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Quantum Enhanced Inference in 
Markov Logic Networks
Peter Wittek1,2 & Christian Gogolin1

Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial 
intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which 
allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov 
networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as 
Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures 
that can be exploited at both first-order level and in the generated Markov network. We analyze the 
graph structures that are produced by various lifting methods and investigate the extent to which 
quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement 
schemes. We review different such approaches, discuss their advantages, theoretical limitations, and 
their appeal to implementations. We find that a straightforward application of a recent result yields 
exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby 
demonstrating another example where advanced quantum resources can potentially prove useful in 
machine learning.

Graphical models combine uncertainty and logical structure in an intuitive representation. Examples include 
Bayesian networks, Markov networks, conditional random fields, and hidden Markov models, but also Ising 
models and Kalman filters. Their main advantage is the compactness of representation, stemming from capturing 
the sparsity structure of the model and independence conditions among the variables reflected in the correlations. 
The graph structure encompasses the qualitative properties of the distribution. Exact probabilistic inference in 
a general Bayesian or Markov network is #P-complete1, which is why one often resorts to Markov chain Monte 
Carlo (MCMC) Gibbs sampling to approximate exact probabilistic inference. However, the task remains compu-
tationally intensive even with MCMC.

Graphical models belong to a school of machine learning that emphasizes the importance of probability the-
ory. First-order logic on the contrary comes from the symbolist tradition of artificial intelligence and it relies on 
inverse deduction to perform inference. Markov logic networks reconcile the two schools, and in one limit, they 
recover first-order logic2. A Markov logic network is essentially a template for generating Markov networks based 
on a knowledge base of first-order logic. MCMC Gibbs sampling can be used in the same way as in ordinary 
Markov networks to perform approximate probabilistic inference, but it suffers from the enormous number of 
nodes that are generated by the template.

There has been a recent surge of interest in using quantum resources to improve the computational complexity 
of various tasks in machine learning3–6, similar to what one aims to achieve more generally in the fields of quan-
tum communication7 and quantum computation8–11. This approach has been successful in training Boltzmann 
machines, which are simple generative neural networks of a bipartite structure—a set of hidden and a set of 
visible nodes—where the connectivity is full between the two layers. Edges carry weights and these are adjusted 
during training. We can view Boltzmann machines as Markov networks with a special topology, in which the 
largest clique has size two. One method employed for training Boltzmann machines12–14 is quantum annealing. It 
is a global optimization method that relies on actual physical phenomena and it can be used to generate a Gibbs 
distribution. For all current quantum annealing approaches to Gibbs sampling, restrictions on the topology of 
the physical hardware remain the main obstacle, which is why the limited clique size of the Boltzmann machines 
is attractive. An alternative approach of training Boltzmann machines is by using Gibbs state preparation and 
sampling protocols, which can also exploit the structure of the graph and achieve polynomial improvements in 
computational complexity relative to its classical analogue15.

Here, we go beyond the training of Boltzmann machines and consider more general Markov logic networks, 
keeping the expressiveness of first-order logic and concentrate on inference, rather than training. We analyze 
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the usefulness of quantum Gibbs sampling methods to outperform MCMC methods. The runtime of quantum 
Gibbs sampling algorithms is sensitive to both the connectivity structure and the overall number of subsystems. 
Methods of lifted inference can be used to address these issues.

Probabilistic Inference and Lifting
Markov networks are undirected graphical models that offer a simple perspective on the independence structure 
of a joint probability distribution of random variables, and the task of probabilistic inference based on this struc-
ture1. Nodes of the network are random variables and edges between nodes imply influence or direct correlation, 
that is, lack of conditional independence. Instead of conditional probabilities on parent nodes, as in Bayesian 
networks, Markov networks operate with unnormalized factors fj, that is, functions that map from subsets of the 
random variables to nonnegative reals. The factors are defined over the cliques of the graph. To obtain a valid joint 
probability distribution over the random variables from the factors, a partition function normalizes the unnor-
malized measure, so that the probability distribution takes the form = = ∏P fX x x( ) ( )

Z j j j
1 , where xj are subsets 

of x corresponding to the cliques and Z is the partition function. If P is a positive distribution over the random 
variables = …X XX: ( , , )n1 ,  we can associate a Gibbs distribution to the Markov network as 
= = ∑P w gX x x( ) exp( ( ))

Z j j j
1 , where the features gj are functions of a subset of the state, and wj are real weights.

In first-order logic, constants are objects over some domain (e.g., Alice, Bob, …​ in the domain of people), and vari-
ables range over the set of constants in the domain. A predicate is a symbol that represents an attribute of an object (e.g, 
Smokes), or a relation among objects (e.g., Friends). An atom is a predicate applied to a tuple of variables or constants. 
A ground atom only has constants as arguments. These definitions apply to a function free language with finite size 
domains—technically, this is a strict subset of first-order logic. A formula is constructed of atoms, logical connectives, 
and quantifiers over variables. A knowledge base is a set of formulas connected by conjunction. A world is an assign-
ment of a truth values to each possible grounding of all atoms in a knowledge base. An essential task in a first-order 
knowledge base is to check whether a formula is satisfiable, that is, there exists at least one world in which it is true.

To relax the rigid true-or-false nature of first-order logic, Markov logic networks (MLNs) introduce a real 
weight wj for each formula fj in a knowledge base2. A Markov logic network  is a set of pairs f w( , )j j , representing 
a probability distribution over worlds as

∑ω ω=











P

Z
w N f( ): 1

( )
exp ( , ) ,

(1)j
j j

where ωN f( , )j  is the number of groundings of fj that are True in the world ω. An MLN can be thought of as a 
graph over the set of all possible groundings of the atoms appearing in the knowledge base. The size of this graph 
is ∈n D( )c , where D is the maximum domain size, and c is the highest number of atoms in any of the formulas 
in the knowledge base16. Groundings are viewed as connected if they can jointly appear in a grounding of some 
formula of the knowledge base. The ground network thus contains cliques, i.e., fully connected sub-graphs, con-
sisting of grounded atoms that jointly appear in the grounding of some formula. The maximum clique size k is 
given by the maximum number of atoms per formula. Table 1 summarizes how the structure of the first-order 
knowledge base influences the characteristics of the generated Markov network.

MLNs belong to the class of methods known as statistical relational learning, which combine relational struc-
tures and uncertainty17. An MLN essentially uses a first-order logic knowledge base as a template to generate a 
Markov network by grounding out all formulas. An MLN can always be converted to a normal MLN, which has 
the following two properties: (i) there are no constants in any formula; (ii) given two distinct atoms with the 
same predicate symbol with two variables x and y in the same argument, then the domain of the two variables is 
identical. In the rest of this work we assume all MLNs to be given in this normal form. We further assume that 
skolemnization is applied to convert existential quantifiers to universal quantifier, which can be done in polyno-
mial time in the size of a formula with no unquantified variables18.

A main task in graphical models and in MLNs is probabilistic inference. One aspect of it is computing the 
partition function. The other aspect deals with the problem of assigning probabilities to or finding (the most) 
likely assignment of variables given evidence, that is, given a fixed assignment for a subset of its variables. This is 
a hard problem in general: the worst-case complexity of exact probabilistic inference of a graphical model is  
#-complete and that of approximate inference is #-hard1.

For some common graphical models with a special topology, efficient exact probabilistic inference methods 
are known. Examples include belief propagation19 and the junction tree algorithm20. In other cases, MCMC Gibbs 
sampling is often used for approximate inference to escape the worst-case complexity of exact inference. MCMC 
is hereby used to approximately sample from the distribution ωP ( )  given in (1) or from a suitable conditional 
probability distribution EM ωP ( ) conditioned on the evidence  .

First-order formula Graph characteristic

Number of atoms in formulas Clique size

Domain size and number of atoms in formula Total number of nodes

Maximum shared variables Largest degree

Table 1.   Brief summary of how the structure of the first-order formulas in the knowledge base underlying 
a Markov logic network influences the generated Markov network. Shared variables are variables that appear 
in more than one formula.
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Graphical models often have symmetries that reduce the overall complexity of both exact and approximate 
inference. For instance, counting belief propagation exploits symmetries for exact inference16, and orbital Markov 
chains do the same for approximate inference21. Some of these methods have special extensions for MLNs, for 
instance, one can detect a subset of components in the ground network that would behave identically during 
belief propagation22. It is worth exploiting the symmetries that emerge from first-order logic and they are best 
exploited before grounding out, that is, symmetries should be addressed at the propositional level.

Approximate and exact probabilistic inference for first-order probabilistic languages predates MLNs23–25. The 
core idea is a form of coarse graining by grouping similar variables together. This idea was exploited in lifted 
first-order probabilistic inference for MLNs26. For hierarchically typed MLNs, one can move from coarse-graining 
over the highest level in a type hierarchy to more refined types27.

Exploiting symmetries in the presence of evidence must be done with great care. Given evidence, the sym-
metries can become skewed, as random variables do not appear symmetrically in the formulas of the knowledge 
base28. In this case, importance sampling helps29,30, which clusters similar network components together given 
the evidence31, and approximates the correct probabilities by an easier probability distribution and an estimated 
importance or weight of the error.

For most practical applications, either belief propagation or MCMC, augmented with some of the described 
techniques as appropriate for the problem at hand, is the method of choice for approximate probabilistic inference 
with MLNs. While often yielding useful results with an effort far smaller than the worst case complexity, they 
remain very expensive computationally and so more efficient alternatives are desirable.

Quantum Gibbs Sampling
The distribution (1) we would like to sample from can be thought of as the Gibbs distribution of a suitably con-
structed physical system. According to the rules of statistical mechanics, the probability to find a system in a 
certain state of configuration when it is in thermal equilibrium follows a Gibbs distribution. The distribution can 
thus be sampled by preparing a suitable physical system in a thermal equilibrium Gibbs state and then measuring 
its configuration. This is generally rather easy to do at high temperatures, but cooling to low temperatures typi-
cally becomes increasingly difficult. Thereby methods of quantum information processing can offer advantages 
over classical strategies. They open up fundamentally new ways to of preparing systems approximately in Gibbs 
states in a well-controlled way.

Going from the abstract definition of the probability distribution in (1) to a physical model can be done in the 
following way: We can think of ω−∑ w N f w( , )/maxj j j j j  as the “energy” of a system of n spin 1/2 “particles” in 
a quantum state ω . The states ω  are then product state vectors in the Hilbert space ⊗span({ True , False }) n 
with span the complex linear span. We can think of β wmax j j  as the inverse β = k T1/( )B  of the “temperature” T 
of the system, times the Boltzmann constant kB (other decompositions of the features are also possible). We can 
try to find a Hamiltonian H such that we can rewrite the probability distribution from (1) as follows

ω ω β ω= − .P H Z( ) exp( )/ ( ) (2)

Thereby ω  is the Hermitian conjugate of the state vector and  β= −Z H( ): tr(exp( )) is the partition func-
tion, where exp is the matrix exponential and tr the matrix trace.

In the concrete case of an MLN, the number of particles ∈n D( )c  is equal to the number of all possible 
groundings of the atoms in the knowledge base underlying the MLN. The Hamiltonian H inherits the locality 
structure of the MLN: it can be written as a sum = ∑H hl l of local terms hl, one for each clique of the MLN. More 
precisely, for each j the expression ωN f( , )j  translates to a sum over local terms each acting on one of the cliques 
produced by grounding out fj and acting on this clique like −w w/maxj j j  times the projector on the subspace of 
assignments to the atoms in the clique for which fj evaluates to True. The local terms hl of the Hamiltonian can be 
constructed from the truth tables of the the fj and the sum over l in the decomposition of H collects all such terms 
for the different values of j. Figure 1 illustrates the matching concepts in MLNs and this description.

The number k of subsystems on which each such term acts non-trivially is bounded by the maximum number 
of atoms per formula and its operator norm is bounded by one ≤h 1l . Hence (1) is the thermal Gibbs distribu-
tion of a system of n spin 1/2 particles with a so-called k-local Hamiltonian H. To prepare the system in a state that 
is suitable to sample from (1) it is sufficient to reach a high effective temperature if all weights are of moderate 
magnitude (no assignments are strongly suppressed), but it is necessary to cool to a low temperature if weights 
have a high magnitude (at least one assignment is strongly suppressed).

Computational Complexity
Quantum Gibbs sampling methods can be used to obtain samples from the Gibbs distributions of the type of 
systems described in the previous section. Typically these methods consist of two phases:

1.	 A preparation phase in which a quantum system is prepared in (a state close to) a state encoding informa-
tion about the Gibbs state or such a state itself; and

2.	 A measurement phase, in which, by performing measurements on this state, samples from the Gibbs distri-
bution are obtained.

The measurement phase is trivial, consisting only of local measurements and has complexity  n( ). The known 
quantum methods for Gibbs sampling differ in the kind of resources they require during the preparation, their 
expected improvement in runtime over classical methods, and the extent to and effort with which their perfor-
mance for a concrete Gibbs distribution can be predicted.
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The state prepared in the preparation phase is usually either close to a thermal Gibbs state32–35 at inverse 
temperature β of a given Hamiltonian H, or to a so-called pure thermal state36,37, i.e., a pure state whose overlap 
with any energy eigenstates of H with energy E is proportional to the square root of the Gibbs weight exp(−​βE).
Recently, an algorithm for the computation based approximate preparation of thermal states of arbitrary k-local 
Hamiltonians has been proposed in ref. 35. For this algorithm a particularly favorable upper bound on the gate 
complexity—the scaling of the number of elementary operations in the preparation step—is known. This bound 
can be expressed in terms of the inverse temperature β, the local dimension d (d =​ 2 for Gibbs states correspond-
ing to MLNs), the number of local terms in H, the gate complexity of time evolution under these terms (or the 
size of their support) and their strength, as well as the value of the partition function Z =​ tr(exp(−​βH)), and the 
final distance to the thermal state ε.
Proposition 1 Assuming that the maximum size of the support of the local terms of the Hamiltonian H is constant 
and that for some constant α​ the number of terms in H is in  αn( ), the overall complexity of the Gibbs sampling 
method from ref. 35 is in  β β εd Z d Z( / polylog( / / ))n n .

More generally it is enough if the gate complexity of time evolution under the local terms of H scales at most 
linear with n. When applying this to the graph structure generated by an MLN, α can be taken to be the maxi-
mum number of atoms in any formula, the maximum size of the supports of the local terms of H is equal to the 
maximum clique size, and the number of terms is the number of cliques in the MLN. So long as the maximum 
number of atoms in any formula is constant, the above scaling of complexity is achieved. It is important to note 
that the complexity does not directly depend on the maximal degree of the MLN.

This result improves upon the previously known methods in several respects, but in particular it improves the 
scaling of the runtime with 1/ε​ and β. In the natural parameters, the problem size n and the precision ε, this 
method yields an exponential improvement over the runtime of classical simulated annealing, which scales like 
δ ε1/( )2 , where δ is the gap of the Markov process, which in interesting cases typically is in  d(1/ )n 36. However, the 

exponential dependence on n remains. The possibility of a logarithmic scaling with 1/ε​ was anticipated in refs 
38–40. This scaling is particularly relevant when small probabilities are to be estimated with small relative error.

Following early works41, several previous methods for quantum Gibbs sampling with improved scaling of 
complexity had been proposed32,33,36–40,42,43. This in particular concerns the dependence of the runtime on the 
dimension of the Hilbert space dn or the inverse gap of a Markov chain δ1/ , which was reduced from linear to 
square root by using techniques such as Szegedy’s quantum walks, the Grover/Long algorithm44,45, phase estima-
tion46, or amplitude amplification47. Algorithms that speed up the convergence of Markov Chains with quantum 
techniques36–40,42,43 often offer more flexibility than such more specific to the problem of preparing thermal 
states32,33,35. In cases in which the gap a Markov chain is much larger than d1/ n, they combine their quantum 
speedup with the advantage inherent in MCMC. However, the interesting cases are usually those in which 
δ ≈ d1/ n and then both types of algorithms perform essentially equally well. A different method, based on the 

preparation of microcanonical states, was developed in ref. 34, but has an at least exponential scaling in β||H||.
If the Hamiltonian H has more structure and/or the effective temperature is high, more efficient special pur-

pose procedures are available15,48,49, which however are of limited relevance for inference in MLNs. In addition 
to that, there exists a quantum generalization of the Metropolis sampling algorithm50, that however does not aim 
at achieving a speedup, but rather works around the sign problem in fermionic systems and makes MCMC tech-
niques available for general local quantum Hamiltonians with non-commuting terms.

Figure 1.  An example of a first-order knowledge base, a matching MLN, and the corresponding concepts of 
a thermal state and a local Hamiltonian. The knowledge base has only two formulas, and the variables range 
over a finite domain of two elements, {A, B}. Grounding out all formulas in all possible way, we obtain the MLN 
of maximal size (i.e., lifted inference is not used). The maximum of absolute value of the weights w1 and w2 
defines the inverse temperature β in the thermal state. Since all ground atoms are binary valued, the local space 
is  = span({ True , False })2 , and thus the thermal state ω  is in ⊗span({ True , False }) n, where n is the 
total number of nodes.
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Can We Hope for Something Better?
As we have seen, quantum methods reduce the complexity of approximate Gibbs sampling quite drastically. Still, 
an exponential scaling with the number of all possible groundings of all atoms n remains, and the complexity 
diverges in the low temperature limit as β goes to infinity. A valid question is: Can we hope that future advances 
will remedy this? After all, the quantum Gibbs sampling methods presented above are able to do Gibbs sampling 
from Hamiltonians much more general than those that can arise from MLNs, like ones that have non-commuting 
terms, for example. Yet, the answer is probably negative. It is highly unlikely that any general purpose quantum 
algorithm for inference in MLNs exists that is efficient in cases with high weights (i.e., at low temperatures), as this 
would imply the existence of an efficient algorithm for solving satisfiability problems more general than 3-SAT, 
which is known to be NP-complete by the Cook–Levin theorem51. Further, the log(1/ε) scaling of complexity is 
known to be optimal for Hamiltonian simulation52 and hence for any Gibbs sampling method based on it (the 
algorithm of ref. 52, like any other algorithm whose operations are written as linear combinations of unitaries 
can be thought of53 as a duality quantum computing algorithm54–56; this is always possible as the unitary Pauli 
Matrices form a complete basis). The situation is different in the high temperature regime, where more efficient 
Gibbs sampling methods exist48.

Computing the Partition Function with First-Order Lifting
The great advantage of working with lifting at the first-order level is that we save potentially exponentially many 
groundings given the compact representation when we count the models in Eq. (1). There are trivial cases: for 
instance, when there are no shared variables between the atoms, then there is a closed form to calculate the num-
ber of satisfied groundings57. Here we follow the outlines of lifted importance sampling29,58, but without reference 
to an importance or proposal distribution: our aim is to reduce the complexity of the generated Markov network 
and potentially split it into disconnected graphs when computing the partition function. We run quantum Gibbs 
sampling on the smaller network and post-process the result with some book-keeping values to return the value 
of the partition function. Algorithm 1 summarizes the steps. Since the sampling is not based on a proposal distri-
bution, the actual variance will depend on the error term that estimates the accuracy of the quantum Gibbs sam-
pler. We follow the simplification steps from lifted importance sampling to cater to the critical parts of quantum 
thermal state preparation, but in principle, the sampling part of the algorithm can also use classical MCMC Gibbs 
sampling. For this reason, Algorithm 1 does not specify what kind of Gibbs sampling protocol we use.

If we have a normal-form network as the input, that is, all domains have size one, we can run the Gibbs sam-
pler and return the value of the partition function.

The first interesting case is if we detect a decomposer—this can be done in linear time—that is, a set of logical 
variables x such that (i) every atom in  contains exactly one variable from x, and (ii) for every predicate R there 
exists a position such that variables from x only appear at that position. If we have a decomposer,  can be sim-
plified to  X x[ / ] that is obtained by substituting all variables in x by the same constant X in Dx, ∈x x, then 
converting the result to normal form. The partition function is calculated as  =Z Z X x( ) [( ( [ / ]))]Dx .

The next structural simplification comes from isolated variables—one such variable in a predicate R at position 
m is exclusive to R in all formulas containing R. Let x denote all isolated variables of R and y the rest of the varia-
bles, and ∈ DYi y . We obtain a simplified MLN  x[R, ] by generating the groundings of x YR( , )i  for 
= …i D1, , y , deleting the formulas that evaluate True or False, deleting all groundings of R, and normalizing 

the result. We get a combinatorial multiplier term to adjust the value of the partition function.

Algorithm 1 Lifted Sampling (LS) of an MLN

Require: A normal MLN 

Ensure: The value of the partition function Z( )

  if  is fully ground out then

    Run Gibbs sampler to obtain Z( ) 

    return Z( )

  end if

  if there exists a decomposer x then

    Let ∈x x and ∈X Dx

    return LS  X x( [ / ]) Dx . 

  end if

  if there exists an isolated variable x then

    return ∏








=w

D
j(R)2 p

i
Dy x

i

(R)
1 LS( x[R, ]) 

  end if

  if exists singleton atom R that does not appear more than once in the same formula then 

    return ∑ =i
Dx

0 






D
i

w i( )2x p i( )LS( Ri).

  end if

  Choose an atom A 

  return ∑A Aingroundingsof  LS( A ). 
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The final simplification is known as the generalized binomial rule, which relies on singleton atoms that do not 
appear more than once in the same formula. Given such an atom xR( ), we can simplify the MLN as  Ri, where 
Ri is a truth assignment to all groundings of R such that exactly i groundings are set to True. The simplified net-
work is obtained by grounding all xR( ) and setting all its groundings to match the assignment given by Ri, delet-
ing the formulas that evaluate True or False, deleting all groundings of R, and normalizing the result. We can 
compute the partition function by = ∑ =Z i Z w i( ( ) ( R ) ( )2 )i

D D i p i
0

( )x x  , where w i( ) is the exponentiated sum 
of the formulas that evaluate to True, and p i( ) is the number of ground atoms that are removed when removing 
the formulas.

If we cannot find any heuristics, we have to resort to fully grounding out an atom, normalizing the result, and 
continuing with the remaining expressions.

Probabilistic Inference Given Evidence
If we look at probabilistic inference given evidence, at the level of the quantum protocol, this can be done in at 
least two ways: First, to the Hamiltonian H one can add some strong local “clamping” terms, effectively forcing 
some of the assignments to the desired values. This is convenient from an implementation point of view, as it 
only requires few local changes in the Hamiltonian simulation procedure52 underlying the algorithm of ref. 35. 
However, it can be difficult to quantify the additional error due to the finite clamping strength and adding very 
strong clamping terms unfavorably affect the runtime of the algorithm. Second, one can construct the local terms 
hl not from the full truth tables of the fj, but instead use reduced truth tables given the evidence, to construct local 
terms hl that act non-trivially only on the grounded atoms for which no evidence exists. This can only decrease 
the maximal weight (i.e., increase the temperature 1/β), decrease the number of terms (in case some of them 
become completely trivial), and reduce the number of sites n. Gibbs sampling with the new Hamiltonian is hence 
always at most as computationally costly as with the original Hamiltonian.

We can also use classical heuristics before employing the quantum protocol, as in the algorithm described in 
the previous section. For first-order lifting methods, the presence of evidence is a problem, as it skews symmetries 
and potentially leads to a complete grounding out. To avoid this, ref. 31 proposed a distance function on the par-
tially clamped network, and suggested a clustering to find clusters of similar groundings. All groundings in a 
cluster are replaced by their cluster center, reducing the overall network size to to  r( )c , where r is maximum 
cluster size, compared to the original  D( )c . This in turn reduces n in the overall complexity of the quantum 
Gibbs sampling protocol, as stated in Proposition 1.

Conclusions and Future Work
We hope that by fostering knowledge exchange between communities, for example concerning the typical prop-
erties of Gibbs distributions relevant for machine learning, progress towards more realistic and useful quantum 
algorithms can be made. In summary, we addressed the following aspects of probabilistic inference in MLNs:

•	 We analyzed the computational complexity of the state-of-the-art quantum Gibbs sampling protocol given 
the structural properties of MLNs and we argued the theoretical limits of the approach. A term in the compu-
tational complexity reduces exponentially, albeit the overall complexity remains exponential in the number 
of nodes.

•	 Understanding the impact of the properties of the graph generated by an MLN on the computational com-
plexity of quantum Gibbs sampling, we adapted a classical first-order lifting algorithm to reduce the com-
plexity of the network. The algorithm mirrors lifted importance sampling, but instead of using a proposal 
distribution, it uses either classical MCMC or quantum Gibbs sampling.

•	 We studied the effects of evidence on quantum Gibbs sampling.

The protocols we considered rely on a universal quantum computer, which, given the hurdles in implementa-
tion, is still mainly of academic interest. We can, however, turn to methods that use current or near future quan-
tum annealing devices, for instance, technology using quantum annealing with manufactured spins59,60. In this 
technology, the distribution of excited states after annealing follows approximately a Boltzmann distribution12, 
albeit one has to pay attention to estimating persistent biases and the effective temperature estimation13,14. This 
technology was used, for instance, for learning the structure of a Bayesian network61, but the restricted connec-
tivity between the spins causes difficulties for arbitrary graph structures, in contrast to the methods discussed 
here. Recent progress allows embedding arbitrary graphs, albeit at a quadratic cost in the number of spins in the 
worst-case scenario62,63, and there is also a proposal for a quantum annealing architecture with all-to-all con-
nectivity64. Given the techniques described in this paper, it would be interesting to see whether we can achieve a 
scalable implementation with contemporary quantum annealing technologies, since machine learning demon-
strations with this paradigm mainly focused on Boltzmann machines so far: MLNs have different topological 
features than Boltzmann machines, but they also have regularities that might allow an efficient embedding and 
subsequent inference.
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