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Abstract

Animal models have long been used to study gene function and the impact of genetic mutations on phenotype.
Through the research efforts of thousands of research groups, systematic curation of published literature and high-
throughput phenotyping screens, the collective body of knowledge for the mouse now covers the majority of
protein-coding genes. We here collected data for over 53 000 mouse models with mutations in over 15 000 genomic
markers and characterized by more than 254 000 annotations using more than 9000 distinct ontology terms. We
investigated dimensional reduction and embedding techniques as means to facilitate access to this diverse and
high-dimensional information. Our analyses provide the first visual maps of the landscape of mouse phenotypic di-
versity. We also summarize some of the difficulties in producing and interpreting embeddings of sparse phenotypic
data. In particular, we show that data preprocessing, filtering and encoding have as much impact on the final
embeddings as the process of dimensional reduction. Nonetheless, techniques developed in the context of dimen-
sional reduction create opportunities for explorative analysis of this large pool of public data, including for searching
for mouse models suited to study human diseases.

Availability and implementation: Source code for analysis scripts is available on GitHub at https://github.com/tko
nopka/mouse-embeddings. The data underlying this article are available in Zenodo at https://doi.org/10.5281/zen
odo.4916171.

Contact: t.konopka@qmul.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Measuring the consequences of genetic mutations on organism-level
phenotype is instrumental for describing gene function. It is a labori-
ous process that requires breeding animals with controlled geno-
types, performing a variety of assays, and describing phenotypes in a
systematic fashion. For the mouse as a model organism, the collect-
ive knowledge of genotype–phenotype associations now covers
around 15 000 genes (Blake et al., 2021). At the current pace of re-
search, it may approach genome-wide coverage within a few years.
A comprehensive phenomics dataset would impact many applica-
tions, for example, supporting efforts to identify the causes of rare
genetic diseases (Justice and Dhillon, 2016; Meehan et al., 2017).
However, there are currently few established methods to analyze
phenomic data at scale, both for interactive exploration and for ma-
chine learning (ML). Given recent advances in dimensional reduc-
tion, this promising approach may bring insight to mouse phenotype
data and facilitate its integration with other omic datasets.

Phenotype data consist of links between the genetic character-
istics of an animal model and sets of observations. For the mouse,
the latter are usually tracked using the mammalian phenotype
(MP) ontology (Smith and Eppig, 2015). The ontology is a collec-
tion of more than 13 000 concepts, also called MP terms, which
are related through a hierarchy. For example, a phenotype
describing ‘increased heart weight’ is a more precise annotation
for the phenotype of ‘abnormal heart weight’, which in turn is a
specific type of ‘cardiovascular system phenotype’. Individual
terms in the ontology are thus not independent. However, despite
the hierarchical connections, the space of possible phenotypic
abnormalities is of high dimension. It covers all organ systems,
fertility and other factors, and animal models can be described
by any combination of ontology terms.

High-dimensional data pose challenges both for explorative ana-
lysis and for ML. The explorative analysis intends to place prelimin-
ary findings in context and to direct in-depth studies. It is often a
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manual process that relies on visualizations. Projection of large data-
sets into two dimensions is thus a common technique for this pur-
pose; by placing data items in a scatter plot, it helps to convey
similarity between many data items through their positions and rela-
tive distances in the embedding. Machine-learning models, in con-
trast, usually serve to automate decision-making. In principle, they
are not hindered by unintuitive data. However, training ML models
requires fixing values for free parameters. When data are of high di-
mension, ML models must estimate many more free parameters
than with low-dimensional inputs. Using dimensional reduction may
improve training efficiency, especially when there are limited data
available.

A canonical approach to dimensional reduction of tabular data
uses principal component analysis (PCA). It consists of a rotation—
a linear transformation—followed by truncation to a fixed number
of principal components, or dimensions, which incorporate the most
variability. However, nonlinear embedding techniques can capture
more relationships among the original data into the same number of
dimensions. Examples include neural network auto-encoders
(Hinton and Salakhutdinov, 2006), t-SNE (Van der Maaten and
Hinton, 2008), uniform manifold approximation and projection
(UMAP) (Becht et al., 2019), EmbedSOM (Kratochvı́l et al., 2019),
PHATE (Moon et al., 2019) and Poincare maps (Klimovskaia et al.,
2020). Approaches have also been implemented for nontabular
data. For example, node2vec provides embeddings of graphs
(Grover and Leskovec, 2016). Importantly, recent implementations
are computationally efficient and can process many thousands of
data items. These methods have been instrumental in exploring
atlases of mouse transcriptomic data (Cao et al., 2019; Han et al.,
2018; Kalucka et al., 2020; Rosenberg et al., 2018; Saunders et al.,
2018; Tabula Muris Consortium et al., 2018). They also open possi-
bilities to analyze the phenotypic landscape of animal models.

Because ontology terms carry hierarchical relationships, dedi-
cated methods have been proposed to embed the terms into low-
dimensional spaces: Onto2vec (Smaili et al., 2018), Opa2vec (Smaili
et al., 2019), HiG2Vec (Kim et al., 2021) and Owl2vec (Jiaoyan
et al., 2021). These approaches have also explored describing sets of
ontology terms, particularly from the gene ontology. A common ap-
proach to embedding sets of ontology terms is through composition,
or averaging, of the coordinates of the individual terms. This is
motivated by observations in the context of word-based embeddings
(Mikolov et al., 2013). It presents encouraging results also in the
biological context, for example for the prediction of gene–gene
interactions (Duong et al., 2020). However, linear composition con-
flicts with the nonlinearity inherent in dimensional reduction and is
bound to lose effectiveness for sets with many terms. Moreover,
ontology-based dimensional reduction techniques have not been
explored in the context of animal phenotyping.

In this work, we examine a public dataset of mouse phenotypes
and visualize the landscape of mouse phenotypic variation. We con-
sider dimensional reduction approaches based on a range of math-
ematical techniques. We show that approaches that integrate sets of
phenotypes into vectors or use text-based descriptions are more in-
formative than approaches that rely on embeddings of individual
ontology terms or on graphs. Yet, because mouse phenotype data
are sparse, results can be sensitive to incomplete phenotyping and
preprocessing steps.

2 Results

2.1 Embeddings of ontologies offer insight for small

annotation sets
Ontology structures are relatively stable and evolve only slowly in
time. Furthermore, the MP ontology that catalogs possible pheno-
typic aberrations is agnostic to animal species. It is thus natural to
consider dimensional reduction of the space spanned by MP terms
as a basis for visualizing phenotype data from the mouse and other
model organisms. We produced embeddings of MP terms in two
dimensions using two distinct approaches (Section 8). In the first ap-
proach, we computed semantic similarities between text descriptions

of MP terms and then created an embedding using UMAP (Becht
et al., 2019). For comparison, we also constructed a graph of the
hierarchical relations between MP terms and then created an embed-
ding using node2vec (Grover and Leskovec, 2016). Of the two, the
text-based approach placed the ontology root near the center,
grouped ontology terms into small clusters and produced a visual
pattern that conveyed the multidimensionality of the ontology
(Fig. 1A). In contrast, the graph-based approach hid distinctions be-
tween phenotype domains (Supplementary Fig. S1). We continued
to investigate animal models and diseases via the text-based embed-
ding of MP terms.

We assembled annotations about animal models from the mouse
genome database (MGD) (Blake et al., 2021) and the International
Mouse Phenotyping Consortium (IMPC; Dickinson et al., 2016).
This resulted in a collection of 53 629 models that describe mouse
strains with mutations in one of 15 729 distinct genomic markers
(Section 8). Most markers not only correspond to protein-coding
genes or noncoding genes but also include other genomic constructs;
we treated all on an equal level. The models carried 254 623 annota-
tions to 9907 different MP terms. We computed the position of these
models in the embedding space by averaging the coordinates associ-
ated with their phenotypes. These projections appeared throughout
the embedding space (Fig. 1B), conveying that the animal models
have diverse phenotypic features. Next, we investigated the distribu-
tion of the number of phenotypes per model. Eighty-six percent of
models were associated with fewer than 10 phenotypes and 69%
with fewer than 5 (Fig. 1C). Despite the large skew, 31 477 models
were associated with between 2 and 113 MP terms, allowing us to
stratify the dataset. The number of annotations created a bias in the
position of the models within the embedding: the distance of the
model from the center was anticorrelated to the number of pheno-
types (Fig. 1D). This is an indication that of the two coordinates in
the visualization, one is effectively taken up to capture the number
of annotations rather than their biological meaning.

We performed analogous calculations for phenotype profiles of
human diseases (Section 8). We translated disease phenotypes into
sets of MP terms and then projected the translations into the embed-
ding space (Fig. 1E). Diseases were, on average, linked with more
phenotypes than mouse models (Fig. 1F) and also exhibited a correl-
ation between the number of phenotypes and the distance from the
center (Fig. 1G). Indeed, the bias was more marked than for mouse
models. The bias creates an impression that diseases with rich anno-
tations are more similar to one another than diseases with few anno-
tations, which is not justified from a phenotypic perspective. It also
drives the distribution of profiles into a unimodular shape, which
does not capture the diversity and multidimensionality of human
diseases.

While projecting phenotype sets into the ontology embedding
through coordinate averaging may produce insight for small pheno-
type sets, our results demonstrate that this approach tends to place
well-annotated phenotypic profiles toward the center. The bias
becomes more evident as the number of annotations increases; pro-
jections of diseases are more affected than mouse models. As the
bias is related to averaging, it is bound to appear with other embed-
dings of MP terms as well, for example, those generated based on
the ontology hierarchy graph. Furthermore, because phenotypic
annotations are expected to become more detailed with time, such
bias should be expected to grow as well. Thus, embeddings of ontol-
ogy terms in low dimensions are not recommended for the explor-
ation of complex phenotype profiles.

2.2 Embeddings of full phenotype profiles capture the

diversity of animal phenotypes
As an alternative to treating mouse models as sets of phenotypes and aver-
aging coordinates for ontology terms, we produced embeddings for the
mouse phenotype profiles directly. There are several possible approaches
to encode phenotype profiles into a numerical form that can be processed
with dimensional reduction algorithms (Supplementary Fig. S2).

In a first attempt, we constructed vector representations for indi-
vidual mouse models using a previously described procedure
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(Konopka and Smedley, 2020). This approach estimated prior prob-
abilities for all phenotypes based on their frequency in the cohort
and then integrated annotations from model-specific phenotypes to
create real-valued vectors. This approach thus combined informa-
tion from the entire cohort, from model-specific annotations, and
from the ontology hierarchy. We applied UMAP for dimensional re-
duction and summarized 53 629 mouse models from MGD and
IMPC into a complex layout (Fig. 2A). The embedding was not
dominated by technical variables such as data source, mouse genetic
background or zygosity of genetic mutations (Supplementary Fig.
S3). It was, however, influenced by the number of model phenotypes
(Supplementary Fig. S3). It not only separated some models with
few phenotypes from models with rich annotations but also created
a complex layout among models with many phenotypes. Overall,
the embedding thus provides a concise visualization of the pheno-
typic diversity in the dataset.

For comparison, we produced embeddings with alternative
approaches spanning several mathematical techniques: using binary
phenotype vectors, text-based semantic similarities and graphs
(Section 8). These approaches all used more coarse-grained repre-
sentations of phenotypes than our real-valued vectors. They resulted
in embeddings that were all substantially different from one another
(Supplementary Fig. S2). In particular, graph-based methods pro-
duced homogeneous layouts that did not capture any patterns
among mouse models, so they were not considered further.

One of the approaches that emphasized differences between
groups of models used text-based semantic similarities (Fig. 2B).
Similarly to the first embedding, this approach suggested models are
part of groups of various sizes (Fig. 2B). However, relative distances
between mouse models differed: models that appeared nearby in the
first embedding were far-apart in the second, and vice versa
(Fig. 2B). Such disparities are not unexpected given the ambiguities
in turning phenotype annotations into a numerical representation.
The text-based embedding also showed a more prominent separ-
ation of models according to MGD or IMPC data source. This may
arise because IMPC data, which originate from a systematic screen
rather than from bespoke experiments, have a more limited range of
MP terms than MGD models. These MP terms may have influenced
text-based calculations, which detect similar phrases in model

descriptions, more than vector-based calculations, which utilize the
ontology hierarchy in a more direct manner.

Each embedding is rich in interpretable information. At a fine-
grained level, each data point corresponds to a specific phenotype
profile (Fig. 2C;Grigelioniene et al., 2019; Hayes et al., 1998; Lyon
et al., 1996; Schreyer et al., 2001). Furthermore, each embedding is
interpretable at a regional level. To demonstrate such patterns, we
selected a region in our first embedding (Fig. 2D). Enrichment ana-
lysis revealed an over-representation of certain phenotypes among
the models within that region (Fig. 2E). Such enrichment is not sur-
prising as the embedding was constructed so that similar phenotypes
appear together. Indeed, other examples also exhibited enrichment
(Supplementary Fig. S4), validating the embedding as well as provid-
ing a mechanism to assign regions with phenotypic interpretations.

These experiments demonstrate that our calculations produced
more than one reasonable low-dimensional embedding of mouse
models. Although it is unclear how to choose a single embedding as
a reference map for mouse phenomics, these candidates can be used
for data exploration.

2.3 Neighborhoods provide insight for phenotype

prediction
Having demonstrated that embeddings summarize the diversity
among mouse models and reveal qualitative patterns, we next inves-
tigated whether they can provide quantitative insight for individual
models. To this end, we computed predictions of phenotype profiles
based on nearest neighbors (Fig. 3A). For each model, we extracted
a ranked list of nearest neighbors in the high-dimensional represen-
tations and in low-dimensional embeddings. We averaged the vector
representations of the neighbors to create a prediction and evaluated
the error between the prediction and the model’s true representation
(Section 8). We then investigated the mean prediction error as a
function of the number of neighbors, denoted as k (Fig. 3B). This
approach is used in self-supervised learning to calibrate free parame-
ters without a ground truth (Batson and Royer, 2019). For predic-
tions based on neighbors evaluated from the original data, i.e. from
high-dimensional vectors, the optimal k was k¼2. For approaches
based on embeddings, the optimal number of neighbors varied with

Fig. 1. Embeddings of mammalian phenotypes. (A) Embedding of MP ontology terms based on text similarity. Labels point to selected ontology terms (phen.: phenotype, abn.:

abnormal, dev.: development). (B) Projection of mouse models into an embedding of ontology terms via averaging of coordinates of their annotated phenotypes. (C)

Histogram of the number of phenotypes for all mouse models. (D) A summary of the position of mouse models in the projections in (B), stratified by the number of annotated

phenotypes. Boxes represent 25–75% intervals, whiskers represent 5–95% intervals and middle lines represent medians. (E–G) Analogous to (B–D) using phenotype profiles of

human diseases translated into the MP ontology
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the embedding dimension, but all were below k¼10. As expected,
prediction errors were lowest when the neighbors were computed
from the high-dimensional data and highest when the neighbors ori-
ginated from two-dimensional embeddings used for visualization.

To further investigate the factors that can affect the prediction of
phenotypes, we repeated these calculations with a series of
approaches. We computed neighbors using high-dimensional repre-
sentations based on real-valued (nonbinary) phenotype vectors, bin-
ary phenotype vectors and text descriptions. We considered
dimensional reduction via UMAP, PCA, and coordinate averaging of
MP terms. For each combination of data encoding and dimensional
reduction technique, we calibrated the optimal number of neighbors
and reported the mean prediction error (Fig. 3C). All errors were
computed with respect to the nonbinary vector representations. Given
this choice, it is unsurprising that the smallest prediction error was
achieved by the approach that used neighbors from high-dimensional
nonbinary vector data. However, this choice is useful because it
ensures that the scales for all errors are comparable.

Among approaches that used dimensional reduction, we
observed an improvement (reduction) in prediction error with
increasing embedding dimension, d, for all dimensional reduction
techniques (UMAP, PCA and MP coordinates). Interestingly, the im-
provement plateaued quickly with UMAP; there was little change
between d¼8 and d¼10 dimensions. In contrast, prediction errors
from PCA showed a steadier improvement with d. However, errors

from PCA embeddings were higher than for UMAP and remained
higher for PCA with d¼10 than for UMAP with d¼2.

The encoding scheme (nonbinary phenotype vectors, binary
phenotype vectors, text descriptions) had a substantial effect on pre-
diction errors. Variability between encodings was large compared to
differences between UMAP in various dimensions. This indicates
that studies of mouse models are bound to be more influenced by
how phenotype data are curated and encoded than by any loss of
resolution due to dimensional reduction. At the same time, predic-
tion errors were relatively similar for binary vector-based and text-
based approaches.

Average prediction errors hide variation within the cohort. To
investigate heterogeneity in more depth, we stratified models
according to the number of associated phenotypes (Fig. 3D). Errors
for models with few phenotypes were generally low. This is because
when a model has a limited number of phenotype annotations, there
may exist other models with the same characteristics. As an ex-
ample, our dataset had 14 models annotated with the single pheno-
type of ‘deafness’. Averaging a small number of nearest neighbors
that may have equivalent phenotypes produces predictions with zero
error. For models with more annotations, the probability that other
models have the same set of phenotypes by chance decreases.

Predictions that deviate from the annotated model representation
highlight which of a model’s phenotypes are unusual. They can also
suggest phenotypes that may be missing in the annotations. To

Fig. 2. Embeddings of mouse models. (A) Embedding of mouse models based on vector representations of their phenotypes. Models are colored by the source of curated data.

Labels and the rectangle point to selected models. (B) Analogous to (A), but with the layout based on semantic similarities of text descriptions. (C) Lists of phenotypes associ-

ated with individual mouse models highlighted in (A). Some lists are truncated for this visualization. All phenotype names match definitions from the ontology (abn.: abnormal,

morph.: morphology, incr.: increased, decr.: decreased). (D) A magnification of a small region of the embedding in (A). (E) Enrichment analysis comparing the phenotypes

associated with mouse models in (D) against models outside of the selected region. Dots correspond to phenotypes in the ontology. Statistical significance (P-value) is evaluated

using the Fisher test; the significance threshold is Bonferroni-corrected P¼0.05. The most significant phenotype is labeled
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illustrate such reasoning, we visualized the discrepancies between
two models and their predictions (Fig. 3E; Dickinson et al., 2016;
Luoh et al., 1997). In each case, part of the discrepancies originates
from different weights assigned to measured MP terms or their
ancestors, i.e. MP terms that are upstream in the ontology hierarchy.
Other discrepancies arise from phenotypes that are not related to
the models’ annotations. If nearest neighbors were to be used as a
denoising scheme, these discrepancies would result in imputed phe-
notypes. Even without formal imputation, if embedding coordinates
were used as inputs for a machine-learning classifier, these pheno-
types would influence how the model would be utilized by the classi-
fier. Thus, the neighbor prediction can be informative for
interpreting, or explaining, outcomes of downstream ML models.

2.4 Neighborhoods highlight consistency as well as

heterogeneity of genotype–phenotype annotations
Models in our dataset are characterized by the mouse background
strain, mutation of a single genetic marker, and mutation zygosity.
While combinations of these features appear uniquely in the dataset,
several models can be linked to the same genetic marker. A summary
of the number of models per marker, which we refer to as genes for
simplicity, revealed a skewed distribution (Fig. 4A). Thousands of
genes were represented by a single mouse model in the dataset, but
thousands of others were mutated more than once. The three most
studied genetic markers appeared in more than 200 models each
(Fig. 4A, inset).

The multiplicity of models linked with the same gene provides
opportunities to study consistency and heterogeneity among geno-
type–phenotype associations. For illustration, we picked some of the
most studied genes and highlighted their models in embeddings
(Fig. 4B, Supplementary Fig. S5). Some of the models appeared
close together. This suggests consistency in the phenotypic

Fig. 3. Phenotype prediction. (A) Schematic explaining phenotype prediction using neighbors. Given a mouse model, its predicted phenotype profile is defined as a simple aver-

age over its neighbors. An error is defined as the L2 norm between the model profile and the prediction. (B) Exploration of mean prediction error as a function of the number

of neighbors used in the calculation. Lines correspond to distinct ways of identifying neighbors: from original vector representations or from embeddings in various dimen-

sions. (C) Summary of best-achieved errors for prediction approaches using original vector data, original binary vector data, embeddings in various dimensions and using text-

based similarity measures. (D) Stratification of mouse models by the number of model phenotypes. Boxes represent 25–75% intervals, whiskers represent 5–95% intervals and

middle lines represent medians. (E) Examples of mouse model phenotype vectors and predictions based on two nearest neighbors. Heatmaps only show a small number of phe-

notypes that contribute the most to prediction errors. Categorical phenotype annotations indicate whether a listed phenotype is one of the models’ annotated phenotypes, an

ancestor of an annotated phenotype or a phenotype unrelated to model annotations

Fig. 4. Phenotype heterogeneity. (A) Multiplicity of models available for individual

genes. The genes represented in the most models are listed in the inset. (B)

Embeddings of mouse models highlighting the location of models with selected

genes knocked out. Highlighted models are jittered to better display the number of

models. (C) Proportion of genes for which the nearest neighbors of a mouse model

contain another model with the same gene knocked out. The summary is stratified

by the number of models available for a gene. Boxes represent 25–75% intervals,

whiskers represent 5–95% intervals and middle lines represent medians. Dashed

line indicates an expected level under a null hypothesis that neighbors are selected at

random
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annotations linked to the gene and robustness with respect, for ex-
ample to mutation construct. At the same time, models linked to
one gene also split into several close-knit clusters in distinct parts of
the embedding. This suggests an opposite effect, i.e. heterogeneity in
annotations. Heterogeneity may be due to incompatible curation, in-
complete phenotyping measurements on some of the models or dif-
ferences in phenotype due to the genetic background
(Supplementary Fig. S5). The embedding cannot deconvolute these
effects, but the visualization provides qualitative insight on the scale
of the phenomenon in the mouse data.

To quantify the extent of consistency and heterogeneity, we
studied the nearest neighbors of all models and assessed the propor-
tion of times a model was near another model with the same gene
(Fig. 4C). This fraction increased with the multiplicity of mouse
models. Among genes represented by more than 20 models, the pro-
portion of models linked to another model with the same gene was
above a third. This was substantially higher than expected if neigh-
bors were assigned by chance. Nonetheless, since the level was
below 0.5 for most genes, it is more likely for a randomly selected
model to have neighbors with different genetic compositions than to
link to at least one model with the same mutated gene. This can be
due to difficulties in encoding the data, incompleteness in the data-
set, or due to overlapping phenotypes associated with different
genes.

2.5 Embedding diseases alongside animal models

provides grounds for exploring disease-causing genes
Finally, we returned to the dataset of human diseases. For those dis-
eases with annotations in the form of human phenotype (HP) terms,
we translated the phenotypes into MP terms and constructed
vectors-based and text-based representations. We then projected the
diseases into our previously generated embeddings (Section 8). With
both vector-based (Fig. 5A) and text-based (Fig. 5B) approaches,
diseases covered large areas of the embedding space and formed sev-
eral disjoint clusters. Patterns were robust to how the disease pheno-
types were translated from human to MP ontologies (Supplementary
Fig. S6). Interestingly, disease projections avoided certain areas of
the embeddings. For example, one of the areas omitted by the dis-
eases was enriched in phenotypes related to mortality and aging
(Fig. S4). Diseases linked to well-annotated models with all genetic
backgrounds and showed a slight preference toward models with
homozygous mutations (Supplementary Fig. S6).

Next, we asked to what extent similarities between diseases and
mouse models can link diseases to their associated genes. For simpli-
city, we called all disease-associated genes as causative genes. We
compared approaches based on numeric vectors, based on text
descriptions, and two previously described methods for scoring dis-
ease–model associations (Konopka and Smedley, 2020; Smedley
et al., 2013). The proportion of diseases that had a mouse model
with the causative gene within 15 nearest neighbors was low: below
4% (Fig. 5C). Interestingly, the algorithm used to translate between
human and MP ontologies had a smaller effect than the data encod-
ing or the algorithm for computing neighbors. The best performer
was a scheme specifically designed to score disease–model associa-
tions (Smedley et al., 2013). Strikingly, text-based approaches per-
formed almost on par, better than vector-based approaches.

Given that text-based descriptions performed well in matching
diseases to causative genes, we reasoned that this approach could be
a gateway to studying diseases without formal phenotype annota-
tions. Among the dataset of human diseases, 61% did not have any
HP annotations (Fig. 5D). These diseases could not be included in
calculations that rely on ontologies. They were also excluded from
the gene-mapping assessments to ensure like-for-like comparisons
(Fig. 5C). However, these diseases have text descriptions, so they
can be used in text-based calculations. Projections into the embed-
ding of mouse models revealed they fell into the same regions as be-
fore (Fig. 5E). This indicates that unannotated diseases span the
whole phenotypic space, and also that our treatment of text descrip-
tions did not introduce excessive biases that would place these cases
apart from well-annotated diseases. In more depth, the unannotated

diseases linked to mouse models of all genetic backgrounds and an-
notation levels, albeit with a preference to mouse models with few
phenotypes (Supplementary Fig. S6).

To illustrate explorative analyses based on text descriptions, we
searched for two diseases without formal phenotype annotations
(Fig. 5F and G). An initial search for a glycogen deficiency
(ORPHA:137625) correctly linked this disease to mouse models
with abnormalities in glycogen homeostasis (Fig. 5F). Because of
the naive treatment of text in our calculations, some of the top-
ranked models were characterized by opposite directional effects to
the disease description. Among the top hits were models with muta-
tions in Gys1 (Bouskila et al., 2010), the known causative gene for
the disease. Other hits with similar phenotype profiles had muta-
tions in Ppp1r3a and Gyg, both genes that participate in glycogen
homeostasis. This confirms that text search can link human diseases
to relevant mouse data. In this case, the top search hits all had con-
sistent phenotype profiles, so a projection of the diseases into low-
dimensional embeddings can also be expected to link the disease
with a neighborhood of relevant mouse models.

Separately, we searched for an otorhinolaryngological disorder
(ORPHA:141219) characterized by cysts around the nose and
extending into the cranium (Fig. 5G). The causative gene for the dis-
order is not known. The first two hits in text-based search matched
the disease to mouse models with quite distinct phenotypes. The first
was characterized by an intracranial phenotype (Hart et al., 2000);
the second was by phenotypes of the epidermis (Mill et al., 2009).
Such hits can appear in distinct portions of an embedding.
Projecting the diseases into the space of models might place the dis-
ease close to one at the expense of the other. This can produce dis-
crepancies between sets of neighbors computed in the original high-
dimensional space and the low-dimensional embedding. This is a
documented effect inherent to dimensional reduction (Cooley et al.,
2019). In the disease context, it highlights the value in scrutinizing
raw search results in addition to a low-dimensional visualization.

3 Discussion

Animal models offer a direct route to characterizing the impact of
genetic mutations. While studying the relationship between geno-
type and phenotype is often performed gene-by-gene, careful cur-
ation of the literature (Blake et al., 2021) as well as systematic
phenotyping of hitherto-unstudied genes (Dickinson et al., 2016)
mean that the collective data for the mouse will approach whole-
genome coverage in the near future. This opens possibilities to util-
ize mouse phenotypes as a reference dataset in genomic analyses. As
such, it is important to characterize the potential such a dataset
offers for data exploration, ML and downstream applications. In
this work, we explored dimensional reduction for these data. The
results visualize the heterogeneous landscape of mouse phenotypes.
Our calculations also provide qualitative and quantitative observa-
tions about the strengths and limitations of this pool of data.

A challenge in dealing with large-scale phenotype data is that
there are several plausible ways to encode sets of phenotypes so that
they can be used for calculations. We explored vector-based, text-
based and graph-based approaches. There also exist many algo-
rithms that can perform dimensional reduction. We focused on
approaches that can be used for visualization and thus focused on
dimensional reduction into two dimensions. Such embeddings en-
able interactive, human-led data exploration. However, we also
investigated embeddings into higher dimensions, which can be bene-
ficial for ML.

Strikingly, certain strategies provide suboptimal visualizations in
two dimensions. A strategy that first creates an embedding of an
ontology and then projects phenotype sets into that space via coord-
inate averaging is prone to construct visualizations that are domi-
nated by technical features, notably the number of phenotypes
within a phenotype set (model or disease). This result has a mathem-
atical justification: averaging summarizes heterogeneous elements,
in this case phenotypes, to a central value, with the variability of the
outcome decreasing with the number of elements. It is also worth
comparing this strategy with analysis pipelines in transcriptomics,
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which do not create embeddings based on genes and project expres-
sion profiles for samples into that space, but rather create embed-
dings for samples directly. Another suboptimal strategy is one that
uses the MP ontology as a graph and performs a joint embedding of
the ontology and a set of mouse models. This approach hides much
of the rich phenotypic similarities and differences among models
(Supplementary Fig. S2).

Strategies based on phenotype vectors or text descriptions pro-
duce visualizations that are interpretable at the level of single mouse
models and group similar models together. These visualizations can
thus be said to capture the phenotypic diversity among mouse mod-
els in the available data. However, they can also reflect peculiarities
and limitations of the underlying data. Embeddings show many
small, isolated groups with peculiar combinations of MP terms.
Such combinations may arise due to targeted phenotyping efforts on
those mouse models rather than true phenomenological specificity
compared to other mutants. Small annotation sets may also arise
when phenotyping is carried out as part of a high-throughput screen
(Dickinson et al., 2016). Such annotation sets may grow in time as
further observations are cataloged and curated from literature
(Blake et al., 2021). Analysis methods can be designed specifically to
track changes of annotations due to steady growth (Konopka and
Smedley, 2020). However, in the context of dimensional reduction,
changes in the annotation set should be expected to disrupt the posi-
tioning of individual models within an embedding. Thus, the embed-
dings should be expected to be unstable for models with low
annotation counts. The overall structure of the embeddings may
change too, albeit to a lesser extent.

Besides providing visualizations of the heterogeneous phenotype
data, we investigated schemes for phenotype prediction based on

nearest neighbors. These predictions are informative from at least
three perspectives. First, they suggest new experimental assays on in-
dividual mouse models that may complete their phenotype profiles.
Second, the predictions can be used for interpreting outputs from
ML models trained using embedding coordinates. Third, we used
prediction errors to quantify the information loss produced by
various data encoding and data embedding approaches. The results
confirm expected properties, namely that embedding data into low-
dimensional spaces loses some information, that increasing the
target dimension increases the fidelity of the embeddings and that
nonlinear methods like UMAP preserve more information than lin-
ear methods like PCA. Interestingly, the results also show that dis-
crepancies between predictions from original data and from
embeddings can be comparable to discrepancies between different
encodings of the original data (e.g. binary or real-valued vectors).
This suggests that any analyses based on phenotype data are likely
to be sensitive to how the raw data are prepared. Indeed, they
may be more sensitive to data preparation than to dimensional
reduction.

We corroborated this sensitivity in calculations projecting
human diseases into embeddings of mouse models. We used nearest
neighbors to link human diseases to mouse models and thereby to
genes. Recall of established disease–gene associations varied depend-
ing on the encoding strategy (vector, text, etc.). Interestingly,
approaches based on text similarities were among the most perform-
ant. Considering that these approaches are tunable (Konopka et al.,
2021), can integrate datasets other than phenotypic annotations and
that they execute two orders of magnitude faster than a dedicated
scoring scheme for scoring disease–gene associations, they represent
promising avenues for subsequent analyses.

Fig. 5. Embedding of human diseases in the mouse phenotypic space. (A) Projection of human diseases into an embedding of mouse models based on phenotype vectors. (B)

Analogous to (A), but with the underlying embedding produced based on semantic similarities of text-based descriptions. (C) Summary of causal-gene extraction. Diseases

with phenotype and gene annotations were compared with all mouse models. The percentage in the bar graph is the proportion of diseases for which one of the k¼15 nearest

mouse models contained a mutation in the causal gene. (D) Summary of ORPHANET disease annotations in terms of phenotype ontology terms and causative genes. (E)

Projection of human diseases without HP annotation into an embedding of mouse models based on text similarity. (F, G) Examples of text-based disease descriptions along

with two mouse models, selected manually from among the top five search hits
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4 Methods

4.1 Phenotype data
Definitions of the HP ontology (Köhler et al., 2019) and the MP ontol-
ogy (Smith and Eppig, 2015) were obtained through the OBO
Foundry (HP version 2021-02-28, MP version 2021-01-12). Terms
from the HP ontology were mapped onto terms in the MP ontology
using owlsim (Washington et al., 2009), which is an ontology-aware
algorithm, and using crossmap (Konopka et al., 2021), which per-
forms searches based on text similarity. Mappings with crossmap
were performed using diffusion driven by the MP dataset and by a set
of manual annotations (Konopka et al., 2021). Both owlsim and cross-
map map queries to multiple hits. Translations between the HP and
MP ontologies were established using only the best-ranked mapping.

Mouse model definitions and associated phenotypes were
obtained through the data portal of the IMPC (data release 14.0;
Dickinson et al., 2016). Data downloaded from the IMPC included
definitions of mouse models curated by the Mouse Genomics
Database (Blake et al., 2021). The dataset contained information
about lines with mutations in only one marker or gene each; the
dataset did not cover mouse models with extended mutations affect-
ing multiple genes.

Disease definitions and associated phenotypes were downloaded
from Orphadata (http://www.orphadata.org; data version 2021-04-
01) and parsed using custom scripts (https://github.com/tkonopka/
crossmap).

4.2 Ontology representations and embeddings
Embeddings for ontology terms were generated using two
approaches (Supplementary Fig. S1). In a first approach, text strings
were constructed for each term in the MP ontology by concatenating
phenotype name, definition, synonyms and comments. These strings
were loaded into a crossmap knowledge-base (Konopka et al., 2021;
https://github.com/tkonopka/crossmap). The crossmap instance
splits text into bags of k-mers, weights the k-mers according to their
information content and builds a nearest neighbors index. The cross-
map instance was used to perform searches and compute sets of
nearest neighbors for each ontology term. The nearest neighbors
were provided to the UMAP algorithm (Becht et al., 2019) imple-
mented in R to produce embeddings in two dimensions. Settings
were left at the default values, except for knn_repeats¼3 to increase
the quality of nearest neighbor search and min_dist¼0.2 to increase
space between adjacent points (for visualization).

In a second approach, MP ontology terms were treated as nodes
in a graph. Edges between nodes were set if two MP terms were
linked by ‘is a’ relationships in the ontology hierarchy (which is the
only relationship type defined in the MP ontology). The resulting
graph was processed using node2vec (Grover and Leskovec, 2016)
to produce embeddings in two dimensions. Embeddings were pro-
duced using the snap implementation (https://github.com/snap-stan
ford/snap) with default parameters and the python implementation
(https://pypi.org/project/node2vec/) with default settings. The py-
thon implementation was also executed with nondefault settings
with num_walks¼5 and walk_length¼5.

Both UMAP and node2vec are stochastic algorithms and embed-
dings may differ when repeated. All calculations were performed twice
with two different seeds for random umber generation. Consistency be-
tween replicates and between different embedding approaches was
assessed by extracting sets of 15 nearest neighbors in the low-
dimensional embeddings, and computing the mean Jaccard indexes.

4.3 Mouse model representations
Mouse models were defined as sets of phenotypes associated with a
specific mouse strain (genetic background), a single-gene knockout
mutation and zygosity. For IMPC data, models were further subca-
tegorized by life stage (embryonic, early-adult or late-adult).

Raw data for each mouse model were encoded in several ways:
based on numeric vectors, on text and using graphs (Supplementary
Fig. S2). The numeric representations consisted of vectors of length
equal to the size of the MP ontology. In a binary approach, values

were set to zero by default and changed to one if an MP term was
linked with a mouse model, or was an ancestor of such an MP term.
Nonbinary vector representations were constructed following a pub-
lished protocol (Konopka and Smedley, 2020). Briefly, values within
the vectors were initially set to prior probabilities for each MP
phenotype, which were estimated from the ensemble of non-IMPC
models. Values were updated through a Bayesian procedure with
phenotype annotations and then propagated using the ontology
hierarchy.

Two types of representations were constructed starting from
text. A ‘concise’ representation was defined by concatenating the
names of all MP terms associated with a model. A second ‘complete’
representation was constructed in the same way but also including
the names of all ancestors of MP terms associated with a model.
Text strings defined in these ways were loaded into an instance of a
crossmap knowledge-base (Konopka et al., 2021). This software
uses k-merization to turn text into numeric representations. Weights
for k-mers were computing using a corpus of text including diction-
ary definitions of English words (www.wiktionary.org) and pheno-
type definitions from the MP ontology.

For graph-based approaches, MP terms and mouse models were
used as graph nodes. Edges were defined between MP nodes if the
corresponding MP terms were linked by ‘is a’ relationships in the
ontology. Edges were defined between mouse nodes and MP nodes
from mouse model associations.

4.4 Mouse model embeddings
Embeddings of mouse models based on vector and text representa-
tions were performed with the UMAP algorithm (Becht et al., 2019)
through an R implementation.

For encodings based on nonbinary and binary vectors, all vectors
were normalized to unit norm and then provided to the embedding
algorithm. Settings were left at default, except for knn_repeats¼3
to increase the quality of nearest neighbors and min_dist¼0.2 to
spread points for visualization purposes. In calculations exploring
the impact of the embedding dimension, UMAP runs were provided
with the same set of nearest neighbors, thus eliminating stochasticity
effects due to approximate calculations of neighbors.

For encodings based on text, raw data were managed with a
crossmap instance (https://github.com/tkonopka/crossmap). The
crossmap instance was used to search for sets of nearest neighbors.
Nearest neighbors were provided to the UMAP algorithm in R,
which was run as described for the vector approaches. For graph-
based approaches, embeddings were generated using node2vec
(Grover and Leskovec, 2016) through the snap implementation
(https://github.com/snap-stanford/snap) and python implementa-
tions (https://pypi.org/project/node2vec/) with default settings. The
python implementation was also run using nondefault settings
walk_length¼5 and num_walks¼5. The graph-based approaches
produced a joint embedding of MP terms and mouse models; only
mouse models were used in visualizations.

Calculations of nearest neighbors with crossmap and embed-
dings with UMAP and node2vec rely on stochastic algorithms. All
calculations were performed with two different seeds for random
number generation. Consistency between replicates and between dif-
ferent approaches was assessed as for embeddings of ontology terms.
Sets of 15 nearest neighbors were computed in the low-dimensional
spaces and Jaccard indexes were computed for matched points in
the various embeddings.

While all embeddings were computed based on all the available
data, some visualizations were truncated to enhance the presenta-
tion. Models that were not associated with any phenotype
(MP:0002169, ‘no abnormal phenotype detected’) were excluded
from all visualizations, as were models with only one phenotype.
Visualizations excluded these models to focus attention on 31 477
models with rich annotations. (The exception is Supplementary Fig.
S3, which includes both zero-phenotype and one-phenotype mod-
els.) Visualizations also set quantile-based limits for axes to focus at-
tention on the central parts of embeddings with. Quantile intervals
were at least as wide as 2–98% for each axis.
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4.5 Projections of human diseases into embeddings of

mouse models
Human diseases with phenotype annotations from the HP ontology
were translated to the MP ontology by replacing their HP terms
with best-matching MP terms. Sets of MP terms derived from dis-
eases were encoded into nonbinary vectors using the same proce-
dures as for mouse models. Vectors with disease profiles were
compared with all mouse models to identify nearest neighbors, and
the position of each disease in an embedding was computed using
UMAP. This calculation initially places a disease at the averaged lo-
cation of its nearest mouse models and subsequently adjusts this
position using the UMAP optimization algorithm.

For encodings based on text, human diseases were taken to consist
of a clinical summary paragraph, the names of associated phenotypes
(MP translations), and the names of curated genes. These text docu-
ments were compared with phenotype descriptions of mouse models
using crossmap to produce sets of nearest mouse models. Projections of
the disease descriptions in embeddings of mouse models were defined as
the coordinate of the single most-similar mouse model. A more sophisti-
cated approach utilizing several mouse models was not possible in this
case due to a technical limitation of the R UMAP package.
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