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Bacillus endophthalmitis is a severe intraocular infection. Hallmarks of Bacillus

endophthalmitis include robust inflammation and rapid loss of vision. We reported that

the absence of Bacillus surface layer protein (SLP) significantly blunted endophthalmitis

severity. Here, we further investigated SLP in the context of Bacillus-retinal cell

interactions and innate immune pathways to explore the mechanisms by which SLP

contributes to intraocular inflammation. We compared phenotypes of Wild-type (WT)

and SLP deficient (1slpA) Bacillus thuringiensis by analyzing bacterial adherence to and

phagocytosis by human retinal Muller cells and phagocytosis by mouse neutrophils.

Innate immune receptor activation by the Bacillus envelope and purified SLP was

analyzed using TLR2/4 reporter cell lines. A synthetic TLR2/4 inhibitor was used as a

control for this receptor activation. To induce endophthalmitis, mouse eyes were injected

intravitreally with 100 CFU WT or 1slpA B. thuringiensis. A group of WT infected mice

was treated intravitreally with a TLR2/4 inhibitor at 4 h postinfection. At 10 h postinfection,

infected eyes were analyzed for viable bacteria, inflammation, and retinal function. We

observed that B. thuringiensis SLPs contributed to retinal Muller cell adherence, and

protected this pathogen from Muller cell- and neutrophil-mediated phagocytosis. We

found that B. thuringiensis envelope activated TLR2 and, surprisingly, TLR4, suggesting

the presence of a surface-associated TLR4 agonist in Bacillus. Further investigation

showed that purified SLP from B. thuringiensis activated TLR4, as well as TLR2 in vitro.

Growth of WT B. thuringiensis was significantly higher and caused greater inflammation

in untreated eyes than in eyes treated with the TLR2/4 inhibitor. Retinal function analysis

also showed greater retention of A-wave and B-wave function in infected eyes treated

with the TLR2/4 inhibitor. The TLR2/4 inhibitor was not antibacterial in vitro, and did not

cause inflammation when injected into uninfected eyes. Taken together, these results

suggest a potential role for Bacillus SLP in host-bacterial interactions, as well as in

endophthalmitis pathogenesis via TLR2- and TLR4-mediated pathways.
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INTRODUCTION

Endophthalmitis is a microbial infection of the posterior
segment of the eye (1–6). Microbes can enter this part of
the eye following a penetrating injury to the globe (post-
traumatic), surgery or intraocular injection (post-operative),
or following hematogenous spread from another infection
site (endogenous) (7–15). Hallmarks of this disease include
intraocular inflammation and retinal damage, resulting in
some degree of vision loss. Unfortunately, blindness can
occur and removal of the globe may be necessary, even
when prompt and aggressive therapeutic measures are taken
(5, 16–19). Endophthalmitis caused by Bacillus spp is more
devastating compared to endophthalmitis caused by other
bacterial pathogens associated with this disease (7, 20). Among
members of the Bacillus cereus sensu lato group (comprised of
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis),
only B. cereus and B. thuringiensis have been reported as the
causative agents of intraocular infection (21–25). Significant
vision loss has been reported to occur in the majority of Bacillus
endophthalmitis cases, with half of those devastating cases
resulting in removal of the globe (enucleation) (26–32). Bacillus
endophthalmitis is indeed a medical emergency, and its rapid
and severe course requires immediate therapeutic attention to
prevent further deterioration of the eye (33–36). At present, there
is no consistently effective therapeutic strategy which mitigates
vision loss during severe cases of endophthalmitis, including
those caused by B. cereus (16, 17, 37–41). The practice of adding
anti-inflammatory agents to antibiotics has not proven effective
in arresting inflammation and vision loss (42–45). It is clear
that other therapeutic strategies are needed to prevent the sight-
threatening consequences of this infection.

B. cereus spp are Gram-positive, motile, β-hemolytic, spore-
forming rods, and are widely disseminated in nature (23, 24).
We reported that the Bacillus cereus cell wall, and secreted toxins
and proteases contributed to the pathogenicity of experimental
endophthalmitis (5, 19, 46, 47). The PlcR quorum sensing
system controls the synchronized synthesis of a majority of
these extracellular virulence factors and is therefore important in
Bacillus intraocular virulence (48–51). The absence of individual
B. cereus toxins did not blunt intraocular virulence (19, 47).
However, in the absence of PlcR, we observed delayed evolution,
but not complete attenuation of Bacillus endophthalmitis,
suggesting the contribution of the bacterial cell wall or other
components to this disease (49).

We reported that metabolically inactive B. cereus triggered

robust intraocular inflammation, suggesting that cell wall
components contribute to the activation of pro-inflammatory

pathways (5). B. cereus have an architecturally unique envelope.
In addition to peptidoglycan, lipoteichoic acid, and lipoproteins,

which are all common among Gram-positive ocular pathogens,

the envelope of some B. cereus has flagella and a paracrystalline
surface protein called the S-layer protein (SLP) (52–56).

Structurally, SLPs are widely diverse among species and sequence
similarities from different species are low.

Since SLPs are major surface antigens, the contributions of
SLPs to microbial pathogenesis have been studied in some model
organisms (56–63). As the outermost layer of the surface of

some bacterial strains, SLPs promote adherence of bacteria to
cell membranes and extracellular matrix components, and also
contribute to biofilm formation (64–68). SLPs also act as barrier,
protecting bacteria from complement-mediated phagocytosis
and killing (69–72). A recent report from our laboratory
demonstrated that the absence of Bacillus SlpA significantly
reduced endophthalmitis disease severity in mice (73). We also
demonstrated that Bacillus SLP preparations activated nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB)
and induced the expression of inflammatory mediators from
retinal cells (73). However, the underlying mechanisms by which
SLPs impact endophthalmitis pathogenesis remains unclear.

The ocular environment is immune privileged, and its inner
tissues contain different types of cells that not only maintain the
structural integrity and homeostasis of this tissue, but also act as
innate immune cells which express several innate receptors (74–
81). During endophthalmitis, TLRs on retinal cells sense invading
microbes and induce the production of inflammatory mediators,
which leads to recruitment of polymorphonuclear neutrophils
(PMN) into the eye (79, 82–84). Almost all TLRs signal through
the myeloid differentiation primary response gene-88 (MyD88)
dependent pathway. In addition to MyD88 pathway, TLR4
can mediate signaling through the Toll/interleukin-1 receptor
(TIR) domain containing adaptor-inducing interferon-β (TRIF)
pathway (85–88). We reported that the inflammatory response
in Bacillus endophthalmitis is primarily facilitated through TLR2
and TLR4, but not through TLR5 (89–91). The absence of
TLR2 or TLR4 resulted in less PMN infiltration, inflammatory
mediator production, and pathological damage during Bacillus
endophthalmitis (90, 91). Blocking TLRs in this disease may
effectively blunt inflammation. Identifying B. cereus ligands that
trigger these innate pathways may help us to more clearly
understand the pathological events of this disease.

Bacillus endophthalmitis is at or near the top of the list of
rapidly blinding ocular diseases, but the level of understanding
of the host/pathogen relationship in this disease is fairly
limited. The earliest host response in Bacillus endophthalmitis
is the activation of TLRs that drive the intense intraocular
inflammation. Since SLPs activated NF-κB and triggered the
production of proinflammatory mediators in human retinal
Muller cells, we hypothesized that B. cereus SLPs initiate early
events in endophthalmitis pathogenesis through interactions
with retinal cells and by activating innate pathways. Results from
this study will broaden our understanding about the mechanisms
of early and potentially damaging immune response and may
aid in the development of potential therapeutics to prevent
inflammation and vision loss during Bacillus endophthalmitis.

MATERIALS AND METHODS

Bacterial Strains
B. thuringiensis subsp. galleriae NRRL 4045 (WT) or its
isogenic SLP deficient mutant (1slpA) (73, 92) were used to
initiate experimental endophthalmitis in mice, as previously
described (89–91, 93–98). Staphylococcus aureus strain 8325-
4, Enterococcus faecalis strain E99, Staphylococcus epidermidis
ATCC 12228, and Streptococcus pneumoniae strain TIGR4 were
used for the preparation of bacterial cell envelopes.
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Bacterial Adherence Assay
To quantify bacterial attachment to human retinal Muller cells
(MIO-M1; a kind gift from Dr. Astrid Limb, UCL Institute
of Ophthalmology, London), human retinal pigment epithelial
cells (ARPE-19; American Type Culture Collection, Manassas,
VA), and retinal photoreceptor-like 661W cells (99), we used an
aerobic bacterial adherence assay. Immortalized human retinal
pigmented epithelial (ARPE-19) and Muller cells were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM)/F-12 (GIBCO,
Grand Island, NY) supplemented with 10% fetal bovine serum
(FBS, Sigma Aldrich, St. Louis MO) and 1% Pen Strep (GIBCO)
Retinal photoreceptor-like 661W cells were cultured in DMEM
containing GlutaMAXTM-l (GIBCO), supplemented with 10%
(v/v) FBS (100–103). All cells were maintained in a humidified
5% CO2 incubator at 37

◦C.
Confluent monolayers of each of these cell types (∼2 × 106

cells) were grown in 6-well plates, and transferred to antibiotic-
and serum-free DMEM 6h prior to performing the adherence
assay. Overnight cultures of WT and 1slpA B. thuringiensis were
harvested by centrifugation and washed twice with DMEM to
exclude the effects of secreted proteins, including any toxins.
Antibiotic- and serum-free mediumwere removed from the cells,
and bacteria were added to the wells at a multiplicity of infection
(MOI) of 20 in a total volume of 2ml DMEM. Equal numbers of
WT and 1slpA B. thuringiensis bacteria were added to cell free
wells as controls. Cell-free controls were used to verify whether
bacteria adhered to the plastic surface of the six- well plates.
After a 40min incubation in a humidified 5% CO2 incubator
at 37◦C, retinal cells and adherent bacteria were washed twice
with PBS. Adherent cells were then removed with a tissue cell
scraper, vortexed, and serially diluted to quantify the adherent
bacteria. The percent of adherent bacterial cells was calculated as
the ratio of recovered bacteria to input bacteria multiplied by 100
(63, 66, 67, 104).

Isolation of Primary Neutrophils From Mice
Primary neutrophils were collected from mouse bone marrow
by using a neutrophil isolation kit (MACS, Miltnyl Biotech,
Gladbach, Germany) according to the manufacturer’s
instructions. Femurs were harvested from adult C57BL/6J
mice. Bone marrow was collected in a 50mL Falcon tube
containing RPMImedia (GIBCO) with 10% FBS (Sigma Aldrich)
using a 10ml syringe. The bone marrow was then centrifuged
and washed with wash buffer (PBS, pH 7.2, 0.5% bovine serum
albumin (BSA), and 2mM EDTA). Cells were counted using a
hemocytometer. For every 5 × 107 total cells, 200 µL of wash
buffer and 50 µL neutrophil biotin-antibody cocktail were
added. Cells were mixed and incubated for 10min at 4◦C. Cells
were then washed and the pellet was resuspended in 400 µL of
wash buffer and 100 µL of anti-biotin microbeads. Cells were
mixed and incubated at 4◦C. After 15min, cells were washed
and resuspended to 108 cells in 500 µL of buffer. For magnetic
separation, an appropriate MACS column and separator were
chosen according to the number of total cells and number
of neutrophils. The LS column was used and placed inside a
MACS separator. A 15mL tube was placed under the column
and the column was washed with 3mL of wash buffer. When

the wash buffer was completely removed, the 15mL tube was
replaced with a new one. The total sample (500 µL) was then
loaded onto the column, and 3mL of wash buffer was added
3 times onto the column and cells were collected. Cells were
counted and centrifuged at 100 × g for 10min, and resuspended
in RPMI medium (96, 105, 106). One group of isolated cells
was then immunolabeled with Ly6G and CD11 antibodies,
washed, and fixed as previously described (107). Samples were
analyzed using a MacsQuant flow cytometer and MacsQuantify
software (Miltenyi Biotec). Neutrophil purity in each isolation
was∼85.6%.

Bacterial Phagocytosis Assay
Human retinal Muller cells (MIO-M1), neutrophil like HL-
60 cells, and mouse primary neutrophils were used in a
gentamicin exclusion assay to assess the impact of SLPs on
phagocytosis. Undifferentiated HL-60 cells were differentiated
into neutrophil like-cells by adding 1.3% DMSO for 6 days
(108–110). After 6 days, cells had neutrophil-like morphology,
as confirmed by microscopy (5). Approximately 1×105 of these
cells were incubated at 20 MOI (∼2 × 106) with WT or 1slpA
B. thuringiensis for 90min. One group of cells was washed
and treated with 200µg/mL gentamicin for 60min to kill all
extracellular bacteria, and another group of cells was centrifuged,
washed and lysed with 0.5% Triton X-100. This later group
contained intra- and extracellular bacteria. After 60min, the
gentamicin-treated cells were centrifuged, washed to remove
the residual antibiotic, and lysed with 0.5% Triton X-100. This
group represented only the intracellular bacteria. Equal numbers
of WT and 1slpA B. thuringiensis (∼2 × 106 in 2mL) were
incubated with 200µg/mL gentamicin for 60min and used as a
control (96, 104, 111). CFU were enumerated by serial dilution
and plating.

Preparation of Bacterial Cell Envelopes
B. thuringiensis subsp. galleriaeNRRL 4045 (WT) and its isogenic
SLP deficient mutant (1slpA), S. aureus 8325-4, E. faecalis E99,
and S. epidermidis strain ATCC 12228 were each grown for 18 h
at 37◦C in brain heart infusion (BHI; VWR, Radnor PA) broth
and 20 µl aliquots were removed, serially diluted, and plated to
quantify bacteria. S. pneumoniawas grown in Todd Hewitt Broth
(THB; VWR) with 0.5% yeast extract and also grown for 18 h at
37◦C. Cultures were harvested by centrifugation at 3,000 × g for
15min at 4◦C, and washed twice with PBS (pH 7.4) in endotoxin
free water (HyPure cell culture grade water, GE Healthcare Life
Science, LoganUT). Pellets were resuspended with equal volumes
of PBS and heat inactivated at 65◦C for 15min. Sterility was
tested by spread plating an aliquot of each culture onto a BHI
agar plate. Cells were then centrifuged at 3,000 × g for 15min,
and pellets were washed twice with equal volumes of PBS. The
bacterial pellets were then lyophilized, resuspended with equal
volumes of PBS, and diluted to the required concentrations for
use in the TLR2 and TLR4 reporter assays (5, 73, 112).

Purification of Bacillus SLP
WT and 1slpA B. thuringiensis were grown for 18 h at 37◦C
in BHI, harvested by centrifugation at 3,000 × g for 15min at
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4◦C, and washed twice with chilled HyPure cell culture grade
water (GE Healthcare Life Science). As previously described,
pellets were then resuspended in 1/10th of the initial volume
of 3M guanidine hydrochloride (GHCL; pH 2.5; Sigma Aldrich)
and incubated at 37◦C for 1 h. The extracted SLP was separated
from the pellets by centrifugation at 18,000 × g at 4◦C
for 15min. Supernatants were dialyzed (Pur-A-LyzerTM 50kDa
dialysis kit, Sigma Aldrich) against 2L of tris/HCL (pH 8.0;
Research Products International Corporation, Mt. Prospect,
IL) at 4◦C for 24 h with four exchanges of dialysis buffer to
remove residual GHCL. Protein concentrations were quantified
by bicinchoninic acid assay (Sigma Aldrich) according to the
manufacturer’s instructions. Endotoxin levels were quantified
using the Pierce LAL chromogenic endotoxin kit (ThermoFisher
Scientific, MA) according to the manufacturer’s instructions.
Purity was confirmed by PAGE and Coomassie staining, as
previously described (73, 92).

TLR2/TLR4 Reporter Assay
HEK-BlueTM cells were purchased from Invivogen (San Diego,
CA) and used as previously described (73). HEK-BlueTM hTLR2
and HEK-BlueTM hTLR4 were used for the recognition of
TLR2 and TLR4 agonists, respectively. hTLR2 and hTLR4
cells were cultured (up to 20 passages) in DMEM containing
GlutaMAXTM-l (GIBCO), supplemented with 10% (v/v) FBS
(Sigma Aldrich) and HEK-Blue Selection antibiotics (Invivogen)
in a humidified 5% CO2 incubator at 37◦C. hTLR2 and hTLR4
reporter cell lines were treated with bacterial envelopes, or SLP
fractions from WT or 1slpA B. thuringiensis with or without
the synthetic TLR2/4 inhibitor OxPAPC (Invivogen) to assess
receptor activation/inhibition (73, 89).

B. thuringiensis, S. aureus, S. epidermidis at 106 envelopes/20
µl, and E. faecalis and S. pneumoniae at 108 envelopes/20 µl
were used to assess TLR2/4 activation. The envelope inoculum
number was determined based on the equivalent number of
viable organisms present during early infection (5). To measure
the TLR2/4 activation by purified SLP, 10µg/ml SLP from WT
B. thuringiensis was used. The SLP fraction from 1slpA B.
thuringiensis was used as an extract control. In both assays,
Pam3Csk4 (0.25 ng/mL; Invivogen) was used as a positive control
for the hTLR2, and a negative control for the hTLR4 reporter
assays. LPS (100 ng/mL; Invivogen) was used as a positive control
for the hTLR4, and a negative control for the hTLR2 reporter
assays. Endotoxin free water (GE Healthcare Life Science) was
used as a negative control for both hTLR2 and hTLR4 reporter
assays. To inhibit TLR2/4 activation, an oxidized phospholipid
OxPAPC (0.15µg/µL) was used with Pam3Csk4, LPS, and
purified SLP (113). Samples, controls, and inhibitors (20 µL)
were added to appropriate wells of 96-well plates. hTLR2 and
hTLR4 reporter cells at 50 to 80% confluency were washed with
pre-warmed PBS (pH 7.4; GIBCO). After detaching the cells with
PBS, hTLR2 cells were resuspended to 5.0 × 104 and hTLR4
cells to 2.5 × 104 in 180 µl of HEK-BlueTM Detection medium
(Invivogen). For the OxPAPC-treated groups, 5.0 × 104 /160
µl hTLR2 and 2.5 × 104/160 µl hTLR4 cell suspensions were
prepared. Each cell suspension was immediately added into the
appropriate wells of the 96-well plates, and incubated for 14 h at
37◦C in 5% CO2. Activation of TLR2 and TLR4 (production of

SEAP) was measured using a spectrophotometer at 620-655nm.
TLR2/4 activation was presented as percent of TLR2/4 activation
relative to the positive controls Pam3Csk4 and LPS (73, 89, 114).

Mice and Intraocular Infection
All in vivo experiments were performed with C57BL/6J mice
purchased from Jackson Labs (Bar Harbor ME, Stock No.
000664). Mice were housed on a 12 h on/12 h off light cycle
in biohazard level 2 conditions and acclimated for at least 2
weeks to equilibrate their microbiota. Mice were 8–10 weeks of
age at the time of the experiments. Mice were sedated using a
combination of ketamine (85 mg/kg body weight; Ketathesia,
Henry Schein Animal Health, Dublin, OH) and xylazine (14
mg/kg body weight; AnaSed, Akorn Inc., Decatur, IL). Four
groups of C57BL/6J mice were used in this experiment. The
first two groups of mice were infected with 100 CFU WT B.
thuringiensis/0.5 µl BHI, and the third group was infected with
100 CFU 1slpA B. thuringiensis/0.5 µl BHI into the right eye
using a sterile glass capillary needle, as previously described
(73, 89–91, 93, 95–98). The fourth group was not infected. At
4 h postinfection, the second group of infected mice and fourth
group of uninfected mice were intravitreally treated with 30
ng/µL OxPAPC. At 10 h postinfection, electroretinography was
performed prior to euthanasia by CO2 inhalation, and then eyes
were harvested for quantitation of viable intraocular bacteria,
retinal function, and PMN infiltration, and analysis of ocular
architecture by histology, as described below.

Intraocular Bacterial Quantitation
As previously described (73, 89–91, 93, 94, 96–98), eyes
were harvested from euthanized mice at specific time points,
homogenized in 400 µl PBS with sterile 1-mm glass beads
(BioSpec Products, Inc., Bartlesville OK), serially diluted 10-fold
in PBS, and plated onto BHI agar plates.

For in vivo bacterial growth analysis at different time points,
experimental endophthalmitis was induced by intravitreally
injecting approximately 100 CFU WT B. thuringiensis in 0.5 µl
BHI into the right eyes of mice. At 4 h postinfection, one group
of infected eyes was treated with OxPAPC, and another group
served as the untreated control. At 2 h intervals thereafter, eyes
were harvested for quantitation of intraocular bacterial growth
(73, 89–91, 93, 94, 96–98).

In vitro Bacterial Quantitation
Potential antimicrobial activity of OxPAPC was assessed in vitro.
WT B. thuringiensis was cultured for 18 h at 37◦C with aeration
in BHI medium. The culture was then diluted to 103 CFU/mL in
fresh BHI containing 0.1, 1, or 10µg/mLOxPAPC, and incubated
for 18 h at 37◦C. At 2 h intervals during this period, 20µl aliquots
were serially diluted 10-fold in PBS, and plated onto BHI agar
plates (73, 93).

Retinal Function Analysis
Electroretinography (ERG) was used to quantify retinal function
as previously described (5, 47, 51, 73, 91, 93, 94, 96,
97) in Bacillus-infected and OxPAPC-treated eyes. After
infection/treatment, mice were dark adapted for 6 h. Mice were
then anesthetized as described above, and pupils were dilated
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with topical phenylephrine (Akorn, Inc., IL). Two gold wire
electrodes were placed onto each cornea. Reference electrodes
were attached to the tail and forehead. Eyes were then stimulated
by five flashes of white light (1,200 cd s/m2) and retinal responses
were recorded as A-wave (retinal photoreceptor cell function)
and B-wave (bipolar cell, Muller cell, and second order neuronal
function) amplitudes for infected eyes and compared with
the uninfected eyes of the same animal (Espion E2 software,
Diagnosys LLC, Lowell MA) (5, 47, 51, 73, 91, 93, 94, 96, 97).

Histology
Infected/treated eyes were harvested from euthanized mice at
10 h postinfection. Harvested eyes were incubated in High
Alcoholic Prefer fixative for 30min, and then transferred to 70%
ethanol. Paraffin-embedded eyes were sectioned and stained with
hematoxylin and eosin (H&E) (73, 89, 90, 94, 96–98).

Inflammatory Cell Influx
Inflammatory cell infiltration was estimated by quantifying
myeloperoxidase (MPO) using a sandwich ELISA (Hycult
Biotech, Plymouth Meeting PA), as previously described.
At 10 h postinfection, eyes were harvested, transferred into
PBS supplemented with proteinase inhibitor cocktail (Roche
Diagnostics, Indianapolis, IN) and homogenized using 1-mm
sterile glass beads (BioSpec Products, Inc.). Uninfected eye
homogenates were the negative controls. The lower limit of
detection for this assay was 2 ng/ml (73, 89, 91, 96–98).

Statistics
GraphPad Prism 7 was used for the statistical analysis (Graph-
Pad Software, Inc., La Jolla, CA). Mann-WhitneyU-test was used
for statistical comparisons unless otherwise specified. P-values of
<0.05 were considered significant (93, 94, 96, 115). For all assays,
N-values represented single biological replicates.

RESULTS

SlpA Contributes to the Adherence of
Bacillus to Retinal Cells
As Bacillus migrate within the posterior segment of the eye,
organisms physically interact with retinal cells (5, 73). The first
step in this interaction is adherence, and we hypothesized that
SLPs mediated that interaction. An experiment to evaluate the
role of SlpA in bacterial attachment to retinal cells is depicted in
Figure 1. In the absence of SlpA, significant reductions in percent
1slpA B. thuringiensis adherence were seen with human retinal
Muller MIO-M1 cells (P < 0.0001, Figure 1A), retinal pigment
epithelial cells (ARPE-19) (P = 0.0022, Figure 1B), and retinal
photoreceptor-like 661W cells (P= 0.0022, Figure 1C) compared
to that of WT B. thuringiensis. No bacteria were recovered from
cell-free controls, suggesting no adherence to the plastic surface
of the wells. These findings demonstrated that SlpA contributed
to bacterial adherence to retinal cells, suggesting that SLPs may
play a role in bacterial adherence to retinal cells during the early
stage of Bacillus endophthalmitis.

SlpA Protects Bacillus From Phagocytosis
Interactions between Bacillus and retinal and immune cells
may be important in initiating the subsequent immune
response. A gentamicin (Gen) exclusion phagocytosis assay
was used to determine the role of SlpA in internalization
by human retinal Muller cells (MIO-M1), neutrophil like
HL-60 cells, and mouse primary neutrophils (Figure 2).
Significant increases in internalization of 1slpA B. thuringiensis
were seen with human retinal Muller cells (P = 0.0122,
Figure 2A), neutrophil like HL-60 cells (P = 0.0049, Figure 2B),
and mouse primary neutrophils (P = 0.0002, Figure 2C)
compared to that of WT B. thuringiensis. No bacteria were
recovered after the incubation with gentamicin, indicating
that WT and 1slpA B. thuringiensis were susceptible to the
antibiotic. Taken together, these results demonstrated that
SlpA directly interfered with internalization by human retinal
Muller cells and professional phagocytic cells, suggesting that
SLP may protect the pathogen from phagocytosis during
active infection.

Bacillus Envelope Contains an Unexpected
TLR4 Agonist
Mice which lack functional TLR2 or TLR4 have a reduced
intraocular inflammatory response upon intravitreal challenge
with Bacillus (90, 91), suggesting that this organism interacts
with those receptors. Here, we investigated whether the
envelopes of common Gram-positive endophthalmitis
pathogens (WT and 1slpA B. thuringiensis, S. aureus, S.
epidermidis, E. faecalis, and S. pneumoniae) activated TLR2
and TLR4 in hTLR2 or hTLR4 reporter cell line assays
(Figure 3). Envelope preparations from all five species
activated TLR2 (Figure 3A). Surprisingly, only WT B.
thuringiensis envelopes significantly activated TLR4 (P =

0.0286), whereas other Gram-positive endophthalmitis
pathogens did not (Figure 3B). Activation of TLR4 was
significantly higher (P = 0.0286) in WT B. thuringiensis
than 1slpA. These results suggest that the Bacillus envelope
possesses universal TLR2 agonists and one or more unexpected
TLR4 agonists.

SLP of Bacillus Is Necessary for Activation
of Both TLR2 and TLR4
SLP from WT B. thuringiensis induced inflammatory mediator
expression from retinal Muller cells by activating the canonical
NF-κB pathway (73). Since the envelope of B. thuringiensis
activated TLR2/4, we next determined whether its SLP activated
TLR2 and TLR4 in similar assays. Purified SLP from WT B.
thuringiensis activated TLR2 to a significantly higher degree than
the extract control from 1slpA B. thuringiensis (P = 0.0003;
Figure 4A). Purified SLP from B. thuringiensis also significantly
activated TLR4 to a greater degree than did the extract control
from 1slpA B. thuringiensis (P = 0.0003; Figure 4B). To further
evaluate the activation of TLR2 and TLR4 by SLP, we included an
oxidized phospholipid (OxPAPC) in the reporter assay to inhibit
the activation of both TLR2 and TLR4. OxPAPC significantly
inhibited TLR2 activation by the TLR2 agonist Pam3Csk4 and by
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FIGURE 1 | Bacillus SLP contributes to adherence to retinal cells in vitro. Three different retinal cell types were incubated with WT B. thuringiensis or 1slpA B.

thuringiensis for 40min to assess bacterial adherence. Compared to WT, 1slpA B. thuringiensis demonstrated a significant reduction in adherence to (A) human

retinal Muller MIO-M1 cells, (B) human retinal pigment epithelial (ARPE-19) cells, and (C) retinal photoreceptor-like 661W cells. WT and 1slpA B. thuringiensis in

cell-free wells served as controls. Values represent the mean ± SEM of N ≥ 5 for at least two separate experiments; *P < 0.05.

FIGURE 2 | Bacillus SLP provides protection from phagocytosis. Muller cells, neutrophil-like HL60 cells, and mouse primary neutrophils were incubated with WT or

1slpA B. thuringiensis for 90min. Cells were then treated with gentamicin for 60min to kill external bacteria. Compared to WT B. thuringiensis, internalization of 1slpA

B. thuringiensis was significantly greater by (A) human retinal Muller cells, (B) neutrophil-like HL-60 cells, and (C) mouse primary neutrophils. Gen+, Gentamicin

treated; Gen-, Gentamicin untreated. Values represent mean ± SEM of N ≥ 5 for at least two separate experiments; *P < 0.05. Dashed lines represent the initial

bacterial inoculum.

purified SLP from WT B. thuringiensis (P = 0.0022; Figure 4C).

OxPAPC also significantly reduced the activation of TLR4 by
LPS and by purified SLP (P = 0.0022; Figure 4D) SLP-mediated

TLR2 and TLR4 activation in OxPAPC treated groups were 74.7

and 70.7% lower than TLR2 or TLR4 activation in the untreated

groups, respectively. Together these findings demonstrated that

SLPs not only activated TLR2, but also TLR4. This suggests

that SLP is a potent stimulator of both TLR2 and TLR4 innate
pathways, and may contribute to the production of inflammatory
mediators during experimental endophthalmitis.

Inhibition of TLR2/4 Activation Resulted in
Reduced Bacterial Burden During
Experimental Bacillus Endophthalmitis
There were no changes the intraocular bacterial burden in
TLR2−/− or TLR4−/− mice infected with B. cereus (90, 91).
Here, we investigated whether inhibition of both TLR2 and
TLR4 activation affected bacterial growth during experimental
endophthalmitis. Figure 5A depicts the experimental design.
Inhibition of the TLR2/4 pathways by OxPAPC significantly
reduced the bacterial load in WT infected mouse eyes relative
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FIGURE 3 | Bacillus envelope possesses an unexpected TLR4 agonist. HEK-BlueTM hTLR2 and hTLR4 reporter cells were incubated with envelope preparations of

WT or 1slpA B. thuringiensis, S. aureus, S. epidermidis, E. faecalis, or S. pneumoniae for 14 h at 37◦C in 5% CO2 (A) The envelopes of WT and 1slpA B.

thuringiensis, S. aureus, S. epidermidis, E. faecalis, and S. pneumoniae activated TLR2. (B) Among the five Gram-positive endophthalmitis pathogens, only the

envelopes of WT B. thuringiensis activated TLR4. Values represent mean ± SEM of N ≥ 4 for at least two separate experiments; *P < 0.05.

to that of untreated eyes (P = 0.0007; Figure 5B) at 10 h
postinfection. There was no difference in bacterial load observed
between WT and 1slpA infected mouse eyes (P = 0.3680;
Figure 5B). At this time, the growth rates of WT and 1slpA
B. thuringiensis infected eyes (2.2 and 1.9 h−1) were faster than
that in the WT-infected and OxPAPC treated eyes (0.76 h−1).
To determine whether OxPAPC possessed bactericidal activity,
we analyzed WT B. thuringiensis growth in the presence of
increasing concentrations (0.1, 1, and 10µg/mL) of OxPAPC. As
shown in Figure 5C, OxPAPC did not alter bacterial growth in
vitro at any of the concentrations tested. To investigate whether
this phenomenon of reduced bacterial load only occurred in
vivo, we assessed bacterial growth at varying time points after
infection after treatment with OxPAPC and observed that
bacterial concentrations were significantly lower in OxPAPC
treated groups at 8 h (P = 0.0260), 10 h (P = 0.0043) and
12 h (P = 0.0152) postinfection (Figure 5D). Taken together,
these findings demonstrated that inhibition of TLR2/4 activation
contributed to reduced bacterial burden during experimental
Bacillus endophthalmitis.

Retinal Function Improved in the Absence
of TLR2/4 Activation by SLP During
Experimental Bacillus Endophthalmitis
Since the absence of individual TLRs (TLR2 or 4) and their
adaptors (MyD88 and TRIF) resulted in retained retinal function
in experimental Bacillus endophthalmitis (90, 91, 97), we
investigated whether inhibition of both TLR2/4 by OxPAPC
would have a similar outcome. Analysis of retinal function and
the representative waveforms of eyes infected with WT, WT-
infected and OxPAPC-treated, 1slpA B. thuringiensis-infected,

and OxPAPC-treated only is depicted in Figure 6. The A-wave
amplitudes were significantly reduced in WT-infected eyes at
10 h postinfection (P < 0.05) to a retained response of ∼29%.
Compared to WT-infected eyes, WT-infected/OxPAPC-treated,
1slpA-infected, and OxPAPC-treated eyes showed significant
retention of retinal function. At 10 h postinfection, the retained
response of A-wave function in these groups was ∼100%
(Figure 6A). The B-wave amplitudes were significantly reduced
in the WT B. thuringiensis-infected eyes at 10 h postinfection
(P < 0.05) to a retained response of ∼18% (Figure 6B). This
response in eyes infected/treated with WT/OxPAPC, 1slpA
B. thuringiensis, and OxPAPC was retained to a significantly
greater degree compared to that of WT-infected and untreated
eyes. The retained responses of B-waves among these groups
at 10 h postinfection was ∼79%. Representative waveforms
demonstrating the differences in A- and B-wave amplitudes
of eyes in these groups at 10 h postinfection are shown in
Figures 6C,D. Together, these results demonstrated that WT-
infected eyes treated with the TLR2/4 inhibitor OxPAPC
retained greater retinal function compared to untreated WT
B. thuringiensis-infected eyes. These results suggested that the
activation of TLR2 and TLR4 innate pathways by SLP influenced
the loss of retinal function during experimental endophthalmitis.

Inflammation Was Reduced and Ocular
Architecture Was Preserved in the Absence
of TLR2/4 Activation by SLP During
Experimental Bacillus Endophthalmitis
PMN are the primary infiltrating cell type recruited to the
site of infection during Bacillus endophthalmitis (6, 82, 98).
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FIGURE 4 | Bacillus SLP is a potent activator of TLR2 and TLR4. (A) SLP from

WT B. thuringiensis activated TLR2 to a significantly greater degree than did

the extract control (1slpA). LPS, a TLR4 agonist, was used as a negative

control. (B) WT SLP significantly activated TLR4 compared to the extract

control (1slpA). Pam3Csk4, a TLR2 agonist, was used as a negative control.

(C) Treatment with OxPAPC significantly inhibited TLR2 activation by the

positive control Pam3Csk4 and WT SLP. (D) Treatment with OxPAPC

significantly inhibited TLR4 activation by the positive control LPS and WT SLP.

Values represent mean ± SEM of N ≥ 5 for at least two separate experiments;

*P < 0.05.

Here, we examined the degree of inflammatory cell influx
and retinal damage in WT-infected, WT-infected/OxPAPC-
treated, 1slpA B. thuringiensis-infected, and OxPAPC-treated
eyes (Figure 7). PMN infiltration in the eye was estimated by
quantifying myeloperoxidase (MPO) in eye homogenates. MPO
concentrations were significantly greater at 10 h postinfection in
WT-infected eyes compared to that of WT-infected/OxPAPC-
treated (P= 0.0016),1slpA-infected (P= 0.0022), and OxPAPC-
treated (P= 0.0022) eyes (Figure 7A). The levels of MPO inWT-
infected/OXPAPC treated,1slpA-infected, andOXPAPC-treated
eyes were 9-fold, 8-fold, and 38-fold lower compared to that
of untreated WT-infected eyes. These results demonstrated that
infection with 1slpA B. thuringiensis and inhibition of the TLR2

and TLR4 pathways during experimental endophthalmitis each
resulted in reducedMPO levels, indicating less PMN recruitment
in these eyes.

A histological comparison of WT-infected, WT-
infected/OxPAPC-treated, 1slpA-infected, and OxPAPC-treated
eyes is depicted in Figure 7B. At 10 h postinfection, the anterior
and posterior segments of WT-infected/OxPAPC-treated,
1slpA-infected, and OxPAPC-treated eyes were similar. The
corneas and posterior segments of eyes in these groups had
no inflammation and intact retinas. In contrast, untreated eyes
infected with WT B. thuringiensis had substantial accumulation
of infiltrating cells and fibrin in the posterior segment.
Corneas in these eyes had significant edema, and retinal layers
were detached and often indistinguishable. Together, these
findings demonstrated that inhibition of the TLR2 and TLR4
pathways and infection with SlpA-deficient B. thuringiensis
in experimental endophthalmitis had a similar outcome. In
both cases, inflammation was reduced and ocular architecture
was preserved. Taken together, these results suggest that SLP
contributes to the pathogenesis of Bacillus endophthalmitis via
TLR2 and TLR4.

DISCUSSION

The host-pathogen interaction is an early event that dictates the
severity and outcome of an infectious disease (116). Although
the ocular environment is an immune-privileged site, innate
ocular immune defense mechanisms are capable of responding to
invading pathogens (74, 75, 77, 78). Ocular defense mechanisms
can be easily overwhelmed by infection with a pathogen that
cannot be effectively cleared from the eye. B. cereus intraocular
infection produces a more robust inflammatory response than
other ocular bacterial pathogens such as S. aureus, E. faecalis,
S. epidermidis, S. pneumoniae, E. coli, and Klebsiella pneumoniae
(7, 73, 82, 117). In Bacillus endophthalmitis, within 4 h, PMNs
move into the vitreous, and within 8 h into the retinal layers.
PMNs not only can disrupt vision through bystander effects on
cells in the retina, but their presence in the vitreous can also
block the clarity of the visual axis (82, 98). Though Bacillus
endophthalmitis is a rare intraocular infection, the potential to
cause blindness is high, and better therapeutic strategies are
needed to improve visual outcomes.

Compared to the envelopes of other Gram-positive
intraocular pathogens, the envelope of Bacillus contains unique
components such as flagella, pili, and a protein coat composed
of SLPs (53–55, 60). Flagella aid in the rapid movement of
Bacillus throughout all parts of the eye, from the initial site
of infection into the anterior segment within 6–12 h (89). The
absence of motility affected toxin production, and therefore,
non-motile B. cereus caused less severe disease pathogenesis
(19). We also reported that infection with pili-deficient B.
cereus led to a reduced inflammatory response in the eye,
suggesting the importance of pili in that aspect of this disease
(93). In a recent report (73), we demonstrated that while
the absence of SlpA did not change the growth, cytotoxicity,
motility, hemolytic properties, or cell wall composition of
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FIGURE 5 | OxPAPC treatment resulted in reduced intraocular bacterial load during Bacillus endophthalmitis. (A) Experimental design of in vivo inhibition of TLR2/4

activation. (B) C57BL/6J mouse eyes were infected with 100 CFU WT or 1slpA B. thuringiensis. At 4 h postinfection WT infected eyes were treated with 30 ng/µL

OxPAPC. At 10 h postinfection eyes were harvested, homogenized, and analyzed for bacterial growth. Compared to untreated WT-infected C57BL/6J mouse eyes, a

significant reduction in bacterial burden was observed in the OxPAPC-treated group at 10 h postinfection. No difference in intraocular bacterial count was observed

between WT and 1slpA infected eyes at 10 h postinfection. Values represent mean ± SEM of log10 CFU/eye of N ≥ 5 eyes for at least two separate experiments. (C)

The in vitro growth of WT B. thuringiensis in BHI was not affected by the presence of 0.1, 1, or 10µg/mL OxPAPC. Values represent the mean ± SEM of N = 3;

multiple comparison, 2-way ANOVA (D) Treatment of eyes with OxPAPC 4h after infection with 100 CFU of WT B. thuringiensis resulted in decreased bacterial growth.

Data represent the mean ± SEM of log10 CFU/eye of N ≥ 5 eyes per time point for at least two separate experiments; ns: P > 0.05, *P < 0.05 at all time points.

B. thuringiensis, the absence of SlpA significantly reduced
disease severity compared to severe disease caused by the WT
parental strain experimental endophthalmitis. SLPs are a major
contributor to the pathogenesis of Bacillus endophthalmitis (73),
but the underlying mechanism by which SLPs contributes to
pathogenesis were unknown.

SLPs form para-crystalline protein sheets that assemble on the
bacterial surface (56). SLPs and their associated proteins facilitate
numerous functions that are critical to cellular physiology and
survival (57, 59). A primary function of SLPs are to promote
colonization by contributing to the adherence to host tissue (68).

It has been reported that SLP of B. anthracis helps the pathogen
to adhere to HeLa cells, and infection with a SLP-deficient
B. anthracis resulted in attenuated infection in guinea pigs
(118). A recent report suggested that SLP of Clostridium difficle
played an important role in the colonization to human intestinal
epithelial cells by contributing to bacterial adherence (63). We
have observed B. cereus and B. thuringiensis near the inner
limiting membrane (ILM) of the retina during experimental
endophthalmitis (5, 73). As physical contact between pathogen
and the infected tissue is the initial event of any host-pathogen
interaction, we compared whether SLPs influenced Bacillus
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FIGURE 6 | Inhibition of SLP-mediated TLR2/4 activation resulted in significant retention of retinal function during Bacillus endophthalmitis. C57BL/6J mouse eyes

were injected with 100 CFU WT or 1slpA B. thuringiensis. WT infected and uninfected mouse eyes were treated with 30 ng/µL OxPAPC at 4 h postinfection, and

retinal function was assessed by ERG. (A) A-wave retention was significantly higher in WT-infected /OxPAPC-treated, 1slpA-infected, and OxPAPC-treated eyes, than

WT-infected/untreated eyes. (B) B-wave retention was also significantly higher in WT-infected/OxPAPC-treated, 1slpA-infected, and OxPAPC-treated eyes than the

WT-infected/untreated eyes. (C) Shown are representative waveforms from the uninfected contralateral eyes from each group (green). (D) Representative waveforms

from WT-infected, WT-infected/OxPAPC-treated, 1slpA-infected, and OxPAPC-treated eyes at 10 h postinfection (red). Values represent the mean ± SEM of the %

amplitude retained relative to the contralateral control eye for at least two separate experiments. Data are representative of N ≥ 6 eyes; *P < 0.05.
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FIGURE 7 | Inhibition of SLP-mediated TLR2/4 activation resulted in reduced

inflammatory cell influx and preserved ocular architecture during Bacillus

endophthalmitis. C57BL/6J mouse eyes were infected with 100 CFU WT or

1slpA B. thuringiensis. Uninfected eyes, or eyes injected with WT B.

thuringiensis were treated with 30 ng/µL OxPAPC at 4 h postinfection. (A)

Infiltration of PMN was assessed by quantifying MPO in whole eyes by

sandwich ELISA. MPO levels were significantly greater in eyes infected with

WT B. thuringiensis than in eyes infected with WT and treated with OxPAPC,

eyes infected with only 1slpA B. thuringiensis, and eyes treated with OxPAPC

alone. Values represent the mean ± SEM of N ≥ 4 eyes per group; *P < 0.05.

(B) Infected and treated eyes were harvested at 10 h postinfection and

processed for hematoxylin and eosin staining. Magnification, 10×. Sections

are representative of three eyes in each group.

adherence to different types of retinal cells. Muller cells are the
major retinal cells that span from the outer limiting membrane
(OLM) to the ILM, providing structural and hemostasis support
(119–122). Since the end feet of retinal Muller cells are located
in the ILM, these might be the first retinal cells to encounter
pathogens in the posterior segment. RPE cells are important
for phototransduction and represent the outer blood retinal
barrier. Light-sensitive photoreceptor cells are located anterior
to RPE cells (100–103). A recent report suggested that although
661W cells have been used as cone photoreceptor mimics,
this cell line expresses markers specific to retinal ganglion
cells, such as Rbpms, Brn3b (Pou4f2), Brn3c (Pou4f3), Thy1
and γ-synuclein (Sncg), and thus are retinal ganglion cell-
like (99). Here, we demonstrated that SLP plays an important
role in mediating B. thuringiensis adherence to these cell
types in vitro, suggesting its role in bacterial attachment to
retinal cells.

Evading host defense systems is a key event in successfully
establishing an infection. Some organisms are evolutionarily
equipped to conceal themselves from the unfriendly
environment of the host (123–125). If present, SLPs can protect
microorganisms from sudden shifts in pH, exposure to radiation,
and changes in mechanical and osmotic stresses. SLPs can
also shield bacteria from antimicrobial peptides, lytic enzymes,
and bacteriophages (64). It has been reported that the SLP in
Eubacterium yurii provides resistance to this pathogen against
phagocytosis by PMN (72). In addition to providing structural
and homeostasis support, Muller cells might also protect the
retina by phagocytizing microbes (120, 126, 127). Here, we
investigated the role of B. cereus SLPs in phagocytosis by human

retinal Muller cells, neutrophil like HL-60 cells, and mouse
primary neutrophils. We observed significantly less internalized
WT B. thuringiensis than the 1slpA B. thuringiensismutant in all
three phagocytic cell types. These findings support a role of SLP
in promoting Bacillus adherence and evading phagocytosis.

Innate immune responses are the host’s first line of
defense against any invading pathogen, and TLRs are a key
mediator in many inflammatory diseases (128, 129). TLRs
are critical for initiating an ocular inflammatory response
to microbes during keratitis, uveitis, and endophthalmitis
(82, 89–91, 95, 130–132). We demonstrated that during
B. cereus endophthalmitis, TLR2 and TLR4 each directly
influenced the severity of intraocular inflammation (90, 91).
We also reported the importance of MyD88 and TRIF
adaptors in the pathogenesis of B. cereus endophthalmitis
(97). Here, we demonstrated the activation of TLR2 by the
envelope of Gram-positive ocular pathogens, and of these
pathogens, only the envelope of B. thuringiensis activated TLR4.
Since Bacillus is Gram-positive bacterium, it possesses several
universal TLR2 agonists such as peptidoglycan, lipoteichoic
acid, and lipoproteins. However, TLR4 agonists had yet to
be identified.

As cell wall-associated proteins, SLPs have the potential to
interact with retinal innate receptors. C. difficile SLPs have been
shown to activate innate and adaptive immunity in a TLR4-
dependent manner (133). SLP from Lactobacillus helveticus
mediated a proinflammatory response through activation of both
TLR2 and TLR4 in human macrophages (134). We reported
that SLP activated the major transcription factor NF-κb, and
induced proinflammatory cytokine production from retinal cells,
suggesting that this protein might also activate retinal innate
immune pathways (73). Here, by using TLR2 and TLR4 reporter
cell lines, we showed for the first time that SLP not only activated
TLR2, but also TLR4.

Assessing the role of TLRs and adaptor proteins in Bacillus
endophthalmitis has been done using specific TLR- or adaptor
protein-deficient mice (89–91, 97). Since SLP can signal through
both TLR2 and TLR4, we used the oxidized phospholipid
OxPAPC to inhibit both pathways (113). OxPAPC competes with
CD14, lipid binding protein, and MD2, the accessory proteins
that interact with bacterial lipids, and blocks the signaling of
both TLR2 and TLR4 (135, 136). A recent report suggested
that blocking both TLR2 and TLR4 might lay the foundation
for the development of therapies that target inflammasomes
during Gram-negative bacterial sepsis (137). OxPAPC has been
reported to inhibit LPS (for TLR4) and Pam3Csk4 (for TLR2)
ligand-mediated inflammatory responses in mice (138, 139).
Anti-inflammatory effects of OxPAPC-directed attenuation of
TLR signaling in response to pathogens and pathogen associated
molecular patterns (PAMPs) are well recognized (140–142).
Here, we showed that OxPAPC dramatically reduced TLR2
and TLR4 activation by their agonists and by B. cereus SLP
in vitro. In vivo, we observed an unanticipated reduction
in bacterial load in the WT infected-OxPAPC treated group.
In contrast, OxPAPC did not alter bacterial growth in vitro.
We previously reported that absence of TLR2, TLR4, or
TLR5 or their adaptor MyD88 did not result in alterations
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in bacterial burden during Bacillus endophthalmitis. But the
absence of TRIF, which is a key adaptor for TLR4 signaling,
resulted in a significantly reduced bacterial load during Bacillus
endophthalmitis (89–91, 97). Here, OxPAPC treatment resulted
in a reduced bacterial load in the eye from 6- to 12-h
postinfection. A greater bacterial burden might be expected in
tissue where an inflammatory response is insufficient; however,
we did not observe this here. Deficiencies in cathelicidin-
related antimicrobial peptide (CRAMP) which led to increased
S. aureus and Pseudomonas aeruginosa burdens in mouse eyes
with endophthalmitis and keratitis, respectively, have been
reported (143, 144). Hence, it is reasonable to speculate that
increased level of AMPs may lead to a lower bacterial burden.
However, another report demonstrated that TRIF-deficient mice
had low AMP expression levels in the gastrointestinal tract
(145), so the physiological involvement of AMPs may be tissue-
and infection-specific.

If the inflammationwe observed here was ordained exclusively
by bacterial burden, infections withWT or1slpA B. thuringiensis
should have resulted in similar levels of inflammation, given
that both strains grow similarly in the eye (73). However, the
course of inflammation and retinal function loss in WT and
1slpA B. thuringiensis eyes were significantly different, but the
rates of bacterial growth in these groups were almost identical
(2.2 and 1.99 h−1). Since B. thuringiensis did not show any
growth defects in the presence of increasing concentrations of
OxPAPC, the possibility arises that blocking both TLR2 and
TLR4 pathways might associated with the upregulation of AMPs
in the vitreous. We did not detect expression of AMPs in the
retinas of WT or TLR4−/− C57BL/6J mice infected with Bacillus
at 4 h postinfection (95). Whether OxPAPC has effects other
than inhibiting TLR2/4 activation or whether OxPAPC induces
expression of AMPs in the retina is an open question.

The retina is a multilayered tissue containing nonregenerative
light sensitive cells responsible for biochemical processes
involved in proper vision (100). Bacillus endophthalmitis
destroys these cells, resulting in retinal function loss. We
reported that mice lacking individual TLRs (TLR2 or 4) and
their adaptors, MyD88 and TRIF, have significant retention of
retinal function during Bacillus endophthalmitis (89–91, 97).
We also reported that infection with a 1slpA B. thuringiensis
resulted in better retention of retinal function compared to
infection with a WT B. thuringiensis (73). Here, we observed
that inhibition of both TLR2 and TLR4 signaling with OxPAPC
resulted in significantly higher retained retinal function after
infection with the WT strain, likely due to the preserved retinal
architecture in these eyes. We reported that the absence of
SlpA did not change the cytotoxic properties of Bacillus or
altered its intraocular growth (73). Therefore, it is unlikely that
the differences in retinal function loss between untreated WT-
infected and WT infected-OxPAPC treated and 1slpA infected
eyes were due to variations in toxin production by WT and
1slpA B. thuringiensis. However, the lower bacterial burden in
WT infected-OxPAPC treated eyes might have resulted in a
reduced cytotoxic effect on the retina which may have been
reflected in the retained retinal function in OxPAPC-treated
infected eyes.

Retinal detachment is a serious complication of
endophthalmitis and has been reported to occur in 4–21% of
cases (146). Retinal detachments, folds, and complete dissolution
of retinal layers are common in severe cases of endophthalmitis
(5, 17, 47). During B. cereus endophthalmitis, the absence of
TLR2 and TLR4 in mice resulted in less infiltration of PMNs and
fibrin accumulation, and preserved retinal architecture (90, 91).
The lack of inflammation and intact retinal layers were similar to
those reported in infectedMyD88−/− and TRIF−/− eyes at 8 and
12 h postinfection (97). Here, we blocked the SLP-mediated TLR2
and TLR4 activation by OxPAPC and observed better preserved
retinal architecture in the WT-infected/OxPAPC-treated and
1slpA-infected groups relative to the untreated WT-infected
group. We also observed elevated levels of MPO in the untreated
group as compared to the treated and 1slpA-infected groups.
This suggests that TLR2/4 activation by SLP triggered the TLR2/4
pathways which resulted in the migration of PMNs to the eye
and possibly bystander damage to the retina.

Our findings demonstrate for the first time that Bacillus
SLP impacted endophthalmitis pathogenesis by activating
both TLR2 and TLR4 pathways. In addition to identifying
SLP as an unexpected TLR4 agonist, we revealed for the
first time that inhibiting SLP-mediated TLR2/4 activation in
experimental endophthalmitis could reduce disease severity. In
Bacillus endophthalmitis, treatment failures are frequent despite
prompt antibiotic, anti-inflammatory, and surgical intervention.
Up to two-thirds of patients with Bacillus endophthalmitis
lose significant vision, experiencing rapid inflammation and
intraocular tissue damage that may also result in the need for
enucleation (16, 17). As the number of cataract surgeries and
intravitreal injections for degenerative retinal diseases continue
to rise, the risk of endophthalmitis will also increase (147–150).
Since TLRs and their adaptor proteins are major contributors to
the initiation of potentially damaging inflammation in the eye,
finding ligands that activate this pathway could be beneficial in
formulating plausible strategies for therapeutic intervention to
prevent vision loss in endophthalmitis caused by Bacillus and
other bacterial pathogens.
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