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An important development in tumor immunology was the
identification of highly diverse tumor-infiltrating leukocyte
subsets that can play strikingly antagonistic functions. Namely,
“anti-tumor” vs. “pro-tumor” roles have been suggested for
Th1 and Th17 subsets of CD4+ T cells, Type I or Type II NKT
cells, M1 and M2 macrophages, or N1 and N2 neutrophils,
respectively. While these findings are being validated in cancer
patients, it is also clear that the balance between infiltrating
CD8+ cytotoxic and Foxp3+ regulatory T cells has prognostic
value. Here we review the pre-clinical and clinical data that
have shaped our current understanding of tumor-infiltrating
leukocytes.

Introduction

A fundamental principle of cancer immune surveillance is that
tumors are infiltrated by leukocytes, particularly lymphocytes,
capable of recognizing and targeting transformed cells, thus
leading to their elimination before the tumor becomes clinically
apparent. Moreover, the efficacy of immunotherapy against
established tumors presumably depends on lymphocyte recruit-
ment and effector function within the tumor bed. However,
a major obstacle to anti-cancer therapy is the local immune
suppression commonly found within the tumor microenviron-
ment.1 While earlier work had focused on tumor cell-derived
factors that inhibit the local immune response, the past few years
have demonstrated a dramatic contribution of leukocytes them-
selves to this “pro-tumor” environment. Recent reports have
further clarified this paradoxical leukocyte behavior by identifying
a very heterogeneous set of subpopulations, both of lymphoid and
myeloid origin, that can play strikingly antagonistic roles within
the tumors they co-infiltrate.

The prototypic anti-tumor function, displayed by various
lymphocyte subsets (Fig. 1), is cytotoxicity via the perforin/
granzyme system or, alternatively, by engaging death receptors

(such as Fas). These properties are further promoted by interferon
c (IFNc), the signature Th1 cytokine that is, in fact, secreted by
multiple cell types (see below), often together with tumor necrosis
factor (TNF). By contrast, cytokines such as TGFβ or IL-10 are
highly immunosuppressive, and other secreted factors, like VEGF,
directly promote angiogenesis and thus tumor growth (Fig. 2).
The detailed characterization of gene expression and cytokine
profiles in leukocyte populations isolated from tumor biopsies (or
draining lymph nodes) has been instrumental in revealing the
heterogeneity of tumor-infiltrating leukocytes, both of lymphoid
and myeloid nature, which we will discuss in this review.

Many of the key studies on tumor-infiltrating leukocytes have
been performed in mouse tumor models. Although they present
several important limitations, including the artificial homogeneity
and laboratory selection of tumor cell lines used in transplantable
models, the lack of relevant physiology (including interactions
between autologous tumors and immune cells) in xenograft
models, and the commonly short span (2–4 weeks) of all these
tumor development experiments, animal models provide a unique
possibility of tracking and manipulating cancerigenesis in vivo.

This notwithstanding, it is obviously essential to validate all the
findings from mouse tumor models in human cancer samples.
Therefore, in this review we will discuss and summarize the most
recent advances, both in the laboratory and in the clinic, in our
understanding of the biology of tumor-infiltrating leukocytes.
We will highlight their anti- or pro-tumor functions in mouse
models, and how these translate (or not) into prognostic value in
cancer patients.

The Traditional Players: NK, CD8+ T and Th1 Cells

It has been known for three decades that NK cells and CD8+

T lymphocytes, including those extracted from tumor biopsies,
can efficiently kill transformed cells. Collectively, these killer
lymphocytes recognize two important types of tumor antigens
(among others): processed peptides presented by MHC Class Ia
proteins via TCRaβ; and non-classical (Class Ib) MHC proteins
via NKG2D.2 The latter, which is expressed on NK, CD8+ and
also cd T cells, has been recently shown to be a key genetic
determinant of cancer immune surveillance.3
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NK and CD8+ cells provide highly complementary anti-tumor
strategies. Indeed, as demonstrated by the seminal work of Kärre
and Kiessling, the downregulation of MHC class Ia, which is a
common mechanism of evasion against CD8+ cells, renders
tumors more susceptible to NK cell-mediated lysis. This “missing
self” recognition by NK cells is based on a set of MHC class
Ia-specific inhibitory receptors that include killer cell immuno-
globulin-like receptors (KIRs) in humans, lectin-like Ly49
molecules in mice, and CD94/NKG2A heterodimers in both
species; in fact, NK cells express a complex repertoire of inhibitory
and activating receptors that calibrate this anti-tumor function,
while ensuring self-tolerance.4,5 In result, NK cells eliminate
tumors that lack MHC class Ia expression; or that overexpress
ligands for activating NK receptors like NKG2D or the natural
cytotoxicity receptors NKp30, NKp44 and NKp46.5 Further-
more, NK cells express high levels of low-affinity Fc receptor for
IgG (CD16), which allows them to mediate antibody-dependent
cell-mediated cytotoxicity (ADCC).6

NK cells have been described to infiltrate various types of
tumors in the skin, lung, gut and kidney.5 Recent data on human
NK cells infiltrating highly aggressive non-small cell lung cancers
(NSCLC) showed a profound alteration of their phenotype, with
decreased ability to degranulate and to produce IFNc, when
compared with NK cells from distal lung tissues or blood from
the same patients or from healthy donors.7 This functional
impairment of NK-TILs correlated with decreased expression of
NKp30, NKp80, DNAM-1, CD16 and ILT2 receptors. Interest-
ingly, among these, NKp30 has been shown to affect the
prognosis of gastrointestinal stromal tumors through a specific
pattern of alternative splicing.8

Various immunotherapeutic strategies have been proposed to
tackle the common defects of NK cell activity in cancer patients:5

activation of endogenous NK cells (with cytokines like IL-2,
IL-15 and IL-18), NK-cell adoptive immunotherapy, NK-cell-
based donor lymphocyte infusions and allogenic stem cell
transplantation (SCT).6 Although globally the objective responses

Figure 1. Anti-tumor infiltrating leukocytes and molecular mechanisms of action. Representation of the main anti-tumor lymphoid and myeloid cells.
N1 and M1 refer to neutrophil and macrophage subsets, respectively. cd1 and Th1 refer to IFNc-producing cd and CD4+ T cells, respectively. Depicted are
also molecules produced by these leukocytes, including cytokines that impact on cell differentiation and expansion, and chemokines that control their
recruitment/infiltration into tumors.
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have been disappointing, some data from allogenic and, more
recently, haploidentical hematopoietic SCT have shown clinical
(in the absence of adverse) effects mediated by NK cells.5 This
inspires further translational studies aimed at enhancing NK cell
recruitment to tumors and their functional activity in situ.

With regard to CD8+ T cell-based immunotherapy, many
recent efforts have focused in activating and expanding CD8+

tumor-infiltrating lymphocytes (TILs) ex vivo and then re-
infusing them into the cancer patient—adoptive cell therapy
(ACT). ACT of CD8+ TILs into lymphodepleted metastatic
melanoma patients has shown very high objective response rates,
ranging from 50% up to 81%.9 In fact, TIL-ACT (combined
with high doses of IL-2) has mediated cancer regression in 49–
72% of melanoma patients, and durable complete responses,
beyond 3–7 y, are currently ongoing in 40% of the patients.10

In pre-clinical models, adoptively transferred naïve CD8+ cells
were shown to infiltrate melanoma lesions, be activated in situ
and differentiate into functional cytotoxic T lymphocytes
(CTLs).11 The naïve status of the infused population appeared
to be an important parameter, as the differentiation stage of CTLs

inversely correlated with their anti-tumor efficacy in vivo.12 The
enhanced anti-tumor function of naïve T cells was related to
sustained effector cell development, prolonged cytokine produc-
tion, and increased expansion in vivo.

Transduction of tumor antigen-specific TCRs13 or chimeric
antigen receptors (CARs)14,15 represent exciting prospects to
increase the efficacy of cytotoxic ACT. These strategies have thus
far enabled cancer regression in patients with metastatic
melanoma, synovial sarcoma, neuroblastoma and refractory
lymphoma or leukemia.10

In addition to cytotoxicity, IFNc secretion is a key anti-tumor
function of CD8+ and NK cells, who share this property with
various other lymphocyte populations, most notably “helper type
1” (Th1) CD4+ cells. These were first described 25 y ago in the
context of the “Th1/ Th2” paradigm of immunity to infection,
and since then clearly implicated in promoting anti-tumor
responses: Th1 cells enhance the cytotoxic functions of NK and
CD8+ cells, upregulate MHC Class I expression in tumor cells
(a direct effect of IFNc), and support CD8+ cell proliferation
through the secretion of IL-2.16 Moreover, Th1 cells condition

Figure 2. Pro-tumor infiltrating leukocytes and molecular mechanisms of action. Representation of the main pro-tumor lymphoid and myeloid cells.
N2 and M2 refer to neutrophil and macrophage subsets, respectively. cd17 and Th17 refer to IL-17-producing cd and CD4+ T cells, respectively. Depicted
are also molecules produced by these leukocytes, including cytokines that impact on cell differentiation and expansion, and chemokines that control
their recruitment/infiltration into tumors.
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the antigen-presenting capacity of DCs and macrophages, thus
shaping the CTL response. In fact, the combination of Th1 cell
therapy with local radiation therapy augmented the generation of
tumor-specific CTL at the tumor site and induced a complete
regression of subcutaneous tumors.17

“New” Effector TILs: cd T, NKT and Th17 Cells

The “Th1/Th2” paradigm for CD4+ T cell differentiation has
been recently revised with the addition of Th17 cells, charac-
terized by the production of interleukin-17 (IL-17). IL-17-
deficient mice were shown to be more susceptible (than wild
type animals) to tumor growth and lung metastasis.18,19 Adoptive
transfer studies from the Restifo lab showed that in vitro
generated Th17 cells were more efficient at eradicating tumors
than Th1 cells,20 and this was recently associated with stem cell-
like properties of Th17 cells.21 Importantly, adoptively transferred
Th17 cells gave rise in vivo to Th1-like effector cell progeny,21

and IFNc was actually necessary for the protective effects of
adoptively transferred Th17 cells.20 These data suggest that
acquisition of Th1-like properties are required for an anti-tumor
function by Th17 cells.

In stark contrast to the previous studies, IL-17-deficient mice
presented reduced tumor growth in other models such as B16
melanoma and MB49 bladder carcinoma,22 DMBA/TPA-induced
skin carcinoma,23 or in a spontaneous intestinal tumor model
(driven by a mutation in the tumor suppressor gene APC).24

The pro-tumor functions of IL-17 have been tightly linked
to angiogenesis: IL-17 has been shown to act on endothelial,
stromal and tumor cells to induce the expression of pro-
angiogenic factors like VEGF, Angiotensins, PGE2 and IL-8,
and thus promote tumor vascularization.25 The precise conditions
that determine pro- vs. anti-tumor functions of Th17 TILs
remain unclear and require further investigation.

Although Th17 cells are important providers of IL-17, this
cytokine can be abundantly produced by other tumor-infiltrating
leukocyte populations. Namely, murine cd T cells can be the
major source of IL-17, not only in homeostatic conditions,26 but
also upon infection or tumor challenge.27,28 Like for Th17 cells,
the role of IL-17 produced by cd cells within the tumor
microenvironment is controversial: it has been associated both
with angiogenesis and promotion of tumor growth25,27; and
with CD8+ T cell recruitment and the therapeutic effects of
chemotherapy against several subcutaneous tumor lines.28,29

While the recently discovered ability of cd cells to make IL-17
has attracted much attention, these lymphocytes were previously
characterized as strong cytotoxic and IFNc-producing cells,
and thus prototypic anti-tumor mediators. Consistent with this,
seminal work by Girardi and Hayday showed a decade ago that
mice lacking cd T cells were significantly more susceptible to
chemically induced tumors.30 This phenotype was subsequently
extended to transplantable,31 spontaneous32 and transgenic33

tumors.
In the murine B16 melanoma model, cd T cells were shown

to infiltrate tumor lesions already at day 3 post-transplantation
and to provide a critically early source of IFNc.31 This contrasts

with the above-mentioned findings on IL-17+ cd-TILs.27,28 A
more detailed characterization of cd-TILs is therefore required
in a wider set of pre-clinical tumor models. This should take
into account the two functional cd T cell subsets recently
identified on the basis of CD27 (and CCR6) expression: CD27+

cd cells make IFNc but no IL-17, whereas IL-17 production is
restricted to CD27- cd cells.34

cd T cell-based clinical trials have thus far concentrated on
the highly IFNc-polarized (and cytotoxic) Vc9Vd2 subset that
constitutes most of cd cells circulating in the human peripheral
blood. As these cells are specifically reactive to non-peptidic
phosphoantigens, they can be selectively activated and expanded
both in vitro (for ACT) and in vivo. In cancer patients, cd T cell-
based immunotherapy has thus far produced objective responses
in the range of 10 to 33%.35 Future research should also take into
account the important roles played by NK receptors, including
NKG2D36 and NKp30,37 in tumor cell recognition by Vc9Vd2
cells and by Vd1 cells (which predominate in tissues).

NKT cells also employ NK receptors, as well as CD1d-
restricted TCRs to recognize tumor targets. The vast majority of
these T cells are canonical or invariant NKT (type I NKT) cells
that possess a specific TCRa rearrangement (Va14Ja18 in mice;
Va24Ja18 in humans), associated with Vβ chains of limited
diversity. All the other NKT cells that are CD1d-restricted and do
not express this invariant TCR are called Type II NKT cells.38,39

Although CD1d-deficient mice showed increased susceptibility
to MCA-induced sarcomas,40 there is evidence of functional
heterogeneity also within NKT cells: while Type I NKT cells
seem to be protective, Type II NKT cells mostly suppress tumor
immunity.39,41

In terms of cytokine production, activated NKT cells are
potent providers of IFNc and IL-4 (and, to lesser extent, of
IL-17). In the B16 metastatic melanoma model, a dual role of
NKT cells was linked to immune suppressive IL-4 production
by the thymus-derived subpopulation; and protective IFNc
production by liver-derived Type I NKT cells.42

Based on the pre-clinical evidence for an anti-tumor role of
type I NKT cells, and the availability of a specific TCR agonist,
a-Gal-Cer, several clinical trials have attempted to activate endo-
genous iNKT cells, or—more promising given by relative rarity
of NKT cells in humans—perform ACT with (ex vivo
expanded) Type I NKT cells. However, the clinical effects of
aGal-Cer or NKT ACT have been very limited,39 thus illustrating
the difficulty in translating findings from animal models of
cancer into improved immunotherapies.

The Inflammatory Phagocytes: TAMs and TANs

Macrophages and neutrophils are important myeloid cells of the
innate immune system and major drivers of inflammatory
responses. Given the long-established association between cancer
and inflammation, it is not surprising that tumor-associated
macrophages (TAMs) and neutrophils (TANs) can have great
impact on the course of tumor progression. While most studies
have associated TAM and TAN infiltration with promotion
of tumor cell growth, some other reports have proposed some
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anti-tumor roles. Once again, these opposing behaviors may be
explained by heterogeneous TAM and TAN phenotypes, with
distinct intra-tumor dynamics in various models.

Mirroring Th1/ Th2 polarization of CD4+ T cells, two distinct
subsets of macrophages have been recognized: the “classical”
activated (M1) macrophage phenotype and the “alternatively”
activated (M2) macrophage phenotype.43 IFNc drives the polari-
zation toward M1 macrophages, which are characterized by
abundant production of TNF, IL-12 and IL-23, CXCL9 and
CXCL10, reactive nitrogen and oxygen species; and by high
expression of MHC class II and costimulatory molecules (mak-
ing them efficient antigen-presenting cells).44 Conversely, IL-4
polarizes macrophages toward the M2 phenotype, which is
associated with low levels of IL-12 but high levels of IL-10, IL-
1RA and IL-1 decoy receptor. M2 cells also produce CCL17,
CCL22 and CCL24, which results in the recruitment of Tregs
and Th2 cells, eosinophils and basophils.44

The balance between M1 and M2 phenotypes seems to be
controlled by NFkB signaling. Thus, NFkB targeting switched
macrophages from an M2 to an M1 phenotype and led to ovarian
tumor regression in vivo.45 Nonetheless, the most frequent
TAM phenotype seems to be M2.43 Consistent with this, TAM
depletion was associated with improved anti-tumor immunity in
models of metastatic breast, colon and non-small lung cancers.46

The pro-tumor roles of M2 macrophages derive from various
molecular mechanisms, including the production of the pro-
angiogenic mediator semaphoring 4D47 and the invasive proteases
cathepsins B and S.48

In the case of neutrophils, besides secreting cytokines and
chemokines (such as IL-1β, IL-8, and IL-12), they produce large
amounts of proteinases that remodel the extracellular matrix and
promote the release of pro-angiogenic VEGF, thus supporting
tumor cell growth and invasiveness.49 Particularly important
neutrophil proteinases are elastase50 and matrix metalloproteinases
MMP-8 and MMP-9.51

Despite being widely accepted as pro-tumor mediators based
on multiple pre-clinical and clinical studies,49 a dual nature
of tumor-infiltrating neutrophils has also been suggested
recently.52,53 Thus, anti-tumor N1 and pro-tumor N2 subsets
were described and modulated within tumors by TGFβ52 or
IFNβ.54 Consistent with such a complex neutrophil activity
within the tumor microenvironment, the concentration of
reactive oxygen species also seems to determine either pro-tumor
(genotoxicity at modest concentrations) or anti-tumor (cytotoxi-
city at high concentrations) effects.49 Consequently, the depletion
of total neutrophils can lead to either reduced52 or increased55

tumor burden, further illustrating the globally paradoxical roles
of tumor-infiltrating leukocytes.

Immunosuppressive Leukocytes: Treg and MDSCs

Myeloid-derived suppressor cells (MDSCs) represent a hetero-
geneous population of myeloid progenitors and precursors of
macrophages, granulocytes and dendritic cells, which are better
characterized by their strong capacity to inhibit both innate
and acquired immunity56 particularly T-cell responses.57 Murine

MDSCs can be identified by the expression of Gr1 (includes
Ly6C and Ly6G, macrophage and neutrophil markers, respec-
tively) and CD11b (characteristic of macrophages). In humans,
MDSCs are characterized by a CD11b+ CD33+ CD34+ CD14-

HLA-DR- phenotype. Tumors produce various factors that
promote MDSC expansion, such as IL-6, VEGF or GM-CSF,
whereas they get further activated by local IFNc, IL-1β or Toll-
like receptor (TLR) signals.57

MDSCs use a diversity of mechanisms to suppress T-cell
function, including the uptake of arginine and cysteine (essential
amino acid for T cell activation) and the nitration of the TCR.56

In addition, MDSCs have been recently shown to directly support
tumor growth by promoting the epithelial-to-mesenchymal
transition in melanocytes.58

The possibility of improving anti-tumor immune responses
by targeting MDSCs has been explored in pre-clinical models.
One of the chemical drugs that seem to be more effective for
MDSC depletion was 5-fluorouracil (5-FU). In a model of
thymoma EL4 cells transplanted subcutaneously, tumor-bearing
mice treated with 5-FU showed reduced number of MDSC in
tumor lesions. This associated with prolonged mouse survival and
enhanced intratumoral CD8+ T cell antigen-specific capacity to
produce IFNc.59 Interestingly, combination therapy with an
agent (cyclophosphamide, CTX) that reduces Tregs led to a
synergistic protective effect. Consistent with this, another study
showed that inhibition of MDSC and Treg function within B16
melanomas using blocking antibodies to CTLA-4 (already in
clinical use—ipilimumab—in late-stage melanoma) and to PD-1
reduced tumor development and increased mouse survival.60

Foxp3+ Tregs are well known to suppress the activation,
proliferation and effector functions (such as cytokine produc-
tion) of a wide range of immune cells, including aβ and cd
T cells, NK and NKT cells, B cells, macrophages and DCs.
Suppressive functions displayed by Tregs include contact-
dependent mechanisms, such as those that involve CTLA-4,
PD-1 and GITR; and cytokine-mediated mechanisms such as
TGFβ, IL-10 and IL-35.61 TGFβ is particularly critical since,
besides being strongly immunosuppressive, creates a potent
positive feedback mechanism by instructing the differentiation
of “inducible” Tregs.1

Experimental Treg depletion has been usually accomplished
using anti-CD25 monoclonal antibodies, since there is a good
correlation between CD25 and Foxp3 expression within CD4+

T cells (although activated effector cells also upregulate CD25).
Prophylactic Treg depletion in renal cell carcinoma and MCA
carcinoma was shown to reduce tumor growth, with protection
being dependent on CD8+ and NK cells.62,63

While most studies have concentrated on the immunosuppres-
sive function of Tregs, two recent reports have shown that they
can also act by directly promoting tumor growth and dissemina-
tion. Thus, Treg TILs in ovarian cancer they secrete VEGF that
promotes endothelial cell proliferation;64 and in breast cancer
they produce RANKL, which associates with lung metastasis.65

Importantly, the latter study is one of many that demonstrates
that Treg accumulation within tumors is a marker for poor
clinical outcome.66
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The Prognostic Value of Tumor-Infiltrating
Leukocytes in the Clinic

Although a favorable association of high numbers of TILs in the
primary tumors had been generally reported for decades in many
human cancers, TILs had never reached the level of recognized
prognostic marker (or proof for cancer immunosurveillance)
probably due to their phenotypic and functional heterogeneity.67

The recent observations that specific immune parameters have
better prognostic value than standard staging systems, highlights
the importance of the endogenous immune response in deter-
mining the clinical outcome. This may help to modify current
classifications, and—most importantly—to identify the patients
who would benefit the most from adjuvant immunotherapy.

Considering the data reviewed above, it is tempting to assume
that good prognosis associates (for example) with CD8+ and NK
cells, whereas bad prognosis is linked to the accumulation of
Tregs and MDSCs. Moreover, given the functional heterogeneity
within many leukocyte populations, clearly distinct outcomes
could be expected from Th1 vs. Th2 or Th17 CD4+ subsets,
M1 vs. M2 macrophages, N1 vs. N2 neutrophils. This level of
refinement is obviously incompatible with traditional immuno-
histochemistry of cancer patient samples, thus requiring addi-
tional techniques like flow cytometry and molecular biology to
provide an adequate characterization of tumor-infiltrating leuko-
cytes. Furthermore, detailed imaging may also be important as
to define the localization of TILs within the tumor mass. For
example, in a pre-clinical model, CD8+ T cells were recently
shown to be trapped in the stroma and thus excluded from the
core of tumor due to post-translational modifications (nitration)
of the chemokine CCL2.68 Of note, novel drugs that inhibited
CCL2 nitration facilitated CD8+ T cell infiltration and tumor
regression.

The most comprehensive clinical studies correlating tumor-
infiltrating leukocytes with disease outcome have been per-
formed in colorectal cancer, where the general conclusion has
been that disease free overall survival is positively associated with
a coordinated Th1/ CD8+ T cell infiltration67 (Table 1). A similar
result was reached for breast cancer;69,70 and for hepatocellular
carcinoma, where NK markers and the chemokines CCL2, CCL5
and CXCL10 were additional immune signatures predictive of
patient survival (at early stages of the disease).71

By contrast, Treg infiltration has been generally associated with
poor prognosis (Table 2). In ovarian carcinoma, melanoma, breast
cancer, Hodgkin lymphoma and glioblastoma, the presence and
frequency of Tregs correlated with tumor grade and with reduced
patient survival.66 These studies also highlighted the potential
role for CCL17 and CCL22 (ligands for the chemokine receptor
CCR4) in recruiting Tregs into tumors. The combined value of
quantifying both CD8+ and Treg TIL (antagonistic) subsets as
prognostic of disease-free survival was demonstrated in hepato-
cellular carcinoma72,73 and colorectal cancer.74 However, in some
cancer types, such as colorectal75 and head and neck carcinomas,76

Treg accumulation within tumors has been associated with
favorable prognosis. This was suggested to be due to a dominant
effect in suppressing infection-associated inflammation at mucosal

interfaces.77 Nonetheless, positive associations between survival
and Treg numbers were also observed upon immunohistochemi-
cal analysis of biopsies from four types of lymphoma patients.78,79

Whereas Th2 infiltration has been associated with poor
prognosis in pancreatic cancer,80 the role of Th17 TILs in human
cancer is much more controversial. On one hand, Th17 cell
infiltration has been correlated with poor prognosis in prostate
cancer81 and in hepatocellular carcinoma;82 on the other, it has
been associated with better overall survival in ovarian cancer83 and
in esophageal squamous cell carcinoma.84 While the reasons for
these discrepancies are unclear, it may be interesting to assess the
co-production of IL-17 and IFNc by Th17 cells, as well as their
association with CD8+ T cell recruitment.

Finally, a recent study attempted to integrate the prognostic
values of Th1, Th2 and Th17 TILs by hierarchical clustering of
signature gene transcripts in colorectal tumor specimens. The
results showed that: the Th2 cluster did not correlate with
prognosis; patients with high expression of the Th1 cluster had
prolonged disease-free survival; and patients with high expression
of Th17 cluster had poor prognosis.85 In the future, we believe

Table 1. Tumor-infiltrating leukocytes associated with good prognosis for
cancer patients

TIL Cancer Type References

CD8+

colorectal cancer
hepatocellular carcinoma
esophageal carcinoma

breast cancer

74, 86, 87
71, 72, 73
84, 88, 89

69

Th1 (CD4+)
colorectal cancer

hepatocellular carcinoma
breast cancer

85
71
70

Th17 (CD4+) esophageal carcinoma 84

Tregs (CD4+)
colorectal cancer

head and neck carcinoma
lymphoma

75
76

78, 79

cd T cells ovarian carcinoma 90

B cells breast cancer 69

NK cells esophageal carcinoma
hepatocellular carcinoma

84
71

Table 2. Tumor-infiltrating leucocytes associated with poor prognosis for
cancer patients

TIL Cancer Type References

Th17 (CD4+)
colorectal cancer

hepatocellular carcinoma
prostate cancer

85
82
81

Th2 (CD4+) pancreatic cancer 80

Tregs (CD4+)

colorectal cancer
hepatocellular carcinoma

ovarian carcinoma
breast cancer

74
72
91
92

MDSCs esophageal, pancreatic and gastric 93

Macrophages breast cancer 94

Neutrophils renal cell carcinoma 95
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that will be highly informative and important to collect similar
data in many other cancer types.

Conclusions

The identification of highly diverse tumor-infiltrating leukocyte
subsets and their distinct, sometimes antagonistic, functions
in the tumor niche has been an important development in
Oncoimmunology. This has allowed a better dissection and
understanding of the interactions between immune components
and tumor cells, not only in animal models but also in patients.
We are now approaching an era where immune parameters will
likely constitute some of the best prognostic markers for cancer
progression/ regression. This will also allow a more insightful
selection of patients to undergo immunotherapy as adjuvant
treatment. Notwithstanding, many basic aspects of TIL biology

still need to be clarified as to resolve key controversies in the
field, such as the paradoxical behaviors of Th17 and cd T cells
(among others) in distinct cancer models/ types. Clinical studies
must now routinely include in-depth population phenotyping
and gene expression analysis in order to address the striking
heterogeneity of the immune infiltrates. These future directions
will be crucial to clinically promote an anti-tumor microenviron-
ment and thus increase the success of cancer immunotherapy.
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