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Abstract: Advances in early insect detection have been reported using digital technologies through
camera systems, sensor networks, and remote sensing coupled with machine learning (ML) modeling.
However, up to date, there is no cost-effective system to monitor insect presence accurately and insect-
plant interactions. This paper presents results on the implementation of near-infrared spectroscopy
(NIR) and a low-cost electronic nose (e-nose) coupled with machine learning. Several artificial neural
network (ANN) models were developed based on classification to detect the level of infestation and
regression to predict insect numbers for both e-nose and NIR inputs, and plant physiological response
based on e-nose to predict photosynthesis rate (A), transpiration (E) and stomatal conductance (gs).
Results showed high accuracy for classification models ranging within 96.5–99.3% for NIR and
between 94.2–99.2% using e-nose data as inputs. For regression models, high correlation coefficients
were obtained for physiological parameters (gs, E and A) using e-nose data from all samples as inputs
(R = 0.86) and R = 0.94 considering only control plants (no insect presence). Finally, R = 0.97 for NIR
and R = 0.99 for e-nose data as inputs were obtained to predict number of insects. Performances
for all models developed showed no signs of overfitting. In this paper, a field-based system using
unmanned aerial vehicles with the e-nose as payload was proposed and described for deployment of
ML models to aid growers in pest management practices.

Keywords: remote sensing; volatile compounds; artificial neural networks; photosynthesis modeling;
plant water status modeling

1. Introduction

Early detection of insect infestation in crops is critical for decision-making related to
pest management and alerting potential infestation to neighboring susceptible crops. One
of the most common agronomical assessments for detrimental insect infestation in crops is
visual at determined and critical periods of the crop development in synchronicity with
the insect’s population dynamics [1] and migrations [2]. The next step for more practical
monitoring is using pheromone traps [3], which can be used for more ecological pest man-
agement [4]. Some of these pheromone traps have been integrated with digital technologies,
such as video cameras [5] to assess effectiveness [6] and implementing computer vision for
pest identification and automatic counting using machine learning [7–12]. Some of these
systems are web-based and used to support agronomical decision-making in developing
countries [8].

Even though these applications are certainly an advancement in automated pest
monitoring and management, they still rely on sentinel locations within the crop field.
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The latter could translate into an economic limitation for extensive crops, which require a
significant number of monitoring nodes and increasing complexity of the sensor network.
Furthermore, these monitoring and counting systems do not give much information on
the insect-plant interaction, insect natural predator’s interaction, or detrimental effects or
symptomatology from the plant’s perspective.

Other remote sensing techniques have been implemented for pest detection in crops [13]
based on sensor networks [14], IoT for moths [15], hyperspectral imaging based on air-
borne [16], satellite [17], and unmanned aerial vehicles (UAV) [18], among others. These
systems offer the advantage of increased spatial resolution and potential temporal resolu-
tion in airborne and UAV platforms. However, there are some disadvantages related to
the plant-based nature of remote sensing monitoring. The first disadvantage is related to
monitoring and modeling based on plant symptomatology in response to insect attacks,
often assessed late, with detrimental implications in yield and quality of produce. Another
disadvantage is that there is no assurance that symptomatology targeted using remote
sensing to detect insects are entirely related to the specific biotic stress of interest. Some
plants may have other biotic and abiotic symptomatology, such as water, salinity, and other
insect interaction stresses. These issues could create biases in models developed and hinder
capabilities of deployment of models to other locations.

Hence, there is a need for a digital system that considers the early detection of the
pest of interest and early interaction with the host plant. To understand the specific
insect-plant interactions for machine learning modeling purposes, controlled experiments
must be considered before deployment in field conditions. Furthermore, a digital system
based on volatile compounds could offer advantages compared to other systems. The
implementation of electronic noses (e-noses) for insect detection have been proposed for
disease detection and diagnosis [19] and pest detection [20], specifically for cotton [21], as
a portable e-nose development, and specifically for aphid detection on tomato plants [22]
using four low-cost gas sensors and comparing with gas chromatography results. In wheat,
some authors have also used commercial e-noses to detect mite infestation [23] to predict the
age and insect damageduring storage using linear discriminant analysis [24], and to detect
rusty grain beetle, Cryptolestes ferrugineus, and red flour beetle in wheat [25]. Some studies
have also combined computer vision systems and e-noses for pests in agriculture [26].
There is an increasing interest in developing compact, portable, and low-cost e-noses
for these purposes [27]. However, most of these new researches are focused only on the
detection of the variation in volatile compounds related to the insect presence and the
interaction between insects and plants [25,28–30], and in some researches, combining e-nose
and computer vision [26] for insect detection and identification, but so far, no attempt has
been made to separate them through comprehensive modeling on these separate processes.

This paper proposed the implementation of a newly developed e-nose comprised
of nine gas sensors described by Gonzalez Viejo et al. (2020) [31] and near-infrared spec-
troscopy (NIR) for the early detection of aphids (Rhophalosiphum padi) on wheat plants in
controlled conditions. Raw data from the e-nose and NIR were used as inputs for machine
learning algorithms to develop different classification models to detect insect’s presence at
different phenological stages and regression models to predict the number of insects and
physiological responses of plants based on gas-exchange measurements. Furthermore, a
deployment system was proposed to validate these models in the field using the e-nose as a
UAV payload to test different flying altitudes for detection sensitivity purposes. The latter
system could have several advantages compared to research done so far by addressing the
gaps discussed above.

The implementation of the proposed system can be highly beneficial to growers being
able to provide high temporal and spatial resolution for more precise and targeted decision-
making. Furthermore, the deployment of this system could support not only pest detection
and management but also other agronomical activities, such as plant water status and
irrigation scheduling and the detection of other biotic and abiotic stresses.
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2. Materials and Methods
2.1. Plant and Insect Material, and Experimental Design Description

Wheat seeds of Kittyhawk variety (Pacific Seeds, Toowoomba, QLD, Australia) were
surface sterilized with 0.8% sodium hypochlorite and were pre-germinated in the dark at
4 ◦C for 48 h, followed by lit conditions (17–25 ◦C) for 72 h. The germinated seeds were
transferred individually to Jiffy-7® pellets (Jiffy Products S.L. (Private) Ltd., Mirigama, Sri
Lanka). The seedlings were further grown to a two-leaf stage (GS12) prior to transplanting
in pots.

The plants were grown in a non-circulating passive hydroponic method based on
Kratky [32]. The wheat seedlings were transplanted into 3 Li (190 mm × 170 mm) hy-
droponic pots (Anti-Spiral Pot, Garden City Plastics, Dandenong South, VIC, Australia)
filled with expanded clay pebbles (CANNA Aqua Clay Pebbles, Subiaco, WA, Australia)
as substrate, with three seedlings placed equidistant in each pot. Duplicate pots were
placed in a black plastic tub filled with modified Hoagland nutrient solution [33] up to root
submergence level. The nutrient solutions were replaced every two weeks throughout the
experiment. Each tub of hydroponic set-up is placed inside an insect rearing tent (Bug-
Dorm, Australian Entomological Supplies Pty., Ltd., South Murwillumbah, NSW, Australia)
constructed with nylon mesh with 160 µm aperture. The plants were maintained inside a
growth room (Biosciences Glasshouse Complex, The University of Melbourne, Parkville,
VIC, Australia) with 16 h daylight/8 h night and 20–25 ◦C controlled automatically.

Oat aphids (Rhophalosiphum padi) were obtained from laboratory cultures of Pest
& Environmental Adaptation Research Group, School of Biosciences, The University of
Melbourne, Australia. The starting colony was allowed to reproduce for population
increase in a rearing tent supplied with wheat plants (in a similar hydroponic set-up
described above). Adult R. padi were randomly selected from the colony plants and
introduced into the experimental plants, approximately at stem elongation stage with third
leaf emerged (GS32). Three treatments were determined based on the economic threshold
for winter cereals which is an average of 15 aphids per tiller on 50% of tillers [34]: high
load (15 aphids per tiller in 50% of tillers), medium load (10 aphids per tiller in 50% of
tillers), and low aphid load (5 aphids per tiller in 50% of tillers). The aphids were carefully
transferred into the wheat plants with a fine natural bristle brush. For simplicity, days
referred in models developed correspond to days after infestation at the wheat phenological
stage GS32.

A total of eight experimental set-ups were made with duplicate set-ups for each
treatment (low, medium, and high aphid load) and two aphid-free set-ups as controls. Each
experimental set-up was composed of one insect rearing tent, containing two pots with
each pot planted with three wheat plants, maintained in hydroponics as described above
and shown in Figure 1. These were randomly arranged inside the growth room.

Insect population models (adults) were developed using initial insect infestations
and exponential growth models applicable to sigmoidal population insect growth [35,36].
Curves were adjusted by image analysis and manual insect counting per leaf, and extrapo-
lation per plant in the middle and end of the experiment to account for insect mortality
(data not shown).

2.2. Physiological Measurements

Plant physiological parameters such as stomatal conductance (gs; mol H2O m−2 s−1),
transpiration (E; mmol H2O m−2 s−1), and photosynthesis (A; µmol CO2 m−2 s−1) were
measured using a Li-6400 XT open gas exchange system (Li-Cor Inc., Environmental Sci-
ences, Lincoln, NE, USA). Measurements were made on the youngest fully expanded leaves,
repeated three times in different tillers of each plant (n = 18 per tent; n = 36 per treatment).
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Figure 1. Wheat plants were grown in non-circulating passive hydroponic system (left) and contained
in insect rearing tents (right).

2.3. Near-Infrared Spectroscopy Measurements

A single leaf of each wheat plant (three per pot and six leaves per tent) was measured
on six different spots (n = 36 per tent; n = 72 per treatment) using a handheld near-infrared
(NIR) spectroscopy device (MicroPHAZIR™ RX; Thermo Fisher Scientific, Waltham, MA,
USA). This device measures the absorbance values within the 1596–2396 nm wavelength
range. A blank reference was used as background to calibrate the device every 10 mea-
surements and was placed on the top of the leaf while measuring to avoid recording noise
from the environment (Figure 2). The raw absorbance values were used for all analyses
presented in this study.
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2.4. Electronic Nose Measurements

A portable and low-cost electronic nose (e-nose) developed by the Digital Agri-
culture Food and Wine Group and the Department of Electrical and Electronic Engi-
neering from The University of Melbourne was used to assess volatile compounds pro-
duced by the control plants and treatments with aphids. This e-nose consists of an ar-
ray of nine sensors sensitive to different gases: (i) MQ3 (alcohol), (ii) MQ4 (methane:
CH4), (iii) MQ7 (carbon monoxide: CO), (iv) MQ8 (hydrogen: H2), (v) MQ135 (am-
monia/alcohol/benzene), (vi) MQ136 (hydrogen sulfide: H2S), (vii) MQ137 (ammonia),
(viii) MQ138 (benzene/alcohol/ammonia), and (ix) MG811 (carbon dioxide: CO2), as well
as a humidity and temperature sensor to measure the environment conditions (Figure 3;
Henan Hanwei Electronics Co., Ltd., Henan, China). The e-nose was calibrated for ~30 s
prior to recording each measurement to ensure all sensors reached the baseline and then
placed inside the tent on top of the plants to record data for 1.5 min; each tent was mea-
sured in triplicates. The output data (Volts) were then analyzed using a code written in
MATLAB® R2020a (Mathworks Inc., Natick, MA, USA) to extract the mean values of ten
segments from the highest peak of the curves as described by Gonzalez Viejo et al. [37].
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Figure 3. Electronic nose (e-nose) showing (a) the front part with gas sensors and their model
ID (Henan Hanwei Electronics Co., Ltd., Henan, China) and (b) the back part which holds the
humidity/temperature sensor; (c) Shows the e-nose positioning while taking measurements.
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2.5. Statistical Analysis and Machine Learning Modeling

Physiological and e-nose data were analyzed using ANOVA to assess significant
differences (p < 0.05) between samples; additionally, a Tukey honestly significant difference
(HSD) post hoc test (α = 0.05) was conducted using XLSTAT v.2020.3.1 (Addinsoft, New
York, NY, USA). These data were then analyzed for significant correlations (p < 0.05) based
on covariance using MATLAB® R2020a and represented with a matrix.

Several machine learning models based on artificial neural networks (ANN) were de-
veloped with three different purposes to (i) predict physiological data using e-nose outputs
and the infestation level (control: 0, low: 0.25, medium: 0.75, and high: 1) as inputs using
data from all treatments (Model 1), and only the baseline and control treatments (Model 2),
(ii) classify samples into the different infestation treatments (control, low, medium, and
high) using the NIR absorbance values (Models 3–7), and e-nose outputs (Models 8–12) as
inputs, and (iii) predict the number of aphids using the NIR absorbance values (Model 13)
and e-nose outputs (Model 14) as inputs. All models were constructed using a customized
code written in MATLAB® R2020a to test 17 different training algorithms in a loop and
find the best models based on accuracy and performance [38,39]. Furthermore, a neuron
trimming test (3, 5, 7, and 10 neurons) was performed to assess the most optimal number
of neurons to avoid under- or over-fitting of the models (data not shown). The regression
models (i, iii) consisted of a feedforward network with a hidden (tan-sigmoid function)
and an output (linear transfer function) layer. On the other hand, the classification models
(ii) consisted of a feedforward network with a hidden (tan-sigmoid function) and an output
(Softmax neurons) layer.

The best models to predict the physiological data (photosynthesis, stomatal conduc-
tance, transpiration) were developed using the Bayesian Regularization training algorithm
for regression modeling. For this, two models were developed: Model 1 using as inputs the
e-nose outputs and infestation level (control: 0, low: 0.25, medium: 0.75, and high: 1) from
all measurements and treatments (general model), and Model 2 using the e-nose outputs
from samples with no insects such as the baseline and control (Figure 4a). Data were
divided randomly as 70% for training and 30% for testing using a performance algorithm
based on means squared error (MSE).

Models to classify the samples into the different treatments (Figure 4b) using the NIR
absorbance values as inputs were developed using the Levenberg–Marquardt training
algorithm. One model was developed per day of measurement as Model 3 (baseline +
Day 3), Model 4 (Day 7), Model 5 (Day 10), Model 6 (Day 14), and Model 7 (Day 17) to assess
the level of infestation at different stages. Data were divided randomly as 70% for training,
15% for validation using a performance algorithm based on MSE, and 15% for testing. On
the other hand, models to classify the samples into the different treatments using the e-nose
outputs as inputs were constructed using the Bayesian Regularization training algorithm.
Same as the previous, one model was developed per day of measurements as Model 8
(baseline + Day 3), Model 9 (Day 7), Model 10 (Day 10), Model 11 (Day 14), and Model 12
(Day 17). Data were also divided randomly as 70% for training and 30% for the testing
stage using the MSE performance algorithm.

The Bayesian Regularization training algorithm produced the best models to predict
the number of aphids using the NIR absorbance values (Model 13) and e-nose outputs
(Model 14) from days 7 to 17 as inputs (Figure 4c). A random data division was used as
70% for training and 30% for testing with an MSE performance algorithm.
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Figure 4. Diagrams of machine learning models based on artificial neural networks showing (a) the
structure of regression Models 1 and 2; (b) Pattern recognition Models 3 to 12, and (c) Regression
Models 13 and 14. Abbreviations: W: weights; b: bias; electronic nose sensors MQ3: alcohol; MQ4:
methane; MQ7: carbon monoxide; MQ8: hydrogen; MQ135: ammonia/alcohol/benzene; MQ136:
hydrogen sulfide; MQ137: ammonia; MQ138: benzene/alcohol/ammonia; MG811: carbon dioxide.
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For Models 3–14, six support vector machine (SVM) algorithms (i) linear, (ii) quadratic,
(iii) cubic, (iv) fine Gaussian, (v) medium Gaussian, and (vi) coarse Gaussian were also
tested to compare results with ANN and find the best models. These algorithms were run
using the Classification and Regression Learner applications in MATLAB® Statistics and
Machine Learning Toolbox 12.1. Accuracy percentage for classification and correlation
coefficient (R) and MSE for regression models were considered to compare the different
ML methods/algorithms. However, only accuracy percentage and R values are reported in
results due to their lower accuracy compared to ANN. These algorithms were not tested
for Models 1 and 2 because SVM algorithms are unable to construct multi-target models,
which makes them inefficient for further deployment.

3. Results

Table 1 shows non-significant differences (p > 0.05) between treatments for baseline
measurements of any physiological parameters. For photosynthesis, at days 10 and 17,
the control was significantly higher (p < 0.05; 12.47 and 12.57 µmol m−2 s−1, respectively)
than the infested treatments. Similarly, stomatal conductance was significantly higher for
control at days 7, 10, and 17 (0.51, 0.55, and 0.62 mol m−2 s−1, respectively). On the other
hand, transpiration was significantly higher for control in all measurement days (day 3–17)
with values within the 3.60–6.00 mmol m−2 s−1 range.

Figure 5a shows that the non-infested plants presented higher absorbance values at
Days 10–17, especially within the 1900–2000 nm range, with Day 7 being the lowest. For
the infested treatments (Figure 5b), the major overtones were also within the 1900–2000 nm
range. The lowest absorbance values were at Day 7 for all low, medium, and high treat-
ments, while the highest values were found at Day 17 for the medium and high treatments.
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Figure 6 shows there were significant differences (p < 0.05) between treatments in
all measurement days for all sensors, except for MQ4 (CH4) on Day 3, MQ136 (H2S) on
Days 3, 14, and 17, and MQ8 (H2) at Days 14 and 17. It can be observed that the highest
values were found in sensors MG811 (CO2), MQ4 (CH4), MQ3 (alcohol), and MQ7 (CO).
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Table 1. Results from the physiological data of the four treatments. Numbers on the top represent the mean values, while numbers at the bottom are the standard error.

Sample/
Parameter

Photosynthesis
(µmol CO2 m−2 s−1)

Stomatal Conductance
(mol H2O m−2 s−1)

Transpiration
(mmol H2O m−2 s−1)

Measurement BL D3 D7 D10 D14 D17 BL D3 D7 D10 D14 D17 BL D3 D7 D10 D14 D17

Control
6.78 9.18 a 13.78 a 12.47 a 13.22 a 12.75 a 0.16 0.32 a 0.51 a 0.55 a 0.50 a 0.62 a 2.35 3.60 a 4.84 a 4.16 a 4.00 a 6.00 a

±0.32 ±0.01 ±0.13 ±0.30 ±0.02 ±0.12 ±0.16 ±0.01 ±0.05 ±0.25 ±0.02 ±0.09 ±0.24 ±0.02 ±0.06 ±0.28 ±0.02 ±0.06

Low
4.50 9.65 ab 11.34 b 10.49 b 11.42 b 10.27 b 0.07 0.28 a 0.35 c 0.36 b 0.37 bc 0.40 c 1.29 3.09 b 3.81 c 3.53 b 2.95 c 4.96 b

±0.23 ±0.01 ±0.09 ±0.40 ±0.02 ±0.13 ±0.41 ±0.03 ±0.16 ±0.27 ±0.02 ±0.12 ±0.27 ±0.02 ±0.10 ±0.23 ±0.02 ±0.11

Medium
7.03 7.52 c 12.19 b 10.37 b 10.70 b 10.84 b 0.15 0.16 b 0.44 ab 0.36 b 0.33 c 0.51 b 2.19 2.11 c 4.34 b 3.12 b 2.79 c 5.36 b

±0.34 ±02 ±0.16 ±0.65 ±0.02 ±0.20 ±0.19 ±0.02 ±0.13 ±0.33 ±0.03 ±0.17 ±0.34 ±0.03 ±0.19 ±0.24 ±0.03 ±0.15

High
7.03 10.93 a 13.49 a 10.67 b 13.25 a 11.07 b 0.18 0.27 a 0.44 b 0.35 b 0.44 ab 0.50 b 2.47 2.73 b 4.43 b 3.21 b 3.53 b 5.34 b

±0.37 ±0.02 ±0.15 ±0.34 ±0.01 ±0.09 ±0.22 ±0.02 ±0.07 ±0.21 ±0.02 ±0.10 ±0.25 ±0.02 ±0.09 ±0.30 ±0.02 ±0.11

Abbreviations: BL: baseline; D: Day. Different letters denote significant differences between treatments according to ANOVA (p < 0.05) and Tukey honestly significant difference post hoc test (α = 0.05).
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Figure 7 shows that both photosynthesis and transpiration had a positive and signifi-
cant correlation (p < 0.05) with MQ3 (alcohol; r = 0.45 and r = 0.65, respectively), and MQ7
(CO; r = 0.55 and r = 0.71, respectively), and a negative correlation with number of aphids
(r = −0.44 and r = −0.59, respectively) and MQ4 (CH4; r = −0.51 and r = −0.45, respec-
tively). Similarly, stomatal conductance had a positive correlation with MQ3 (r = 0.65) and
MQ7 (r = 0.69), and a negative correlation with number of aphids (r = −0.56). Transpiration
and stomatal conductance were also positively correlated with MQ8 (H2; r = 0.43). On the
other hand, number of aphids had a positive correlation with MQ4 (r = 0.52) and a negative
correlation with MQ3, MQ7, MQ8, MQ135, MQ136, MQ137, and MQ138 with correlations
within the r = −0.56–−0.81 range.
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Table 2 shows the results from the machine learning regression models to predict
physiological data (photosynthesis, stomatal conductance, and transpiration) using the
e-nose outputs and infestation level as inputs. Model 1 was constructed as a general model
using data from all treatments, and measurement days had an overall correlation coefficient
R = 0.86. It had no signs of under- or overfitting as the MSE value of the training stage
(MSE = 0.05) was lower than the testing (MSE = 0.06); however, the slope values were
medium (b = 0.76). On the other hand, Model 2, which was developed using only the data
from non-infested plants (baseline and controls), had high overall accuracy (R = 0.94) with
high slope values (b = 0.90) and no signs of under- or overfitting with training MSE = 0.02
lower than testing MSE = 0.04. The overall models are shown in Figure 8, where data
points from Model 1 (Figure 8a) are more dispersed and had 5% of outliers (216 out of 4320)
based on the 95% prediction bounds. Model 2 (Figure 8b) also presented 5% of outliers (81
out of 1620), but the slope was closer to the unity (b = 0.90). It can also be observed that for
Model 2, most of the outliers were from stomatal conductance, while in Model 1, they were
more similar for the three targets.
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Table 2. Machine learning regression models based on artificial neural networks (Bayesian Regularization) to predict
physiological data using the electronic nose outputs as inputs. Abbreviations: R: correlation coefficient; b: slope; MSE:
means squared error.

Stage Samples Observations R b Performance
(MSE)

Model 1—General (all treatments and measurement days)—10 neurons

Training 1008 3024 0.87 0.75 0.05

Testing 432 1296 0.83 0.75 0.06

Overall 1440 4320 0.86 0.75 -

Model 2—Baseline and control—10 neurons

Training 378 1134 0.95 0.90 0.02

Testing 162 486 0.93 0.90 0.04

Overall 540 1620 0.94 0.90 -
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Table 3 shows the results from the pattern recognition models to classify samples into
the different treatments (control, low, medium, and high) using the NIR absorbance values
as inputs. It can be observed that Model 3 was constructed using data from the baseline and
Day 3, and Model 6 was developed with data from Day 14; both had a very high overall
accuracy of 97%, being the lowest in accuracy compared to the other days of measurement.
Model 4 was developed using data from Day 7 presented a higher overall accuracy of 98%.
On the other hand, Models 5 and 7 had the highest overall accuracy (99%), with Model 5
being the best as it was constructed using a lower number of neurons (Model 5: 7 neurons;
Model 7: 10 neurons). None of the five models presented any signs of under- or overfitting,
and the MSE values of training (MSE < 0.01 for all) were lower than the validation and
testing, and the latter stages had similar MSE values.
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Table 3. Machine learning pattern recognition models based on artificial neural networks (Levenberg–
Marquardt) to classify samples into infestation treatment levels using the near-infrared absorbance
values as inputs. Abbreviations: MSE: means squared error.

Stage Samples Accuracy Error Performance
(MSE)

Model 3—Baseline + Day 3—10 neurons

Training 404 100% 0.0% <0.01

Validation 86 88.4% 11.6% 0.05

Testing 86 88.4% 11.6% 0.05

Overall 576 96.5% 3.5% -

Model 4—Day 7—10 neurons

Training 202 100% 0.0% <0.01

Validation 43 95.3% 4.7% 0.02

Testing 43 93.0% 7.0% 0.02

Overall 288 98.3% 1.7% -

Model 5—Day 10—7 neurons

Training 202 100% 0.0% <0.01

Validation 43 97.7% 2.3% 0.01

Testing 43 95.3% 4.7% 0.02

Overall 288 99.0% 1.0% -

Model 6—Day 14—10 neurons

Training 202 100% 0.0% <0.01

Validation 43 90.7% 9.3% 0.05

Testing 43 86.0% 14.0% 0.04

Overall 288 96.5% 3.5% -

Model 7—Day 17—10 neurons

Training 202 100% 0.0% <0.01

Validation 43 97.7% 2.3% 0.01

Testing 43 97.7% 2.3% 0.01

Overall 288 99.3% 0.7% -

Accuracy results for Models 3–7 using SVM were lower than those from ANN
Levenberg–Marquardt algorithm (Table 3). Results were within the following ranges:
(i) Linear SVM (Models 3–7: 56–74%), (ii) Quadratic SVM (Models 3–7: 80–95%), (iii) Cubic
SVM (Models 3–7: 90–92%, 88–98%), (iv) Fine Gaussian SVM (Models 3–7: 82–83%), (v)
Medium Gaussian SVM (Models 3–7: 58–65%), and (vi) Coarse Gaussian SVM (Models 3–7:
41–45%). As can be seen, the model with the highest accuracy was with quadratic SVM
(98%). However, this is lower than the ANN models, which presented the highest accuracy
of 99.3%.

Table 4 shows the results from the pattern recognition models to classify samples
into the different treatments (control, low, medium, and high) using the e-nose outputs
as inputs. It can be observed that Models 8, 9, and 11 were developed using data from
days 3, 7, and 14, respectively, and had very high overall accuracy (98%). Whilst Model 10
constructed with data from Day 10 presented the highest overall accuracy (99%). On the
other hand, Model 12, developed using data from the last day of measurements (Day 17),
presented high overall accuracy of 94%; however, it was the lowest compared to models
from previous days. All of the models were constructed using three neurons, and none
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of them presented signs of under- or overfitting as the MSE values of the training stage
(MSE < 0.01) were lower than the testing.

Table 4. Machine learning pattern recognition models based on artificial neural networks (Bayesian
Regularization) to classify samples into infestation treatment levels using the electronic nose outputs
as inputs. Abbreviations: MSE: means squared error.

Stage Samples Accuracy Error Performance
(MSE)

Model 8—Baseline + Day 3—3 neurons

Training 336 99.7% 0.3% <0.01

Testing 144 95.1% 4.9% 0.02

Overall 480 98.3% 1.7% -

Model 9—Day 7—3 neurons

Training 168 100% 0.0% <0.01

Testing 72 94.4% 5.6% 0.03

Overall 240 98.3% 1.7% -

Model 10—Day 10—3 neurons

Training 168 100% 0.0% <0.01

Testing 72 97.2% 2.8% 0.01

Overall 240 99.2% 0.8% -

Model 11—Day 14—3 neurons

Training 168 98.8% 1.2% <0.01

Testing 72 97.2% 2.8% 0.02

Overall 240 98.3% 1.7% -

Model 12—Day 17—3 neurons

Training 168 97.6% 2.4% <0.01

Testing 72 86.1% 13.9% 0.06

Overall 240 94.2% 5.8% -

Accuracy results for Models 8–12 using SVM were lower than those from ANN
Bayesian Regularization algorithm (Table 4). Results were within the following ranges:
(i) Linear SVM (Models 8–12: 75–85%), (ii) Quadratic SVM (Models 8–12: 84–96%), (iii) Cubic
SVM (Models 8–12: 88–98%), (iv) Fine Gaussian SVM (Models 8–12: 89–93%), (v) Medium
Gaussian SVM (Models 8–12: 85–94%), and (vi) Coarse Gaussian SVM (Models 8–12:
72–85%). As can be observed, the model with the highest accuracy was cubic SVM (98%).
However, this was lower than the ANN models, which presented the highest accuracy
of 99.2%.

Table 5 shows the results from regression models to predict the number of aphids
using data from Days 7 to 17. It can be observed that Model 13, developed using NIR
absorbance values as inputs, had a very high overall correlation coefficient (R = 0.97). How-
ever, Model 14, constructed with the e-nose outputs as inputs, presented higher accuracy
(R = 0.99). Both models had very high overall slope values (b = 0.97), and none showed any
signs of under- or overfitting based on the performance values. From the overall models,
Model 13 (Figure 9a) had 4.98% of outliers (43 out of 864) based on the 95% prediction
bounds with the highest number of outliers due to the low infestation treatment. Similarly,
Model 14 (Figure 9b) presented 5% of outliers (36 out of 720); however, for this model, the
highest number of outliers was due to the medium infestation treatment. The difference in
the number of aphids (target) between both models relies on the samples/measurements
as NIR was measured on each plant, while e-nose was measured per tent.
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Table 5. Machine learning regression models based on artificial neural networks (Bayesian Regular-
ization) to predict the number of aphids’ data using the near-infrared absorbance values (Model 13)
and electronic nose outputs (Model 14) from Days 7 to 17 as inputs. Abbreviations: R: correlation
coefficient; b: slope; MSE: means squared error.

Stage Samples Observations R Slope Performance
(MSE)

Model 13—NIR Day 7–Day 17—10 neurons

Training 605 605 0.99 0.97 555

Testing 259 259 0.94 0.98 3078

Overall 864 864 0.97 0.97 -

Model 14—E-Nose Day 7–Day 17—10 neurons

Training 504 504 0.99 0.98 20,014

Testing 216 216 0.98 0.94 40,125

Overall 720 720 0.99 0.97 -
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Correlation coefficients for Models 13 and 14 using SVM were lower than those from
ANN Bayesian Regularization algorithm (Table 5). Results from regression SVM were the
following: (i) Linear SVM (Model 13: R = 0.68; Model 14: R = 0.80), (ii) Quadratic SVM
(Model 13: R = 0.85; Model 14: R = 0.91), (iii) Cubic SVM (Model 13: R = 0.95; Model 14:
R = 0.89), (iv) Fine Gaussian SVM (Model 13: R = 0.80; Model 14: R = 0.97), (v) Medium
Gaussian SVM (Model 13: R = 0.73; Model 14: R = 0.92), and (vi) Coarse Gaussian SVM
(Model 13: R = 0.60; Model 14: R = 0.70). It can be observed that for the model developed
using NIR inputs, i.e., Model 13, the highest accuracy was with cubic SVM (R = 0.95), while
for the model developed using e-nose inputs, i.e., Model 14, the highest accuracy was
obtained with medium Gaussian SVM (R = 0.97). However, these were presented with
lower accuracies than the ANN models which presented R values of 0.97 (Model 13) and
0.99 (Model 14).
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4. Discussion
4.1. Physiological Response of Plants to Insect Infestation

Having no statistical differences in physiological data for the baseline with no insects
for all plants (Table 1) helped ascertain that those initial conditions were similar for all
the plants considered in the study, and no other stresses were present. Differences in
physiological data after the introduction of insects in different treatments followed a
variable pattern with not much difference for the photosynthetic rate (A), which is expected
since plants compensate by either maintaining or increasing in some conditions A due to
abiotic [40,41] or biotic stresses such as aphid attack [42].

In the case of stomatal conductance (gs) and transpiration, there were decreasing
values according to the level of insect infestation, which is in accordance with previous
studies, which have shown that gs is the most sensitive parameter to other stresses, such
as water stress [43,44], pathogen-based stress [45], and water stress–aphid interactions in
wheat [46].

4.2. Chemical Fingerprinting and Volatile Compounds’ Response to Insect Infestation

The NIR measurements offer a chemical fingerprint of the different leaf samples moni-
tored, including the baseline measurements (Figure 5a) and treatments (Figure 5b) for the
different days of the experimental trial. The main variations observable are in the overtones
corresponding to hydrogen peroxide (H2O2) in the range of 1596 and 1650 nm [47,48]
with similar absorbance levels for all treatments, which may explain the lower effect on
photosynthesis reductions. The overtones for water content (status) are shown in the major
peak within 1900–2000 nm (1940 nm) [49]. Furthermore, overtones of aromatic compounds
can be found in the range of the NIR instrument sensitivity, at 1660 nm, 1672 nm, and
1685 nm [50,51]. Compounds with amide functional groups are at 1920 nm, 1960–1980 nm,
2000–2050 nm, and 2110–2160 nm [51,52]. Overtones of urea, which is an important amide
compound, are found at 1990 nm, 2030 nm, and 2070 nm [51]; this was expected to be
found in the samples as it is a nitrogen component contained in fertilizers added to the
hydroponic solution, which is translocated through the plants.

In the case of e-nose (Figure 6), the baseline data were similar for plants and all tents
measured. However, some differences between tents were statistically significant, contrary
to the physiological data measured by gas exchange (Table 1). This can be explained by
the sensitivity and responsiveness of e-nose sensors (every 0.5 s), which depend on small
eddies formed in the growth chamber. Some sensors were more stable than others, such as
MQ4 for Day 3, corresponding to methane sensitivity. The differences in sensor readings
for subsequent days are expected, and it is assumed that their patterns are related to the
interaction between aphids and plants and the increased number of insects in time and
plant growth/decline, even small changes in the MG811 (CO2), which corresponds to
photosynthetic activity.

When analyzing the correlations between physiological parameters and the sensors
that compose the e-nose (Figure 7), it can be seen that, as expected, there is a positive
and direct correlation between photosynthesis, stomatal conductance, and transpiration.
On the contrary, there is an inverse correlation between physiological parameters and
the number of insects, which corresponds to the decline of the plants or response to
insect activity. Alcohol has been documented to be produced in plants as an allelopathic
response to insect infestation. However, salivary proteins from aphids are able to stop
this process when feeding on the plant sap [53,54]. The latter effect may explain the
inverse correlation between the number of insects and the MQ3 sensor response signal.
Furthermore, methane (MQ4) signal response increase may be due to activity of insects
and anaerobic digestion [55], which explains the inverse correlations with physiological
parameters and positive correlations with the number of insects. The carbon monoxide
sensor (MQ7) had a similar response as the alcohol sensor (MQ3), shown by the high
correlation coefficient (r = 0.89) and MQ8 (hydrogen). Most of the other sensors (MQ135,
MQ136, MQ137, and MQ138) had an inverse correlation with the number of insects. The
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inverse correlation between the ammonia sensors (MQ135, MQ137, and MQ138) may be
due to the capacity of aphids to assimilate ammonia into amino acids [56]. Finally, the levels
of CO2 (MG811) were not significantly affected by the interaction between insects and
plants. The correlations among the different sensors from the e-nose have been reported in
previous research [31], which explains in detail the e-nose used in this study.

4.3. Machine Learning Models Developed

The plant physiological machine learning model developed from e-nose data as inputs
and LiCOR data as targets for all plants and treatments (Figure 8a), and only control
plants (Figure 8b) showed high correlation coefficients and no signs of overfitting. As
far as authors ’ knowledge, this is the first time these models are presented, which use a
low-cost e-nose compared to an established gas exchange method for plant physiological
measurements. The LiCOR instrument has been used as a validation method for several
remote sensing techniques for other crops [57–60]. The accuracy of the models obtained
may not be surprising since both systems, LiCOR and the e-nose, measure gas exchange
in different ways. Furthermore, these models are supported by the correlations between
different sensors and physiological parameters (Figure 7). The lower correlation found in
the ML model, including all plants (R = 0.86), may be explained by the higher variability of
the data due to the interaction between plant and insect. Both models may be used to assess
the level of the effect of plant-insect interaction on physiological parameters and for further
applications to assess plant water stress [61], irrigation scheduling, and the physiological
effect of other biotic or abiotic stresses, such as salinity, other insects, plant diseases, and
environmental stress such as heatwaves, cold temperatures, and smoke contamination due
to bushfires [62].

The accuracy of classification ML models based on NIR and e-nose data as inputs
and level of insect infestation as targets was high and similar with over 94% accuracy
for all models and dates, with slightly higher accuracies for ML models based on e-nose
(Tables 3 and 4, respectively). Within the most important are Models 3 and 8, respectively,
since they can be considered for early detection only after three days of insect introduction
to the plants’ environments and the corresponding treatments in a critical and vulnerable
wheat phenological stage. In these models specifically, the baseline data from all plants were
used as control, which explained the higher number of samples (576 and 480, respectively).
Even though there was unbalanced data for the treatments as classifiers, the models were
able to recognize non-infected plants with 96.5% and 98.3%, respectively. All further
models can be used either to monitor insect activity or to verify the effectiveness of control
methods using either chemical pesticides [63], organic pesticides [64,65], and natural
predators through integrated pest management (IPM) [66,67].

4.4. Deployment Method for ML Models Developed Proposed Using UAV

One of the main advantages of creating AI models for the early detection of pests using
growth chambers is that data can be obtained in control conditions. Hence the ML models
developed do not include stresses related to other biotic or abiotic factors. The similarity of
models developed using NIR and e-nose validate the effectiveness of the low-cost instru-
mentation proposed by comparing them with more established instruments, such as NIR
spectroscopy; other studies have used, as a validation point, gas chromatography [20,22].

One advantage of the NIR models, especially for insect number detection, is that they
are based on the different patterns of chemical fingerprinting resulting from the plant-insect
interactions. Hence, this instrument can be used as a validation method to deploy the ML
models developed in this study to field conditions. NIR measurements in plant leaves take
just seconds and can be made on a grid of 10 × 10 m in a wheat field instead of visual insect
counting, which is extremely difficult and time-consuming [68,69]. The latter can also
be assessed using mathematical modeling strategies based on population models [36,70]
or through smartphone devices and machine vision [71], image analysis and machine
learning [72], and deep learning [73]. However, the e-nose model with R = 0.99 was more
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adequate, accurate, practical, and is a low cost method. Even though ANN models were
selected as best compared to SVM, the authors also have the latter models available for
deployment depending on future usage needs.

The deployment method for the e-nose proposed is as a payload for a UAV (Figure 10);
the advantage of the e-nose is that it weighs only 200 g, and power can be accessed via the
UAV. To assess the sensitivity and efficacy of the models, it is proposed to start flights at 5,
15, 20, and 50 m from the crop’s surface to test the ML models.
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Figure 10. Diagram showing the proposed validation and deployment of machine learning models
developed for early detection of aphids in wheat fields using an unmanned aerial vehicle and the
e-nose as payload.

5. Conclusions

The low cost and accuracy of the models presented in this study could make the early
detection of insect infestation in crop fields feasible using the UAV system proposed. The
data and models used in this study can be used as a base for deployments in wheat fields
and validation points considering other insects of interest. Further models developed
following the phenological stages of plants can be used as testing systems for agronomical
management practices for insect control, such as chemical and organic product applications,
the introduction of natural predators, and integrated pest management tools. Furthermore,
plant physiology models based on the low-cost e-nose opens the use of models to assess
other biotic and abiotic stress effects on plants for further management practices such as
fertilization, irrigation scheduling, and the general effect of climate change and climatic
anomalies, such as heatwaves, frosts, and smoke contamination due to bushfires.
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