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Abstract

Background: Membrane transport proteins (transporters) move hydrophilic substrates across hydrophobic membranes and
play vital roles in most cellular functions. Transporters represent a diverse group of proteins that differ in topology, energy
coupling mechanism, and substrate specificity as well as sequence similarity. Among the functional annotations of
transporters, information about their transporting substrates is especially important. The experimental identification and
characterization of transporters is currently costly and time-consuming. The development of robust bioinformatics-based
methods for the prediction of membrane transport proteins and their substrate specificities is therefore an important and
urgent task.

Results: Support vector machine (SVM)-based computational models, which comprehensively utilize integrative protein
sequence features such as amino acid composition, dipeptide composition, physico-chemical composition, biochemical
composition, and position-specific scoring matrices (PSSM), were developed to predict the substrate specificity of seven
transporter classes: amino acid, anion, cation, electron, protein/mRNA, sugar, and other transporters. An additional model to
differentiate transporters from non-transporters was also developed. Among the developed models, the biochemical
composition and PSSM hybrid model outperformed other models and achieved an overall average prediction accuracy of
76.69% with a Mathews correlation coefficient (MCC) of 0.49 and a receiver operating characteristic area under the curve
(AUC) of 0.833 on our main dataset. This model also achieved an overall average prediction accuracy of 78.88% and MCC of
0.41 on an independent dataset.

Conclusions: Our analyses suggest that evolutionary information (i.e., the PSSM) and the AAIndex are key features for the
substrate specificity prediction of transport proteins. In comparison, similarity-based methods such as BLAST, PSI-BLAST, and
hidden Markov models do not provide accurate predictions for the substrate specificity of membrane transport proteins.
TrSSP: The Transporter Substrate Specificity Prediction Server, a web server that implements the SVM models developed in this
paper, is freely available at http://bioinfo.noble.org/TrSSP.
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Introduction

Membrane transport proteins, also known as transporters,

transport hydrophilic substrates across hydrophobic membranes

within an individual cell or between cells, and therefore play

important roles in several cellular functions, including cell

metabolism, ion homeostasis, signal transduction, binding with

small molecules in extracellular space, the recognition process in

the immune system, energy transduction, osmoregulation, and

physiological and developmental processes [1]. Transporters

represent a diverse group of proteins that differ in topology,

energy coupling mechanism, and substrate specificity. In general,

transport proteins are classified into channel/pore proteins,

electrochemical transporters, active transporters, group transloca-

tors, and electron carriers. Transport proteins are primarily

involved in the transportation of amino acids, cations, anions,

sugars, proteins, mRNAs, electrons, water, and hormones.

Transporters also transport various substrates [2], and multiple

transporters may be associated with the transport of a particular

substrate across cell membranes. To date, the classification of

transporters based on different families/subfamilies as well as their

specific substrates remains an important challenge in both

structural and functional biology.

Early bioinformatics studies classified and assigned transport

proteins to a particular transporter class based on multiple sequence

alignment. Recently, several methods based on machine learning

techniques have been developed [1,3–6]. For example, Gromiha

et al. [3] analyzed the amino acid composition of transport proteins

and developed neural network-based models to classify these
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transport proteins as channel/pore proteins, electrochemical trans-

porters, and active transporters. Ou et al. [7] further analyzed the

amino acid composition and residue pair preferences of transport

proteins and developed models to classify these proteins as channel/

pore proteins, electrochemical transporters, and active transporters

in six transporter classification families. Li et al. [5] developed a

general machine learning based approach that integrated a set of

rules, which were based on transporter sequence features learned

from well-curated proteomes as guides, that covered major trans-

porter families/subfamilies defined in the transporter classification

database (TCDB, http://www.tcdb.org) [8].

One limitation of these methods, however, is that the prediction of

substrate specificities of transporters using these general classification

systems is difficult. Common protein sequence similarity search-

based methods fail to predict the substrate specificities of transporters

because very low similarity exists both within the same substrate

transport protein classes and between different substrate transport

protein classes. Recently, Schaadt et al. [9] analyzed the amino acid

composition, pseudo-amino acid composition [10], pair amino acid

composition [11], and multiple sequence alignment-based amino

acid composition of Arabidopsis thaliana (A. thaliana) transport proteins

and developed models to predict amino acid transporters, oligopep-

tides transporters, phosphate transporters, and hexose transporters

[12]. These models defined protein sequences within the same

transporter class as positive predictors and the protein sequences of

other transporter classesas negativepredictors. Thismethodrelies on

theEuclideandistancebetweentheaminoacidcompositionofagiven

protein sequence and the mean composition of protein sequences of

positive data for a particular substrate-specific class to calculate a

score for each query sequence against each substrate-specific class.

This score is then used to assign a substrate to the query sequence.

More recently, Chen et al. [13] developed neural network-based

models to predict substrate specificity for electron transporters,

protein/mRNA transporters, ion transporters, and other transport-

ers using a combination of amino acid composition, position-specific

scoring matrices (PSSM), and biochemical properties such as the

amino acid index (AAindex). Recently Barghash et al. [14] also

developed a new method for classification of transporter proteins at

transporter classification (TC) family level and substrate level (metal,

phosphate, sugar and amino acid transporter) by using sequence

similarity and sequence motif based methods. Their method works

well for TC family classification but its performance is low for

substrate level classification with F-scores around 40–75%.

In these previous studies, substrate-specific protein classes with

insufficient data have been merged into one general class labeled

‘‘other transporters’’. In this study, our main goal was to classify

transport proteins into the maximum possible number of classes

according to their transported substrates. To achieve this goal, we

first constructed a substrate-specific transport protein dataset that

consisted of seven classes of transporters exclusive to a particular

substrate, i.e., amino acid transporters/oligopeptides, anion

transporters, cation transporters, electron transporters, protein/

mRNA transporters, sugar transporters, and other transporters.

We also compiled a set of non-transporters as an extra class for

background controls. For each substrate class, proteins of that class

are considered as positive dataset while proteins of other classes

are consider as negative dataset. We systemically analyzed the

amino acid composition and physico-chemical composition of

each protein and found compositional differences among different

classes of proteins. We then developed support vector machine

(SVM) models that utilized the different properties of transporter

protein sequences. We found that our SVM model based on

biochemical composition and evolutionary information (i.e., the

PSSM profile) could accurately predict substrate specificity. We

adopted a five-fold cross-validation evaluation schema to assess the

performance of the developed models. Our best SVM models

achieved accuracies of 84.08%, 69.19%, 76.59%, 81.43%,

77.96%, 78.57%, 66.73%, and 78.99% for amino acid transport-

ers, anion transporters, cation transporters, electron transporters,

protein/mRNA transporters, sugar transporters, other transport-

ers, and non-transporters, respectively. We further evaluated the

performance of these models on 180 independent proteins, and the

best model achieved accuracies of 83.33%, 69.44%, 74.44%,

91.11%, 83.33%, 77.78%, 71.67%, and 80.00% for amino acid

transporters, anion transporters, cation transporters, electron

transporters, protein/mRNA transporters, sugar transporters,

other transporters, and non-transporters, respectively. Finally, we

developed TrSSP: the Transporter Substrate Specificity Prediction Server,

which is a web server that implements and demonstrates these

SVM models. The TrSSP web server is freely available at http://

bioinfo.noble.org/TrSSP.

Materials and Methods

Data Compilation
We collected from the SwissProt UniProt database (release

2013_03) 10,780 transporter, carrier, and channel proteins that

were well characterized at the protein level and had clear substrate

annotations [15,16]. We removed sequences that were fragmented.

We also removed sequences annotated with more than two substrate

specificities and biological function annotations that were based

solely on sequence similarity. We manually curated the biological

function annotations from the remaining sequences and compiled a

total of 1,110 membrane transport protein sequences in which only

one transporting substrate has been reported in the literature. We

removed 210 sequences that showed greater than 70% similarity

usingCD-HITsoftware [17] (seeFigureS1 fordetails about thedata

compilation and curation processes). The 900 remaining transporter

sequences were then divided into seven major classes of transporters

based on their substrate specificity: 85 amino acid/oligopeptide

transporters, 72 anion transporters, 296 cation transporters, 70

electron transporters, 85 protein/mRNA transporters, 72 sugar

transporters, and 220 other transporters. We also compiled 660 non-

transporters as an extra class of control proteins in our model

development process by randomly sampling all the proteins in

UniProt release 2013_03 excluding the 10,780 transporters.

We further divided the 1,560 compiled proteins into two

datasets: 1) the main dataset, which consisted of 70 amino acid

transporters, 60 anion transporters, 260 cation transporters, 60

electron transporters, 70 protein/mRNA transporters, 60 sugar

transporters, 200 other transporters, and 600 non-transport

proteins for a total of 1,380 proteins; and 2) an independent

dataset, which consisted of 15 amino acid transporters, 12 anion

transporters, 36 cation transporters, 10 electron transporters, 15

protein/mRNA transporters, 12 sugar transporters, 20 other

transporters, and 60 non-transport proteins for a total of 180

proteins (see Table S1 for a detailed dataset partition; all the

sequences are available on our TrSSP web server at http://bioinfo.

noble.org/TrSSP/). We applied a five-fold cross-validation

schema on the 1,380 proteins in the main dataset to develop our

SVM models. The performance of these SVM models was further

tested and validated on the independent dataset of 180 proteins.

To evaluate the prediction accuracy of the models for each class of

proteins, proteins within the same class were considered a positive

predictor and proteins from the remaining classes were considered

a negative predictor.

Transport Protein and Substrate Prediction
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Figure 1. Amino acid composition of transporter proteins. The amino acid composition for each amino acid as a percentage of the total
number of amino acids for amino acid transporters (blue diamonds), anion transporters (red squares), cation transporters (green triangles), electron
transporters (purple x), protein/mRNA transporters (cyan asterisks), sugar transporters (orange circles), other transporters (plus signs), and non-
transporters (orange dashes) are plotted.
doi:10.1371/journal.pone.0100278.g001

Figure 2. Variance in amino acid composition of transporter proteins. The variance in amino acid residues across amino acid transporters,
anion transporters, cation transporters, electron transporters, protein/mRNA transporters, sugar transporters, other transporters, and non-
transporters is plotted.
doi:10.1371/journal.pone.0100278.g002
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Extraction of multi-features from protein sequences for
SVM model construction

Monopeptide composition. Amino acid composition is the

best and most popular method to represent the features of a

protein [18]. The monopeptide composition gives a fixed length

pattern of 20 features. The amino acid composition of a protein is

defined as the fraction of each amino acid within that protein. The

percentage of each amino acid was calculated using the following

formula:

Percentage of amino acid(i)

~
Total number of amino acid(i)

Total number of amino acids in protein
|100

ð1Þ

where i represents one of the 20 standard amino acids.

Dipeptide composition. The dipeptide composition was

used to encapsulate global information about each protein

sequence. The dipeptide composition gives a fixed length pattern

of 400 (20620) features. Two consecutive amino acids are used to

calculate the dipeptide composition information. This representa-

tion encompasses information about the amino acid composition

as well as the local order of amino acids. The percentage of each

dipeptide was calculated using the following formula:

Percentage of dipeptide (i)

~
Total number of dipeptide(i)

Total number of dipeptides in protein
|100

ð2Þ

where i can be any dipeptide of 400 possible dipeptides.

Physico-chemical composition. The physico-chemical

composition is the composition of the physico-chemical class

residues in each protein sequence. We calculated the percentage

composition of charged (D, E, K, H, R), aliphatic (I, L, V),

aromatic (F, H, W, Y), polar (D, E, R, K, Q, N), neutral (D, E, R,

K, Q, N), hydrophobic (C, V, L, I, M, F, W), positively charged

(H, K, R), negatively charged (D, E), tiny (A, C, D, G, S, T), small

(E, H, I, L, K, M, N, P, Q, V), and large (F, R, W, Y) residues in

each protein sequence [19]. We used the composition percentages

of these 11 physico-chemical properties as an input feature to the

SVM for model development [20].

Biochemical composition calculation. The biochemical

composition of the amino acid residues was also used as an input

feature to the SVM for model development. We used a set of 49

selected physical, chemical, energetic, and conformational prop-

erties to define the biochemical composition of each protein

sequence [13]. These values are subsets of the AAIndex database

[21], which has been successfully used to study protein folding and

stability [22–24] and transporter classification [25]. We down-

loaded the 0–1 normalized values of these 49 properties from

Figure 3. Physico-chemical composition of transporter proteins. The physico-chemical composition (as a percentage of the total amino
acids) of amino acid transporters (blue diamonds), anion transporters (red squares), cation transporters (green triangles), electron transporters (purple
x), protein/mRNA transporters (cyan asterisks), sugar transporters (orange circles), other transporters (plus signs), and non-transporters (orange
dashes) are plotted for the following physico-chemical amino acid classes: charged, aliphatic, aromatic, polar, neutral, hydrophobic, positively
charged, negatively charged, tiny, small, and large amino acids.
doi:10.1371/journal.pone.0100278.g003
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http://www.cbrc.jp/,gromiha/fold_rate/property.html; the de-

tails of each property are available at this website. We calculated

the average of each biochemical property for each protein

sequence using the following equation:

AAindi~

Pn
j~1

AAindij

n
ð3Þ

Where AAindi is the value for the ith biochemical property in a

given protein sequence,
Pn

j~1 AAindij is the arithmetic sum of the

ith biochemical property, and n is the length of the protein

sequence. We therefore converted the biochemical properties of

each protein sequence into a vector with a fixed size of 49.

Position-specific scoring matrix (PSSM) profile
PSI-BLAST (Position-Specific Iterative Basic Local Alignment

Search Tool) is a popular tool for the detection of distantly related

proteins. PSI-BLAST calls BLAST (Basic Local Alignment Search

Tool) to construct a profile or position-specific scoring matrix

(PSSM) from the multiple alignments of the highest scoring hits in

an initial BLAST search (default threshold e-value = 1e-3). The

newly generated profile is then used iteratively to perform

subsequent BLAST searches, and the result of each iteration is

in turn used to refine the PSSM profile [26]. The PSSM therefore

contains the probability of the occurrence of each type of amino

acid residue at each position as well as insertions/deletions. Highly

conserved positions receive high scores and weakly conserved

positions receive near zero scores. We ran PSI-BLAST against the

UniRef90 protein database (i.e., the non-redundant UniRef

database with 90% sequence identity) [27] with the BLOSUM62

matrix [28]. We also used the SwissProt database [15] to generate

the PSSM profile during our TrSSP web server development,

which significantly reduced the computational runtime. The

PSSM profile of a protein sequence extracted from PSI-BLAST

was used to generate a 400-dimensional input vector to the SVM

by summing all the rows in the PSSM that correspond to the same

amino acid in the primary sequence. Every element in this input

vector was then divided by the length of the sequence and scaled to

the 0–1 range using the following standard linear function:

Normalized value~ (Value{Minimum)
(Maximum{Minimum)

ð4Þ

where Value represents the individual final sum of the PSSM score

for each amino acid [29].

Cross-validation
Cross-validation is a practical and reliable way to test the

predictive power of a newly developed model. The jack-knife or

leave-one-out cross-validation (LOOCV) [30] and five-fold cross-

Figure 4. Receiver operating characteristic analysis. ROC analyses for (a) amino acid transporters; (b) anion transporters; (c) cation transporters;
(d) electron transporters; (e) protein/mRNA transporters; (f) sugar transporters; (g) other transporters; and (h) non-transporters are plotted. Here AAI,
MPC, DPC and PSSM denotes amino acid index, monopeptide composition, dipeptide composition and position specific scoring matrices
respectively.
doi:10.1371/journal.pone.0100278.g004

Table 1. The average sensitivity, specificity, accuracy, and MCC for all seven substrate-specific transporter classes for different
models.

Method Sensitivity (%) Specificity (%) Accuracy (%) MCC

AAC 74.65 73.22 73.74 0.46

DPC 71.36 71.17 71.32 0.40

PHC 70.63 70.42 70.60 0.38

AAI 71.54 71.98 71.80 0.40

PSSM 74.00 76.03 75.48 0.47

AAC+AAI 73.84 73.36 73.37 0.44

AAC+DPC 73.01 74.23 73.85 0.44

AAC+PHC 73.56 73.39 73.40 0.44

AAC+PSSM 72.33 74.62 73.87 0.44

DPC+AAI 70.28 72.09 71.67 0.40

DPC+PHC 72.15 73.13 72.90 0.43

DPC+PSSM 69.87 72.06 71.37 0.40

AAI+PHC 69.32 71.50 70.79 0.38

AAI+PSSM 76.19 77.17 76.69 0.49

AAC+DPC+AAI 73.01 74.32 73.89 0.44

AAC+DPC+PHC 73.04 75.36 74.75 0.46

AAC+DPC+PSSM 73.43 73.73 73.64 0.44

AAC+AAI+PHC 73.01 73.82 73.51 0.44

AAC+AAI+PSSM 72.34 74.62 73.90 0.44

AAC: Amino acid composition; DPC: Dipeptide composition; AAI: Biochemical composition (AAIndex); PHC: Physico-chemical class composition; PSSM: Position-specific
scoring matrix.
doi:10.1371/journal.pone.0100278.t001
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validation are two commonly used techniques to evaluate a model.

We used a five-fold cross-validation in the present SVM model

development. In five-fold cross-validation, the dataset is parti-

tioned into five equally sized random partitions [29,31]. The

methods of development and evaluation are conducted five times

using four partitions as the training dataset and the remaining

partition as the testing dataset. The performance of each model is

computed as the average of the five runs.

Support vector machines
The support vector machine (SVM) is a universal machine

learning approximator based on the structural risk minimization

(SRM) principle of statistical learning theory [32]. This technique

is particularly attractive to biological sequence analysis due to its

ability to handle noise and larger feature spaces [25]. We

implemented SVM models using the SVM-Light software [33],

which is freely available from http://svmlight.joachims.org/.

SVM-Light enables the user to define the number of parameters

and choose an inbuilt kernel, such as a linear, polynomial, sigmoid,

or radial basis function (RBF) kernel. In this study, we tested

linear, polynomial and RBF kernels for model development and

found RBF performed better than other kernels. We also

optimized both cost and gamma parameters (range of -j: 1- 4, -

g: 1-e-5 - 10) of RBF kernel.

Comparison to similarity search based methods
Sequence similarity remains the most popular method for the

functional characterization of proteins. Therefore, we compared

the performance of our SVM models for the prediction of

substrate-specific transporter classes on both our main dataset and

independent dataset to the following similarity search based

methods: BLAST, PSI-BLAST, and hidden Markov models

(HMM). In these similarity search based method development

and evaluations, we used all unique transporter protein sequences

without applying homology sequence filtering by using the CD-

HIT tool.

BLAST. BLAST (Basic Local Alignment Search Tool) is one

of the most popular bioinformatics tool for functional annotation

of protein and nucleotide sequences [26,34]. A BLAST search

allows a user to search a query sequence against a library or

database of sequences and find similar sequence in the library at a

given cut-off threshold. The biological function of that hit

sequence may be used to infer the function of the query sequence.

PSI-BLAST. PSI-BLAST is a tool that produces a PSSM

constructed from a multiple alignment of the top-scoring BLAST

hits to a given query sequence [26]. The position-specific matrix

for round n+1 is built from a constrained multiple alignment

between the query sequence and the sequences found with a

sufficiently low e-value in round n. This scoring matrix produces a

profile designed to identify the key positions of conserved amino

acids within a motif. Subtle relationships between proteins that are

distant structural or functional homologs can often be detected

when this profile is used to search a database; these relationships

are often not detected by a BLAST search. Therefore, we used

PSI-BLAST in addition to BLAST to detect remote homologies.

We conducted an iterative search in which the sequences found in

one round were used to build score models for the next round of

searching. Three iterations of PSI-BLAST were conducted at

different cutoff e-values. This module could predict any of the

seven transporter and one non-transporter classes depending on

Table 2. The performances of the best models on the main dataset for different substrate-specific transporter classes.

Transporter class Sensitivity (%) Specificity (%) Accuracy (%) MCC AUC

Amino acid 85.72 83.43 84.08 0.65 0.898

Anion 71.67 69.00 69.19 0.32 0.754

Cation 70.00 79.29 76.59 0.47 0.814

Electron 85.00 80.00 81.43 0.60 0.923

Protein/mRNA 74.29 79.43 77.96 0.51 0.817

Sugar 76.67 79.33 78.57 0.52 0.877

Other 66.50 68.50 66.93 0.29 0.712

Non-transporter 79.67 78.46 78.99 0.58 0.865

doi:10.1371/journal.pone.0100278.t002

Table 3. The performances of the best models on the independent dataset for different substrate-specific transporter classes.

Transporter class Sensitivity (%) Specificity (%) Accuracy (%) MCC

Amino acid 93.33 82.42 83.33 0.49

Anion 75.00 69.05 69.44 0.23

Cation 75.00 74.31 74.44 0.41

Electron 80.00 91.78 91.11 0.50

Protein/mRNA 93.33 82.42 83.33 0.49

Sugar 91.67 76.79 77.78 0.38

Other 60.00 73.13 71.67 0.23

Non-transporter 76.67 81.67 80.00 0.57

doi:10.1371/journal.pone.0100278.t003

Transport Protein and Substrate Prediction

PLOS ONE | www.plosone.org 7 June 2014 | Volume 9 | Issue 6 | e100278

http://svmlight.joachims.org/


the similarity of the query protein to the proteins in the dataset. If

the top hit had an e-value lower than the cut-off threshold, then

the annotation of the top hit was used as the predicted annotation

of the query.

Hidden Markov models. HMMs are statistical models of

the primary structure consensus of a sequence family. HMMs were

initially developed for speech recognition [35]. In biological

sequence analysis, HMMs are used to build a profile that captures

important information about the degree of conservation at various

positions in multiple alignments and the varying degree to which

gaps and insertion are permitted. HMM-based methods, which

work on a formal probabilistic basis, typically outperform methods

based on pairwise comparison in both alignment accuracy and

database search sensitivity and specificity. Further details about

HMMs can be found in Krogh et al. [36]. We adopted HMM-

based searching using a freely downloadable implementation of

HMM, HMMER version 3.1b1 [37], which is freely available at

http://hmmer.janelia.org.

To implement the HMM-based method, the entire dataset was

divided into 5 subsets similar to the five-fold cross-validation

schema [38]. Four subsets of sequences were multiply aligned

using ClustalW2 [39], and alignment profiles were generated using

‘hmmbuild’ in HMMER 3.1.b1. This profile database was

converted into compressed binary data files using ‘hmmpress’,

and tested with the fifth subset of sequences using the ‘hmmscan’

module in HMMER 3.1b1.

Assessment of prediction performances
Sensitivity, specificity, accuracy, coverage, and the Matthews

correlation coefficient (MCC) were calculated for each test dataset

in our five-fold cross validation to test the performance of each

model. Parameters computed from each subset were averaged

across all five subsets to obtain a final value.

Sensitivity was computed as Sensitivity~
TP

TPzFN
|100,

which evaluates the percentage of transporters that were correctly

predicted as transporters.

Specificity was computed as Specificity~ TN

TNzFP
|100,

which evaluates the percentage of non-transporters that were

correctly predicted as non-transport proteins.

Accuracy was computed as Accuracy~
TPzTN

TPzFPzTNzFN
|

100, which evaluates the overall percentage of transporters and non-

transporters that were correctly predicted.

Coverage was computed as

Coverage~
Number of correctly predicted examples

Total number of examples
, which

provides a measure of the number of transporters that have

been correctly predicted from the total dataset. This coverage

is also commonly known as sensitivity or percentage of correct

predictions/hits.

The Matthews correlation coefficient (MCC), which was computed

as MCC~
(TP|TN){(FN|FP)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)

p ,

is a statistical parameter that assesses the quality of the binary

classification for each model. The MCC accounts for both true and

false positive predictions and is regarded as a balanced measure even

when the two classes are different sizes. An MCC equal to 1 is regarded

as a perfect prediction; an MCC close to 0 is regarded as a random

prediction. In these formulas, TP (true positive) represents the number

of correctly predicted transporters, TN (true negative) represents the

number of correctly predicted non-transporters, FP (false positive)

represents the number of non-transporters predicted as transporters,

and FN (false negative) represents the number of transport proteins

predicted as non-transporters.

Table 4. A comparison of the performance of our model with TTRBF.

Transporter class Total Correct predictions by our models Correct predictions by TTRBF *Transporter Class

Amino acid% 15 14 5 Other

Anion‘ 12 9 5 Ion

Cation‘ 36 27 31

Electron 10 8 6 Electron

Protein/mRNA 15 14 13 Protein/mRNA

Sugar% 12 11 11 Other

Other% 20 12 3 Other

Non-transporter
$ 60 46 11

* Four substrate-specific transporter classes described in Chen et al. [13]; $ Non-transporter, % other class; ‘ ion transporter.
doi:10.1371/journal.pone.0100278.t004

Table 5. A comparison of the coverage metric of our models with TTRBF.

Transporter class Total Coverage (%) of our models Coverage (%) of TTRBF

Electron 10 80.00 60.00

Ion 48 75.00 75.00

Protein/mRNA 15 93.33 86.67

Other 47 76.60 40.43

Average 83.21 65.53

doi:10.1371/journal.pone.0100278.t005
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All the parameters described above are threshold-dependent

parameters; therefore, the performance of a model depends on a

threshold. An analysis of the area under the curve (AUC) of the

receiver operating characteristic (ROC) curve overcomes the

threshold dependence of the above metrics. The ROC curve plots

the true positive proportion (TP/TP+FN, i.e., sensitivity) against

the false positive proportion (FP/FP+TN, i.e., 1 - specificity) for

each model. The area under this ROC curve provides a single

measure on which to evaluate the performance of each model.

This well-known threshold-independent ROC analysis enables the

evaluation of the performance of a binary classifier system as the

discrimination threshold of that system is varied. An AUC of 1.0

indicates a perfect prediction and an AUC of 0.5 indicates that the

prediction is no better than a random guess.

Results

Compositional biases
We computed the amino acid composition of eight classes of

proteins, including seven substrate-specific transporter classes and

one class of non-transporters. The composition of charged amino

acids, such as Asp, Glu, Arg, and Lys as well as Gly, Ile, Phe, Gln,

and Val (shown in Figure 1), differ among these eight classes. The

variance in the amino acid concentrations among the eight classes

is shown in Figure 2. The amino acids Asp, Glu, Lys, Phe, Gly,

Ile, Leu, and Ser had a variance higher than 0.5. Figure 3 shows

the differences in the physico-chemical composition of the

charged, polar, and hydrophobic amino acids among the eight

classes. These variances suggest significant compositional differ-

ences among the different classes of substrate-specific transporter

proteins.

SVM performance on the main dataset
We used the amino acid composition, dipeptide composition,

physico-chemical composition, biochemical composition (AAIn-

dex), PSSM, and a combination of these properties to develop

different models to discriminate amino acid/oligopeptides, anion,

cation, electron, protein/mRNA, sugar, and other transporters

and non-transporters. We then systematically evaluated the

performance of each model using ROC analyses for (a) amino

acid transporters; (b) anion transporters; (c) cation transporters; (d)

electron transporters; (e) protein/mRNA transporters; (f) sugar

transporters; (g) other transporters; and (h) non-transporters (see

results in Figure 4).

Table 1 shows the average sensitivity, specificity, accuracy, and

MCC of all seven substrate-specific transporter classes using

different SVM models. Table 2 shows the average sensitivity,

specificity, accuracy, and MCC of our best models for eight

classes, which include the seven substrate-specific transporter

classes and the non-transporter class. These results show that the

AAIndex+PSSM-based model outperforms the other models. We

also tested models that used a combination of PSSM and other

compositions; however, the overall performance was not improved

in these models. Our best model that integrates the biochemical

composition (AAIndex) and the PSSM profile achieved an

Table 6. The performance (coverage metric) of the BLAST search on the main dataset using the standard five-fold cross-validation.

Transporter class Coverage (%) at E-value cutoff thresholds

1E-4 1E-10 1E-50

Amino acid 75.71 75.71 52.86

Anion 50.00 48.33 36.67

Cation 66.54 60.38 40.77

Electron 25.00 20.00 11.67

Protein/mRNA 32.86 31.43 20.00

Sugar 68.33 65.00 50.00

Other 58.00 57.00 37.00

Non-transporter 32.17 24.67 7.50

doi:10.1371/journal.pone.0100278.t006

Table 7. The performance (coverage metric) of the BLAST search on the independent dataset.

Transporter class Coverage (%) at E-value cutoff thresholds

1E-4 1E-10 1E-50

Amino acid 33.33 13.33 0.00

Anion 25.00 16.67 0.00

Cation 36.11 36.11 16.67

Electron 0.00 0.00 0.00

Protein/mRNA 0.00 0.00 0.00

Sugar 41.67 41.67 16.67

Other 10.00 10.00 0.00

Non-transporter 10.00 8.33 3.00

doi:10.1371/journal.pone.0100278.t007
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accuracy of 84.08%, 69.19%, 76.59%, 81.43%, 77.96%, 78.57%,

66.73%, and 78.99% for amino acid transporters, anion trans-

porters, cation transporters, electron transporters, protein/mRNA

transporters, sugar transporters, and other transporters, respec-

tively. Similarly, this model achieved MCC values of 0.65, 0.32,

0.47, 0.60, 0.51, 0.52, 0.29, and 0.58 and AUC values of 0.898,

0.754, 0.814, 0.923, 0.817, 0.877, 0.712, and 0.865 for amino acid

transporters, anion transporters, cation transporters, electron

transporters, protein/mRNA transporters, sugar transporters,

and other transporters, respectively.

Although SVM models using the PSSM profile, which was

generated with UniRef90, performed well (Table S2 and Table
S4), the PSSM profile takes a long time to compute due to the size

of the UniRef90 database. Therefore, we used the UniProtKB/

SwissProt release 2013-03 as the reference dataset in order to

reduce the PSSM computation time. We achieved a similar result

when this PSSM profile was used in the SVM model, and the

PSSM generation process was about 10 times faster than the

generation process that used UniRef90. The hybrid model that

included the biochemical composition and this PSSM profile

achieved an accuracy of 83.27%, 67.14%, 76.15%, 81.43%,

74.69%, 78.57%, 66.71%, and 78.12% and an accuracy of

84.44%, 68.33%, 71.11%, 81.67%, 83.33%, 80.56%, 69.44%,

and 80.00% for amino acid transporters, anion transporters,

cation transporters, electron transporters, protein/mRNA trans-

porters, sugar transporters, and other transporters, respectively, of

which the performances were analyzed based on both the main

dataset and the independent dataset (see Table S3 and Table
S5). Confusion matrix of training data suggests that our best model

working well for each class of transporters in main dataset (Table
S6).

SVM performance on the independent dataset
We used an independent dataset of 15 amino acid transporters,

12 anion transporters, 36 cation transporters, 10 electron

transporters, 15 protein/mRNA transporters, 12 sugar transport-

ers, and 20 other transporters (see Table S1) to further evaluate

the performance of our SVM models. The best SVM model,

which used both the biochemical composition and the UniRef90-

generated PSSM profile, achieved an accuracy of 83.33%,

69.44%, 74.44%, 91.11%, 83.33%, 77.78%, 71.67%, and

80.00% for amino acid transporters, anion transporters, cation

transporters, electron transporters, protein/mRNA transporters,

sugar transporters, and other transporters, respectively (see

Table 3 for details).

We also tested the hybrid model that used the biochemical

composition and the UniProt/SwissProt-based PSSM profile on

the independent dataset. This model achieved an accuracy of

84.44%, 68.33%, 71.11%, 81.67%, 83.33%, 80.56%, 69.44%,

and 80.00% for amino acid transporters, anion transporters,

cation transporters, electron transporters, protein/mRNA trans-

porters, sugar transporters, and other transporters, respectively.

Confusion matrix of independent data suggests that our best

Table 8. The performance (coverage metric) of the PSI-BLAST search on the main dataset using a five-fold cross-validation.

Transporter class Coverage (%) at E-value cutoff thresholds

1E-4 1E-10 1E-50

Amino acid 74.29 74.29 52.86

Anion 40.00 38.33 31.67

Cation 68.46 62.69 41.54

Electron 30.00 30.00 13.33

Protein/mRNA 34.29 32.86 21.43

Sugar 68.33 65.00 51.67

Other 59.00 56.50 38.50

Non-transporter 34.67 25.50 7.67

doi:10.1371/journal.pone.0100278.t008

Table 9. The performance (coverage metric) of the PSI-BLAST search on the independent dataset.

Transporter class Coverage (%) at E-value cutoff thresholds

1E-4 1E-10 1E-50

Amino acid 26.67 13.33 0.00

Anion 33.33 16.67 0.00

Cation 36.11 36.11 19.44

Electron 0.00 0.00 0.00

Protein/mRNA 0.00 0.00 0.00

Sugar 41.67 41.67 16.67

Other 10.00 10.00 0.00

Non-transporter 10.00 8.33 3.33

doi:10.1371/journal.pone.0100278.t009
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model working well for independent data of each class of

transporters (Table S7).

Comparisons with other classification models
Substrate specificity classification. Chen et al. [13] devel-

oped models for four substrate-specific transporter classes: electron

transporters, protein/mRNA transporters, ion transporters, and

other transporters. The use of only four transporter classes makes

difficult a direct comparison to our models, which were developed

on seven transporter classes. We therefore predicted substrate

specificity using their TTRBF web server at http://rbf.bioinfo.tw/

,sachen/TTpredict/Transporter-RBF.php, and grouped our

cation and anion transporters into the ion transporter class and

our amino acid transporters, sugar transporters, and other

transporters into the other transporter class for our independent

dataset We used a threshold of 0.65 to differentiate between non-

transporters (below 0.65) and transporters (greater than or equal to

0.65). Table 4 provides details about the comparison between our

SVM models and the models from the Chen et al. TTRBF web

server. Our models outperformed the Chen et al. models in all

cases except in the case of ion transporters by an extremely small

margin (Table 5). Furthermore, our models have an average

coverage of 83.21% compared to an average coverage of 65.33%

using the Chen et al. models.

Transporter and non-transporter classification
We also compared the performance of transporter and non-

transporter classification between our model and the model of Ou

et al [7] using their web server at http://rbf.bioinfo.tw/,sachen/

TCpredict/Transporter-RBF.php. The Ou et al. model predicted

transporters and non-transporters with an accuracy of 78.89% and

MCC of 0.53, whereas our models predicted transporters and

non-transporters with an accuracy of 80.00% and MCC of 0.57.

This result therefore suggests that our models outperform the Ou

et al. model for transporter and non-transporter classification.

BLAST performance
Sequence similarity remains the most popular method for the

functional characterization of proteins. In general, if the perfor-

mance of BLAST-based methods is acceptable, then the develop-

ment of new models is unnecessary. In our study, we used BLAST

to discriminate between the seven substrate-specific transporter

classes and the non-transporter class. We used the coverage metric

to evaluate the performance of the BLAST method on the

prediction of substrate specificity in our five-fold cross-validation.

For the main dataset, the BLAST results achieved a coverage

range between 25.00% and 75.71% (see Table 6). Similarly, for

the independent dataset, the BLAST results at an e-value of 1e-4

achieved a coverage range between 0.00% and 41.67% at an e-

value of 1e-4 (see Table 7). These results suggest that BLAST

almost failed to discriminate transporters. The BLAST method

performed poorly for the prediction of anion transporters, electron

Table 10. The performance (coverage metric) of the HMM search on the main dataset using a five-fold cross-validation.

Transporter class Coverage (%) at E-value cutoff thresholds

1E-4 1E-10 1E-50

Amino acid 47.14 42.86 11.43

Anion 18.33 15.00 8.33

Cation 8.46 6.54 4.23

Electron 3.33 1.67 0.00

Protein/mRNA 5.71 2.86 0.00

Sugar 46.67 46.67 40.00

Other 20.00 17.00 9.00

Non-transporter 0.00 0.00 0.00

doi:10.1371/journal.pone.0100278.t010

Table 11. The performance (coverage metric) of the HMM search on the independent dataset.

Transporter class Coverage (%) at E-value cutoff thresholds

1E-4 1E-10 1E-50

Amino acid 40.00 40.00 20.00

Anion 41.66 41.66 8.33

Cation 11.11 8.33 5.55

Electron 10.00 10.00 0.00

Protein/mRNA 0.00 0.00 0.00

Sugar 25.00 25.00 25.00

Other 10.00 5.00 0.00

Non transporter 0.00 0.00 0.00

doi:10.1371/journal.pone.0100278.t011
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transporters, and protein/mRNA transporters on the main dataset

and several classes of transporters on the independent dataset. The

performance of the BLAST method decreased further when we

applied more stringent e-value cutoff thresholds.

PSI-BLAST performance
In this study, we used PSI-BLAST in addition to BLAST

because PSI-BLAST has the added capability of detecting remote

homologies. For the main dataset, the PSI-BLAST search results

achieved a coverage range between 30.00% and 74.29% at an e-

value of 1e-4 (see Table 8). Similarly, for the independent dataset,

the PSI-BLAST search results achieved a coverage range between

0.00% and 41.67% at an e-value of 1e-4 (see Table 9). Therefore,

PSI-BLAST also failed to discriminate between transport and non-

transport proteins. The PSI-BLAST method performed poorly for

the prediction of anion transporters, electron transporters, and

protein/mRNA transporters on the main dataset, and failed to

predict several transporter classes on the independent dataset. The

performance of the PSI-BLAST method decreased further when

we applied more stringent e-values. The BLAST and PSI-BLAST

results therefore suggest that similarity-based methods are not

suitable for the prediction of substrate-specific transporter classes.

HMM performance
We used HMM profiles that were built using the ClustalW2

multiple sequence alignment software in the HMMER 3.1b1

software package to search for similar sequences. As shown in

Table 10, for the main dataset, the HMM results had a coverage

range between 3.33% and 47.14% at an e-value of 1e-4. Similarly,

for the independent dataset, the HMM results achieved a coverage

range between 0.0% and 41.66% at an e-value of 1e-4 (Table 11).
This analysis suggests that the HMM-based profile searching

method performs poorly for the prediction of substrate-specific

transporter classes, and completely failed for a few classes.

Proteome-scale transporter annotation
We applied our best model to predict transporters at the

proteome level for Human, Drosophila, Yeast, Escherichia coli (E.

coli), and A. thaliana proteins. To perform a proteome-level

transporter analysis, we collected experimentally annotated full-

length protein sequences from SwissProt release 2013-06. The

details of this analysis are summarized in Table 12; the entire

prediction for each organism is available on the TrSSP web server

(http://bioinfo.noble.org/TrSSP/?dowhat = Datasets). Our re-

sults suggest that E. coli has the largest percentage of transporter

proteins followed by A. thaliana; humans have the lowest

percentage of transporter proteins. We also observed that amino

acid and sugar transporters represent the smallest percentage of

transporters in all organisms tested except E. coli, and cation and

electron transporters represent the highest percentage of trans-

porters in all organisms tested. A complete list of sequences and

their substrate specificities are available on the TrSSP web server.

Discussion

The experimental characterization of transporters at the

substrate-specific level is difficult and time consuming. Substrate-

specific transporter characterization is also difficult in bioinfor-

matics studies because transporters have remote homologies with

other proteins both within and between protein classes. Advanced

computational techniques that identify substrate-specific transport

proteins from their primary sequences are urgently needed.

Although Schaadt et al. [9] have previously developed models to

predict the substrate specificity of transporters for A. thaliana

proteins, one limitation of their models is that only 61 proteins

were used in the training dataset for model development. These

models were also not made available through software or a web

server for users to analyze their own sequences. Chen et al. [13]

have developed models to predict the substrate specificity for

electron transporters, protein/mRNA transporters, ion transport-

ers, and other transporters, and more recently improved this

Table 12. The number of predicted transporters in Human, Drosophila, E. coli, Yeast and A. thaliana.

Human Drosophila E. coli Yeast A. thaliana

Total number of/Percentage of protein sequences 20,254 3,198 22,142 7,794 12,197

Total transporters 2,112 448 5,939 960 2,440

(10.43%) (14.01%) (26.82%) (12.32%) (20.01%)

Amino acid transporters 216 25 705 170 369

(1.07%) (0.78%) (3.18%) (2.18%) (3.02%)

Anion transporters 661 70 492 251 776

(3.26%) (2.19%) (2.13%) (3.22%) (6.36%)

Cation transporters 1,001 204 2,575 329 1084

(4.94%) (6.38%) (11.63%) (4.22%) (8.89%)

Electron transporters 600 153 3081 329 547

(2.96%) (4.78%) (13.91%) (4.22%) (4.48%)

Protein transporters 913 223 1,644 376 659

(4.51%) (6.97%) (7.42%) (4.82%) (5.40%)

Sugar transporters 402 51 1,041 173 492

(1.98%) (1.59%) (4.70%) (2.22%) (4.03%)

Other transporters 623 96 1,087 274 670

(3.08%) (3.00%) (4.91%) (3.52%) (5.49%)

doi:10.1371/journal.pone.0100278.t012
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method to differentiate transporters from non-transporters using a

probability distribution function for each query protein. This

improved method, which is essentially a combination of the

original Chen et al. model and the Ou et al. model, is limited in

that the proposed threshold of 0.65 is not reliable for the

prediction of transporters. Barghash et al. [14] model is also

limited to classifying transporters of only four substrates and at TC

family/subfamily level.

The models developed in the present study can simultaneously

predict whether a query protein is a transporter or non-transporter

protein and its substrate specificity for seven transporter protein

classes. One advantage of our model is that it can differentiate

cation and anion transporters. Our PSSM-based model demon-

strated superior performance with respect to substrate specificity

prediction. However, this model was computationally demanding

when the PSSM profile was generated from the UniRef90

database. We observed that our TrSSP web server would take

approximately 6–15 minutes per sequence to run when the

UniRef90 database was used for PSSM generation. To signifi-

cantly reduce the PSSM computational time, we implemented

parallel computing for PSSM generation and used the UniProt/

SwissProt database as the reference database, which reduced the

runtime of our TrSSP server to approximately 10 minutes for

approximately 200 sequences with no impact on model perfor-

mance.

Conclusions

We observed that sequence-similarity based methods such as

BLAST, PSI-BLAST, and HMM were unable to accurately

predict substrate-specific transporter classes. These results were

expected because transporter proteins are diverse and have a

remote homology both within and between transporter classes.

Our current study suggests that we can predict the substrate

specificity of transport proteins using SVM models that incorpo-

rate the biochemical composition, amino acid composition, and

PSSM profile of transporter proteins. Our five-fold cross-

validation method on the main dataset revealed that the best

model, which included the AAIndex and the PSSM profile,

achieved a prediction accuracy of 84.08%, 69.19%, 76.59%,

81.43%, 77.96%, 78.57%, 66.73%, and 78.99% for amino acid

transporters, anion transporters, cation transporters, electron

transporters, protein/mRNA transporters, sugar transporters,

and other transporters, respectively. This model also achieved

similar prediction accuracy on the independent dataset. Therefore,

the models developed in the present study not only outperform the

current available classifiers but also predict substrate specificity for

more transporter classes than previous methods.

Web server
We have developed a web server based on this work, which is

freely available at http://bioinfo.noble.org/TrSSP. Users can

upload or paste protein sequences in Fasta format for transporter

and substrate prediction. We have provided six prediction modules

on this web server: an amino acid composition based SVM, an

AAIndex based SVM, a PSSM (SwissProt) based SVM, an

AAIndex/PSSM (SwissProt) hybrid SVM, a PSSM (UniRef90)

based SVM, and an AAIndex/PSSM (UniRef90) hybrid SVM.

The TrSSP web server uses the amino acid composition module as

the default. For the amino acid composition and AAIndex based

modules, users can upload/paste a maximum of 2,000 sequences

for batch predictions. Due to the high computational demand, we

provide 1) PSSM (SwissProt) or AAIndex/PSSM (SwissProt)

hybrid modules where users can upload/paste a maximum of

1,000 sequences and 2) PSSM (UniRef90) or AAIndex/PSSM

(UniRef90) hybrid modules where users can upload/paste a

maximum of 280 sequences for batch predictions. Although we

have implemented a parallel PSSM generation, the PSSM-based

modules have a long runtime; therefore, we provide users with the

option to enter their email address to retrieve their prediction at a

later time (within 120 days).
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