. Data were
checked for deviation from normal distribution with the Shapiro-Wilk normality test.
Categorical data were analyzed with χ2 test and continuous data with one-way ANOVA.

The evaluation of Pathogenicity of Mutations was carried out using Computational
Prediction. The Combined Annotation Dependent Depletion (CADD) algorithm was used
for scoring the deleteriousness of single nucleotide variants as well as insertion/deletions
on the function of APP [13,14]. Prediction is based on empirical rules applied to the
sequence, phylogenetic, and structural information characterizing the amino-acid substitu-
tion (https://cadd.gs.washington.edu/, accessed on 5 May 2021).

APP gene protein regions were classified as region 1 or first domains (exons 1–6),
region 2 or Kunitz-type protease inhibitor (KPI) region (exons 7–8), region 3 (exons 9- part
of 16), region 4 or Aβ region (part of exon 16 and exon 17) and region 5 or cytoplasmic
region (part of exon 17-exon 18). V717I or G mutation was calculated separately due to
the high percentage of patients carrying this mutation (region 6). For all the analyses, a 5%
significance level was set.

3. Results
3.1. Genetic Analysis

We detected an APP variant, c.2062T>G p.Leu688Val which has been reported in
international databases previously as a disease-causing mutation. Cosegregation analysis
by Sanger sequencing confirmed the presence of this variant in the patient. The patient’s
father unfortunately has died and was not tested. The patient’s older brother was also
found to carry the mutation, while her younger sister (64 years old) was asymptomatic and
did not have the mutation. Her daughter (44 years) was also found to carry the mutation
but did not exhibit any symptoms at the time of testing. According to the ACMG-AMP
2015 guidelines, the pathogenicity potential of the variant is “likely pathogenic” based
on the following criteria: (a) The same missense change at an amino acid reside has been
described before in another Greek family with dementia phenotype (PS1) (b) The absence
of the variant from controls in Exome Sequencing Project, 1000 Genomes Project or Exome
Aggregation Consortium (PM2) (c) In silico bioinformatics tools (Homologene, GEPR,
Varsome) predicted that the variant causes a deleterious effect on the gene (PP3) as it
occurs in a highly conserved area across multiple species (http://www.ncbi.nlm.nih.gov/
homologene, accessed on 5 May 2021) (d) the patient’s phenotype and family history is
highly specific for a disease with a single genetic etiology (PP4). This novel Greek mutation
on APP gene and the related chromatogram are shown in Figure 4.

3.2. Demographics and Clinical Phenotype

We identified 385 cases of AD due to APP mutations. From those, APP duplications
were found in 48 cases (12.5%). Almost half of the mutations (170, 52.1%) were found in
Asian patients, 126 (38.7%) in Caucasian, 20 (6.1%) in Latin/Hispanic and 10 (3.1%) in
African patients. The distribution of mutations according to gender was equal, half (49.7%)
were male and half (50.3%) female. The mean age of disease onset was 51.3 ± 8.3 years
(range 31–80 years). One hundred and four studies reported a family history of dementia.
The mean MMSE score was 17 ± 8.1 at the time of examination. The Combined Annotation
Dependent Depletion (CADD) score was 27.8 ± 3.2 (moderate pathogenicity). CADD score
correlated weakly with age of onset (r = −0.168, p = 0.005), i.e.; increased CADD score was
associated with younger age of onset.

The most common symptom was dementia, reported in 376 cases (97.7%). Other
symptoms were visuospatial reported in 112 cases (29.1%), aphasia in 53 (13.8%) and
epilepsy in 42 (10.9%). Other reported symptoms were extrapyramidal (24 cases, 6.2%),
pyramidal (21 cases, 5.5%), myoclonus (18 cases, 4.7%), apraxia (13 cases, 3.4%), ataxia
(12 cases, 3.1%) and dyscalculia (7 cases, 1.8%). With regard to psychiatric symptoms,

https://cadd.gs.washington.edu/
http://www.ncbi.nlm.nih.gov/homologene
http://www.ncbi.nlm.nih.gov/homologene
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depression was reported in 52 cases (13.5%), anxiety in 34 (8.8%) and psychotic symptoms
in 30 (7.8%). Behavioral symptoms were reported in 51 cases (13.2%). A diagram of
common symptoms is presented in Figure 5.
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Figure 5. Common symptoms of APP mutation carriers from the described cases in the literature
presented in a Venn diagram. Note: Each symptom is represented by a specific color and shape,
e.g.; dementia is represented by a pink rectangle, aphasia by a green infinity shape, behavioral
symptoms by a brown circle, epilepsy by a blue cogwheel, anxiety by a red cross and psychosis
by a yellow rectangle. The areas where two colors and shapes are crossed represent the cases with
both symptoms.

3.3. Neuroimaging

One hundred twenty-one studies reported brain atrophy and 32 hippocampal atrophy.
Leukoencephalopathy on MRI was reported in 47 cases. Leukoencephalopathy was not
associated with any specific location of the mutation, neither protein region (χ2 = 6.195,
p = 0.288) nor exon (χ2 = 1.278, p = 0.528). CSF findings with amyloid decrease were
reported in 21 cases. Twenty-seven studies reported amyloid accumulation in Positron
emission tomography (PET) and eight hypometabolism. SPECT showed hypoperfusion
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(parietal, parietooccipital, frontoparietal, parietotemporal) in 12 cases. EEG was reported
abnormal (triphasic waves, slow waves, spikes or combination) in ten studies and normal
in three cases. The rest of the studies did not provide relevant imaging or laboratory data.

3.4. Mutations

With regard to location of mutations, the mutations were located mostly in exons 17
(265 cases, 80.8%) and 16 (40 cases, 12.2%) and less frequently in exons 4, 5, 6, 7, 11, 14, 15
and introns (23 cases, cumulative percentage 6.6%). With regard to protein regions, the
most common location of mutations was position 717 (153 cases, 49.5%), followed by Aβ

region (95 cases, 30.7%), region 5 (part of exon 17-exon 18) (43 cases, 13.9%), region 1 (exons
1–6) (12, 3.9%), KPI or region 2 (4 cases, 1.3%) and region 3 (exons 9- part of 16) (2 cases,
0.6%). We found an association between protein regions and CADD score (χ2 = 259.51,
df = 10, p < 0.001). Mutations in Aβ region were associated with higher CADD score,
while mutations in 717 position or region 5 with moderate CADD score. Mutations in
region 1 were associated with low CADD score (Figure 6). We also found an association
between CADD score and exon mutation position (χ2 = 140.75, df = 4, p < 0.001*). More
specifically, mutations in exon 17 were associated with a moderate to high CADD score,
while mutations in exon 16 or any other exon with low or moderate CADD score. Patients
with mutations in region 1 (first domains of the protein) had a later age of onset (56.9 ± 8.6)
while patients with mutations in region 5 (cytoplasmic region) the youngest age of onset
(49.3 ± 13.7). No association was found between exon mutation position and age of onset.
MMSE score did not correlate with neither protein region nor exon position of the mutation.
Moreover, MMSE score did not correlate with CADD score.
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Figure 6. Association of protein regions of APP gene mutations with CADD (Combined Annotation
Dependent Depletion) score. Note: region 1 or first domains = exons 1–6, region 2 or Kunitz-type
protease inhibitor (KPI) region = exons 7–8, region 3 = exons 9–part of 16, region 4 or Aβ region =
part of exon 16 and exon 17, region 5 or cytoplasmic region = part of exon 17–exon 18, region 6 =
V717I mutation.

With regard to ethnicity, the majority of Caucasian (58, 61.7%) and Asian patients
(160, 97%) had a mutation in exon 17. All Latin/Hispanic (18, 100%) and Africans (10,
100%) had a mutation in exon 17. Latin and African had CADD score of moderate severity
(25–30), Asian and Caucasian had mostly moderate (65.4% and 64.5% respectively) and
severe CADD score (28.9% and 12.9% respectively). There was no association between
ethnicity and age of onset.
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4. Discussion
4.1. Clinical Spectrum of APP Mutations: Age of Onset and Symptoms

The patient that we described presented with epileptic seizures and extensive leukoen-
cephalopathy. Our patient’s mutation is located on the protease cleavage site of APP, on the
Aβ domain, where the majority of pathogenic mutations have been described so far, close
to the Iowa and Dutch mutation (Figure 4). Approximately 400 cases of APP mutations
have been described so far, the majority of which are located on the Aβ domain or referring
to the V717I, F or G mutation. Another case with the same mutation was recently described
in a Greek patient as well [15]. This case had hereditary cerebral amyloid angiopathy
with occipital calcifications, progressive cognitive decline and motor symptoms. As sev-
eral mutations tend to be exclusive in certain populations we named this mutation the
“Greek variant”.

We found that the mean age of disease onset of APP mutation carriers was
51.3 (±8.3) years, similar to previous published review studies and meta-analyses [3,16].
Disease onset of APP mutation carriers commonly ranges between 45 and 60 years [5,17].
There was also a reported case with disease onset even in the eighth decade [18]. In fact,
families carrying the same APP mutation [19–21] have a significantly different age at onset,
suggesting that other genetic or environmental modifiers of the disease may exist [16].
Moreover, there are significant differences between mutation types, resulting in some cases
in onset in the third or fourth decade of life [16]. The youngest individual with APP muta-
tion causing AD [22] was a patient with a positive family history of early-onset AD, disease
onset at the age of 31 and death at age 36. He harbored the APP I716F mutation [23]. With
regard to this mutation, in vitro studies showed a marked increase in the Aβ42/40 ratio,
suggesting reduced APP proteolysis by γ-secretase [24]. These findings strengthen the
inverse association between Aβ42/40 ratio and age of onset [24].

The most common symptoms of APP mutation carriers in our analysis were cognitive
symptoms and/or dementia (almost 98% of cases). In fact, the majority of monogenic AD
cases have an amnestic presentation [5]. Early neuropsychological findings are deficits
in verbal memory with relatively preserved naming and object perception, executive
dysfunction and disorientation [25,26]. Visuospatial symptoms were also very common,
occurring in almost one third of patients. Other cortical symptoms such as aphasia and
apraxia were less common; aphasia occurred in less than 20% of patients. Indeed, atypical
language presentation is rather rare in APP cases [5]. Seizures, on the other hand, were
present in approximately 10% of patients and may represent the first presentation in
monogenic AD cases [5], as in our patient’s case. Indeed, amyloid β-peptides can induce
neuronal hyperexcitability and trigger epileptic seizures [27]. Furthermore, we found that a
small proportion of patients (about 10%) presented with pyramidal (spasticity, hemiparesis,
paraparesis) or extrapyramidal symptoms (mostly rigidity). Notably, extrapyramidal
symptoms are very rare in APP mutation carriers and tend to appear after several years of
disease [5,17]. Other movement disorders, such as ataxia, myoclonus or rest tremor, were
also rare. With regard to psychiatric symptoms, depression and anxiety were encountered
in less than one quarter of the patients. Other psychotic or behavioral symptoms, such
as delusions, hallucinations, or aggression—which are common in sporadic cases—can
also be found in monogenic APP cases [3,5]; however, as shown in our analysis they are
rather rare. Concerning APP duplications carriers, apart from dementia, they may present
with seizures and other focal cortical symptoms such as aphasia, apraxia and dyscalculia,
extrapyramidal, pyramidal or behavioral symptoms [28–31].

Our patient had severe leukoencephalopathy on MRI. Notably, certain APP muta-
tions [19,32–38] and duplications [28,29] have been associated with variable white matter
abnormalities up to leukoencephalopathy. The APP mutations associated with leukoen-
cephalopathy were within the Aβ sequence [34,35] such as the Iowa mutation [32], near
β-sekretase [33,37] or γ-sekretase [19,36,38] cleavage site. The age of onset was early in
those cases (39–57 years) and they presented with both typical (dementia) and atypical
i.e.aphasia, apraxia, seizures, psychiatric) symptoms.
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4.2. Mutations in Amyloid Precursor Protein (APP) Gene: Location and Pathogenicity

Most APP mutations are missense or nonsense mutations within or flanking the Aβ

sequence and near the cleavage sites of secretases [2]. More specifically, we confirmed
that most APP mutations (93%) are located on exons 16 and 17, which constitute the
transmembrane Aβ region and encode the Aβ sequence. This was observed independently
of ethnicity, although data from African and Latin/Hispanic populations are limited. In
most AD families due to APP mutation, the inheritance pattern is autosomal dominant,
while homozygous carriers do not seem to be more severely affected [39]. However,
recessive APP mutations have also been reported [40,41]. The amino acid position can, in
fact, predict pathogenicity [23]. Indeed, we showed that mutations in exon 17 are associated
with moderate to severe pathogenicity (CADD score), while mutations in exon 16 or other
exons with mild to moderate pathogenicity. Additionally, mutations in the Aβ protein
region were associated with severe pathogenicity, unlike mutations in the cytoplasmic or
717 positions, which were associated with moderate pathogenicity. Patients with mutations
in the cytoplasmic region had the youngest age of onset in our analysis (before the age
of 50). These findings are reasonable, as these mutations affect the area encoding the Aβ

sequence. Furthermore, duplications of variable size have been identified [2]. However,
APP duplications are far less frequently reported than missense mutations [2]. APP
duplications display reduced penetrance and higher variability in age of onset, compared to
missense mutations, which show a near-complete disease penetrance [42]. The phenotype
of APP duplications is not associated with the size of duplication [43].

Mutations in exons 16 and 17 alter the processing of the protein and cause the ac-
cumulation of Aβ42 fragments by decreasing Aβ40 peptide levels or increasing Aβ42
production [44,45]. Our patient was found to harbor a missense mutation located at posi-
tion 688 of APP, between the β- and γ-secretase cleavage site. Most pathogenic mutations
of APP occur near the β-secretase cleavage site (amino acids 670aa–682aa), near the γ-
secretase cleavage site (amino acids 713aa–724aa) or in the Aβ sequence (amino acids
692aa–705aa) [43]. Mutations within the Aβ domain such as the Dutch [46,47], Flem-
ish [48] and Iowa mutation [32] have variable effects on APP processing such as impaired
α-secretase cleavage and increased aggregation of Aβ into fibrils [7,43]. Mutations in the
C-terminal (e.g., in exon 17) influence the activity of γ- and e-secretases and result in a
selective increase in the production of longer Aβ peptides, especially Aβ42, which are
more hydrophobic and prone to the formation of fibrils [10,43]; here belongs the I716F
mutation (Iberian) associated with the youngest age-at-onset [22,24]. Moreover, a mutation
in APP that decreases the production of Aβ (A673T) [49] has been shown to have protective
effects on late-onset AD. This substitution results in an approximately 40% reduction in the
formation of amyloidogenic peptides in vitro. The protective effect of A673T substitution
against AD supports the hypothesis that reducing β-cleavage of APP may be an effective
primary preventive strategy. Therefore, the Aβ42/40 ratio could be a useful indicator of
the aggressiveness of the mutation [23].

4.3. Phenotypic Variability of APP Mutations

AD is a disease with phenotypic variability, especially in cases with early disease
onset. APP gene mutations may act variably on disease expression, ranging from high
penetrance (causal allele) and early age of onset to low penetrance (risk allele) and late-
onset, depending on the effect of the mutant allele on protein function [50]. Different
mutations at the same APP locus can segregate with different transmission patterns, that is,
dominant, semi-dominant and recessive [37,40,41,51]. It is to be discovered whether this
is associated with specific characteristics of the single mutations or genetic modifiers in
those families [51]. Apart from pathogenic mutations, genetic variations, such as single
nucleotide variants (SNVs) in the promoter region of APP, have been associated with
increased susceptibility for AD [2]. In addition, epigenetic or other genetic factors may
play a role in clinical variability of individuals carrying the same mutation [4]. Epigenetic
dysregulation (DNA methylation, chromatin remodeling, non-coding RNAs expression)
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can affect gene expression in AD such as alteration in methylation in the promoter region
of APP [52].

5. Conclusions

In summary, the phenotype of APP mutation carriers is heterogeneous. The age of
disease onset ranges from the 40 s to 70 s. The main symptoms in patients harboring
APP mutations are cognitive, while focal cortical, extrapyramidal symptoms, seizures,
behavioral and psychiatric symptoms can also occur. Data from families that segregate
a monogenic form of AD and patients with a known causal mutation provide the oppor-
tunity to identify mutation-specific effects and link genotypic changes with clinical and
pathophysiological manifestations of the disease. In the future, different genetic causes
of AD should be targeted with specific interventions. Asymptomatic carriers of APP mu-
tations can also serve as candidates for disease-modifying treatment or prevention trials.
Moreover, another direction for future research should be the identification of genetic and
environmental modifiers of disease onset and progression [16]. Studying the mechanisms
underlying these mutations can provide more insight into the pathways leading to AD
pathology, in order to plan appropriate intervention strategies for the disease.
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