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Hongwei Dai, MB

∗
, Jiao Zhou, MB, Bo Zhu, MB

∗

Abstract
End-stage renal disease (ESRD) is the final stage of chronic kidney disease in which the kidney is not sufficient to meet the needs of
daily life. It is necessary to understand the role of genes expression involved in ESRD patient responses to nocturnal hemodialysis
(NHD) and to improve the immunity responsiveness. The aim of this study was to investigate novel immune-associated genes that
may play important roles in patients with ESRD.
The microarray expression profiles of peripheral blood in patients with ESRD before and after NHD were analyzed by network-

based approaches, and then using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis to
explore the biological process and molecular functions of differentially expressed genes. Subsequently, a transcriptional regulatory
network of the core genes and the connected transcriptional regulators was constructed. We found that NHD had a significant effect
on neutrophil activation and immune response in patients with ESRD.
In addition, Our findings suggest that MAPKAPK3, RHOA, ARRB2, FLOT1, MYH9, PRKCD, RHOG, PTPN6, MAPK3, CNPY3,

PI3KCG, and PYGL genes maybe potential targets regulated by core transcriptional factors, including ARNT, C/EBPalpha, CEBPA,
CREB1, PSG1, DAND5, SP1, GATA1, MYC, EGR2, and EGR3.

Abbreviations: CHD = conventional hemodialysis, CREB = cAMP response element-binding, DEG = differentially expressed
gene, ESRD= end-stage renal disease, GEO=Gene Expression Omnibus, GO=Gene ontology, NHD= nocturnal hemodialysis, TF
= transcription factor, TOM = topological overlap matrix, WGCNA = weighted gene co-expression network analysis.
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1. Introduction

Chronic kidney disease is an age-related global public health
problem that affects nearly 15% of the adult population
worldwide.[1] The number of older patients with end-stage renal
disease (ESRD) increased rapidly. ESRD is an important but
complex syndrome, a direct result contributes to significant
morbidity and mortality in this population.[2] The best choice for
treatment of ESRD is renal transplantation, which can
significantly improve survival and quality of life.[3] Unfortunate-
ly, the supply of transplanted kidneys is less than demand.
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Therefore, dialysis is currently the only therapy for ESRD until
the proper donor appears for optimal renal replacement.
Several preliminary studies have shown that nocturnal

hemodialysis (NHD) has many benefits in ESRD patients
compared with conventional hemodialysis (CHD). Such as
improving the quality of life,[4] lowering serum phosphate
levels[5] and improving erythropoietin,[6] and have a positive
effect on uremia-associated inflammation.[7] However, the
conclusions were inconsistent.[8] In addition to that, immune
function is a main factor affecting the quality of life of ESRD
patients infected with invaded pathogens. Therefore, exploring
the impact of NHD on the immune functions in patients with
ESRD will facilitate the progression of the treatment.
Recently, gene expression assays have been performed using

biochip (also known as DNA microarray or DNA chip) to
investigate complex biological process and molecular function in
cells activity. Scientists use biochip to measure the expression
levels of a large number of genes simultaneously or to genotype
multiple regions of a genome. Weighted gene co-expression
network analysis (WGCNA), also known as weighted correlation
network analysis, is widely used in data mining methods,
especially for studying biological networks based on pairwise
correlations between variables. Although it can be applied to
most high-dimensional datasets, it has been most widely used in
genomic applications. It allows modules (clusters), intramodular
hubs, and network nodes to be defined in the modulemembership
to study the relationships between co-expression modules and
compare the network topology (differential network analysis) of
different networks.
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In this study, by using previously published gene microarray
expression data, we first identified the gene transcriptional
modules for NHD and CHD in patients with ESRD. And this
work has powerful and identical evidence supporting the
difference between these 2 hemodialysis methods.

2. Materials and methods

2.1. Microarray data processing

Microarray dataset was collected from a previous study of
peripheral blood samples obtained from Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and GEO
Series AccessionNO. GSE11227. Samples were obtained from the
tissue library of human peripheral blood samples from 16 patients
with ESRD in the laboratory of Oncology Research, Toronto
General Hospital, Toronto, Canada. The 16 samples were
analyzed using a chip-based platformGPL570 (HG-U133_Plus_2)
Affymetrix Human Genome U133 Plus 2.0 Array.[9] Microarray
data analysis was performed using R software and Bioconductor
3.5 (http://www.bioconductor.org/). All expression data were
quantile normalized and log2 transformed by Robust Multiarray
Averaging. In addition, this study follows the dissemination and
application policy requirements of GEO public data and has been
approved by the Ethics Committee of the Institute of Biomedicine
Research of the Hubei University of Medicine.

2.2. Differentially expressed genes analysis

Differential expression genes analyses were carried out by
DESseq2 and Bioconductor packages based on their normalized
signal intensity in “NHD” and “CHD” profiles. To reduce the
heterogeneity between different clinical samples, we obtained
class 3 level datasets which was normalized to the same intensity
values by quantile normalization and log2 transformation.
Finally, we selected differentially expressed mRNAs with
criterion of P value <.05 and FDR <0.05.

2.3. Weighted gene co-expression network analysis

WGCNAcan be used to summarize the obtainedmodules by using
the concept of eigengene and to further screen the appropriate gene
targets by calculating module membership metric (also known as
eigengene-based connectivity).[10] In the dataprocessing, thewhole
genome gene expression data were preliminarily filtered, and then
the consistency of the gene expression spectrumwasdetermined by
Pearson correlation method. And the data were transformed to an
adjacency matrix by using the soft threshold power beta, which
propose covariant similarity. The power of beta=10 was chosen
based on the scale-free topology criterion. Finally, the topological
overlap matrix (TOM) was calculated and the hierarchical
clustering was used to generate dendrogram from a similarity
TOM. By using dynamic tree cutting, different number of clusters
(modules) were obtained from the tree.
We then analyzed the importance of the genes by t-test to

determine whether the modules were associated with NHD. The
module eigengene (ME) refers to the first principal component
gene of module expression matrix. It is considered to be the most
representative of the module genes, which has important
biological significance.

2.4. Enrichment analysis of biological process

Gene ontology (GO) is a major bioinformatics program that is
used to unify the expression of genes and gene product attributes
2

for all species. More specifically, the project aims to maintain
and develop its controlled vocabulary of gene and gene product
attributes; annotate genes and gene products, and assimilate and
disseminate annotation data; and provide tools to facilitate access
to all aspects of the data provided by the project, for example, via
enrichment analysis.
GO classification was used to explain the main function of

differentially expressed genes (DEGs) according to the GO
database,[12] which is the crucial functional classification of
NCBI.[13] Fisher exact test was used to calculate the significance
level of each term to screen out the important terms for DEGs
enrichment. The statistical significance (P< .01) of GO terminology
in GO analysis was chosen, and the GO enriched map was
constructed using the upregulation and downregulation to summa-
rize the impact of experimental function of ESRD. Through the
establishment of functional relationship network, it was possible to
summarize the impact of the experimental function group and the
important characteristics of internal affiliation. Finally, we selected
thedifferently expressedmRNAswith thePvalue< .05 criterion.[14]
2.5. Transcriptional regulatory network of hub genes

The hub genes are associated with the highest degree of a series of
genes in the module, which are described as the most closely
related to more biological significance. To identify the hub genes
in each module genes, we calculated their in-module connectivity
from the signed TOM based on an adjacency matrix. Then we
extracted the most powerful connection in the module with a
proper threshold. University of California, Santa Cruz (UCSC)
(http://genome.ucsc.edu/) is an open-access database for predict-
ing all transcription factors (TFs) to potential target relationships
based on reference gene files which also came from UCSC.
Subsequently, we constructed a network of hub genes and
connected TFs with R/Bioconductor packages.

3. Results

3.1. Characteristics of the datasets

In this study, 16 patientswith stable ESRD (age: 47±2 years) (mean
±SEM) and NHD (5–6 times a week, 6–8hours per session) were
enrolled.Detailed information onpatientswith ESRD, hematologic,
and biochemical parameters before and after conversion to NHD
were listed in the original article.[6] We have used this microarray
profile to obtain a global image of gene expression changes. Total
RNA was isolated from peripheral whole blood before and after 3
monthsof establishedNHD.Gene expressionbefore andafterNHD
was acquired through hybridization on Human HG-U133_PLUS2
GeneChip, and genes with DEGs were identified.
3.2. DEGs selection and hierarchical clustering analysis

Before calculating the DEGs, we removed the probes without
corresponding annotation information. And then, we use the
DESeq2 package for differential expression analysis, which was
thought to be a robust method of analyzing RNA-Seq data.[15,16]

To determine the expression values of each gene, we used multiple
GSE11227 probes corresponding to the median expression value
of that gene. Finally, a total of 1486 genes were identified between
the NHD group and the CHD group, including 570 upregulated
genes and 916 downregulated genes (P< .05, Fig. 1A, Supplemen-
tary Table 1, http://links.lww.com/MD/C467). Hierarchical
clustering analysis of the 1486 DEGs was obtained from 16
samples of the patients with ESRD. The general gene expression
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Figure 1. Summaries of different expression for mRNA sequence data. [(A) Volcano and (B) heatmap plots of different expressed miRNAs. In the volcano plots,
each red color dot represents a downregulated or upregulated mRNA. In the heatmap plots, each row representing a probe and each column representing a
sample. Expression levels are depicted according to the color scale, shown at the top. The red color indicated high expressed mRNAs and the blue color indicated
low expressed mRNAs, above and below the median, respectively. The magnitude of deviation from the median is represented by the color saturation.]
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patterns of the 2 groups were evidently different through heatmap
view (Fig. 1B).

3.3. Gene co-expression networks construction

We selected the appropriate weighting parameter for the
adjacency function, the soft-threshold b=10, to construct gene
3

modules using the WGCNA package. After determining the soft
threshold, a total of 1486 DEGs were used to construct a
WGCNA. According to the basic idea ofWGCNA, we calculated
the correlation matrices and adjacency matrices of gene
expression profiles of NHD and CHD groups, and then
transformed them into a TOM, and obtained the clustering
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Figure 2. Summaries of weighted gene co-expression network analysis (WGCNA) for differentially expressed genes (DEGs). [Network analysis of gene expression
in end-stage renal disease (ESRD) identifies distinct modules of co-expression genes. Each leaf (short vertical lines) in the dendrogram corresponds to a gene and
the branches are expression modules of highly interconnected groups of genes with a color to indicate its module assignment. Modules are illustrated with different
color obtained with different module detection sensitivity parameter called deepSplit.]
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dendrogram of DEGs. Together with TOM, we performed a
hierarchical average linkage clustering method to determine the
genetic module for each gene network (deep split=2, cutting
height=0.99). In both the NHD and CHD groups, a total of 5
gene modules including 366 DEGs were recognized by dynamic
tree cleavage (Fig. 2). Genes that not belong to any modules were
placed in a gray module.

3.4. Biological process analysis of DEGs associated with
immune functions

To reveal the biological processes and molecular function
involved in NHD patients, we conducted a functional enrichment
analysis. GO enrichment analysis of 366 DEGs was carried out
by significant level P< .01. The most GO terminologies in
biological processes were associated with neutrophil-mediated
immunity, neutrophil degranulation, and neutrophil extravasa-
tion, as well as activation of innate immune response in the NHD
group (Fig. 3A, Table 1).
In order to explore the intrinsic link between gene functions,

we constructed a gene function regulatory network of the
important GO terms (P< .01) in the biological processes. Then
we found that hierarchical tree relationships between gene
function was significant. The analysis showed that the gene
function cascade eventually induced neutrophil degranulation
(Padj=1.49e-12).
For a preliminarily test to assess whether the network was

acceptable, we get the core corresponding genes of the 5 modules,
and then performed heatmap for biological function associated
immune activities. For the 5 modules, genes involved in
neutrophil activation, extravasation and degranulation, and
positive regulation of innate immune response were significantly
clustered (Fig. 3B). It is suggested that this module is closely
related to the occurrence and development of neutrophil
degranulation and immune activation in ESRD, especially in
patients with NHD. These results indicate that this module may
be closely related to the immune response during ESRD.
3.5. Transcription regulatory network of hub genes

These results suggest that the biological mechanisms of NHD
patients are closely related to the neutrophil degranulation and
immune activation. To screen the genes most relevant to immune
function, we constructed a WGCNA of the 366 DEGs. Fourteen
hub genes were found in the blue module response to immune
4

function (Fig. 4A, Table 2) with a threshold of 0.2. Then, a
transcriptional regulatory network of the 14 hub genes was
constructed based on UCSC database, whose degree was >10.
And we found a few core transcriptional regulators, including
ARNT, C/EBPalpha, CEBPA, CREB1, PSG1, DAND5, SP1,
GATA1, MYC, EGR2 and EGR3 (Fig. 4B, Table 2).

4. Discussion

The main purpose for this study was to use a global approach to
construct a gene co-expression network that predicts candidate
gene clusters involved in the immune functions of ESRD.
Although appropriate hemodialysis treatment of ESRD has
successfully improved quality of life and reduced the incidence
and mortality of ESRD to some extent,[17] there is still a need for
effective methods to prevent adverseness and prolong patients’
life.
WGCNA is a powerful approach to identify gene modules as

candidate biomarkers or therapeutic targets based on co-
expression network.[18] Comparing any other analytical meth-
ods, WGCNA facilitate the summary and standardization of
methods and functions, including weighted and unweighted
correlation networks, and is successfully used to identify
pathway-related gene modules and hub genes of NHD in ESRD.
In WGCNA, we identified 5 gene modules based on 1486 DEGs.
By functional enrichment analysis, the modules have obvious
biological significance, which were significantly enriched in
immune activation, neutrophil degranulation, and extravasation.
Through the enrichment function analysis of the gene modules,

we determined that accompanied by the activation of granulocyte
signal pathway and the initiation of immune system on NHD in
patients with ESRD, so that platelet activation and blood
coagulation. In addition, patients on NHD have normal plasma
phosphate levels without the restrictions in dietary.[19] These
findings have a potentially positive impact on our known about
the complexity and significant immune mechanism of ESRD.
A dialyzer and dialysate are required for hemodialysis, which is

susceptible to contamination by aquatic bacteria such as gram-
negative bacilli, and requires adequate attention to prevent
endotoxin contamination such as microorganisms. In addition to
that, infection is the second leading cause of death in
hemodialysis patients, and infection tends to be severe in these
patients.[20] Clinical data shown that the prevalence of
tuberculosis is high among hemodialysis patients and that
infections such as flu syndrome among hemodialysis patients are



Figure 3. Overview of immunity-related biological processes of differentially expressed genes (DEGs). (A, Significant biological process of immune function. B, The
enrichment map of immune biological process and core DEGs. The magnitude of gene counts compared all background genes is represented by the horizontal bar
length. And the significant levels represented by the legend’s color saturation.)

Dai et al. Medicine (2018) 97:37 www.md-journal.com
difficult to cure and tend to persist and follow a severe course, and
that the incidence of malignant tumors is higher among
hemodialysis patients than among individuals with intact renal
function.[21] Our results suggest that NHD has altered several
genes expression in response to immunity by neutrophil
5

activation, degranulation, and extravasation. TLR-2 and TLR-
4 have been reported to be associated with the compromised
immune function in NHD patients.[22]

Neutrophils account for approximately 50% to 70% of all
white blood cells and are the most abundant white blood cells in

http://www.md-journal.com


Table 1

Immune function–related biological process.

ID Description P-value Count

GO:0002283 Neutrophil activation involved in immune response 8.80E-19 44
GO:0002446 Neutrophil-mediated immunity 1.43E-17 43
GO:0002758 Innate immune response–activating signal transduction 6.52E-05 16
GO:0045089 Positive regulation of innate immune response 6.98E-05 18
GO:0045088 Regulation of innate immune response 9.34E-05 20
GO:0002218 Activation of innate immune response 1.28 E-04 16
GO:0042119 Neutrophil activation 3.13E-19 45
GO:0043312 Neutrophil degranulation 4.97E-18 43
GO:0072672 Neutrophil extravasation 8.73 E-04 3
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humans. Studies have found that neutrophils tend to engulf
carbohydrates in bacteria, and increase the phagocytic capacity
to engulf bacteria when simple sugars are digested.[23] Neu-
trophils are highly motorized and are attracted by cytokines
expressed by activated endothelium, mast cells andmacrophages,
and can rapidly accumulate in infected lesions. Neutrophils
express and release cytokines, which in turn enhance the
inflammatory response in several other cell types.[24] In addition
to recruit and activate other cells of the immune system,
neutrophils play an important role against invading pathogens in
the first-line defense. Neutrophils have 3 methods for directly
attacking the invasion of pathogens: phagocytosis, degranula-
tion, and generation of neutrophil extracellular traps.[25] And our
analysis results suggest that neutrophils, whose activation,
degranulation, and extravasation have an important positive
regulatory effect on immune responses.
Although hemodialysis has been developed almost 1 century

ago, early use was complicated by the clotting of dialysis
circuit.[26] Hemodialysis becomes feasible for a large population
until heparin is introduced into anticoagulation circuit.[27]

Hemodialysis patients have an increased tendency to bleed due
Figure 4. Transcription regulatory network of gene modules. [A, Hub genes in ge
represents the differentially expressed genes (DEGs) in each enriched module, the r
The size of the nodes was weighted by the power of the DEGs interacted with t
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to the accumulation of uremic toxins that cause platelet
dysfunction, especially anticoagulation with heparin.[28,29]

Paradoxically, in our analyzed results, the risk of blood
coagulation and platelet activation and aggregation increased
in NHD patients. Perhaps this paradox phenomenon stems from
the disturbance of endothelial damage and the metabolism,
expression, and activity of certain procoagulant factors.[30]

Additional analytic results of genetic alterations revealed a few
core markers may play an important role in the biological process
of immune response in patients with ESRD. For example, cAMP
response element-binding protein (CREB) can bind to certain
DNA sequences to increase or decrease the transcription of genes
containing cAMP-responsive elements.[31] In addition, CREB can
promote anti-inflammatory immune responses by inhibiting NF-
kB activity and producing T-regs, thereby inhibiting inflamma-
tion, tissue damage, and autoimmune responses, or pathogenic
infection factors.[32]

In summary, this study used transcriptional network analysis
to identify co-expression modules for the first time. Significant
gene modules and biological process were revealed to make a
powerful comprehensive about the complexity mechanism in
ne modules. B, The transcriptional regulators of main hub genes. The triangle
ed and blue triangles represent the up- and downregulated DEGs, respectively.
ranscriptional regulators.]
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Table 2

Overview of 14 hub genes and connected TFs.

Symbol Gene name Log2FC Target TFs

MAPKAPK3 Mitogen-activated protein kinase-
activated protein kinase 3

0.339 AHR, ARNT, ATF6, CBFB, CP1A, CP1C, CREB1, CUX1, DAND5, E2F, E2F1, HOXA9,
HOXA9B, LMO2, MIA3, Meis-1, NF-AT1, NF-AT2, NF-AT3, NF-AT4, NF-Y, NFYA,
NFYB, NFYC, PATZ1, PAX5, PSG1, SP1, SREBF1, SREBP-1a, SREBP-1b, STAT1,
STAT1alpha, STAT1beta, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6, TFCP2,
USF1, USF2, YY1, deltaCREB,

RHOA Ras homolog family member A 0.340 AP-2alphaA, AP-2gamma, ARNT, CDC5L, EGR2, EGR3, Elk-1, HOXA5, MAX, MIA3,
MYC, MYCN, Max1, NRSF form 1, NRSF form 2, PAX5, PAX6, PPAR-gamma1,
PPAR-gamma2, PTK7, RREB1, SREBF1, SREBP-1a, SREBP-1b, SRF, STAT1,
STAT1alpha, STAT1beta, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6, TFAP4,
TP53, YY1, ZEB1, ZNF423,

ARRB2 Arrestin beta 2 0.534 AHR, ARNT, ATF-2, C/EBPalpha, CEBPA, CREB1, DAND5, DDIT3, EGR1, EGR2, EGR3,
FOXC1, GATA1, MIA3, MZF1, NF-Y, NRSF form 1, NRSF form 2, PATZ1, PAX5,
PLAU, PSG1, PTK7, SOX9, SP1, SRF, SRY, TCF3, USF1, USF2, ZSCAN1,
deltaCREB,

FLOT1 Flotillin 1 0.826 ARP-1, BPTF, C/EBPalpha, CEBPA, DAND5, FOXD3, FOXI1, MAX, MYC, Max1, NF-Y,
NFE2L1, PLAU, POU2F1, POU3F2, POU3F2 (N-Oct-5a), POU3F2 (N-Oct-5b), PPAR-
gamma1, PPAR-gamma2, PSG1, SP1, TAL1, TCF3, TCF4, TFAP4, Tal-1beta,

MYH9 Myosin heavy chain 9 0.474 ARP-1, C/EBPalpha, CBFB, CEBPA, CP1A, CREB1, DAND5, GATA1, IRF-7A, NF-Y,
NFIL3, NFYA, NFYB, POU2F1, PSG1, PTK7, RREB1, SOX9, SP1, SRF, TFAP4,
deltaCREB,

PRKCD Protein kinase C delta 0.367 AHR, ARNT, DAND5, EGR2, EGR3, EP300, IL10, KLF12, MIA3, MZF1, NF-kappaB1,
NFKB1, PAX5, PSG1, RELA, SP1, STAT3, TGIF1, TP53, ZEB1, ZSCAN1,

RHOG Ras homolog family member G 0.321 AHR, ARNT, ATF-2, CREB1, ER-alpha, ESR1, HAND1, HOXA5, MAFK, MIA3, NFE2,
PLAU, RREB1, SREBF1, SREBP-1a, SREBP-1b, TCF3, TFAP4, TFCP2, ZNF423,
deltaCREB,

PTPN6 Protein tyrosine phosphatase,
nonreceptor type 6

0.367 ATF-2, C/EBPbeta, CEBPB, CREB1, KLF12, NF1, NFIL3, STAT1, STAT1alpha,
STAT1beta, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6, TCF3, TFAP4,
TFCP2, YY1,

MAPK3 Mitogen-activated protein kinase 3 0.927 ARNT, DAND5, EGR1, EGR2, GATA1, MIA3, MZF1, Max1, NF-kappaB1, PATZ1, PSG1,
SP1, SREBF1, SREBP-1a, SREBP-1b, ZIC1, ZSCAN1,

PIK3CG Phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit gamma

0.504 FOXD1, FOXD3, FOXF2, FOXI1, HAND1, HMX3, HOXA9, HOXA9B, Meis-1, NF-
kappaB1, PELP1, POU3F2, SRY, TCF3, TP53,

PIK3AP1 Phosphoinositide-3-kinase adaptor protein 1 0.395 AP-2alphaA, AP-2gamma, Elk-1, LMO2, MYB, MYC, Max1, PAX3, USF1, USF2,
ZNF423,

CNPY3 Canopy FGF signaling regulator 3 0.300 ARNT, ATF6, E2F, E2F1, MAX, MIA3, MYB, MYC, Max1, YY1,
SERPINA1 Serpin family A member 1 0.313 EGR1, EGR2, EGR3, FOS, FOSB, HNF1A, JUN, JUNB, JUND, POU2F1,
PYGL Glycogen phosphorylase L 0.547 DAND5, E2F, E2F1, EGR3, MYC, Max1, PSG1, SP1,

FGF=fibroblast growth factor, Log2FC= log2FolderChage, TFs= transcriptional factors.
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patients with ESRD. The limitation of this study is that the sample
size is relatively small and there is no experimental validation of
the core genes and TFs, therefore, further extensive experiments
need to be performed to confirm the results of this study.
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