Vol. 24 ISMB 2008, pages i41-i49
doi:10.1093/bioinformatics/btn174

Efficient algorithms for accurate hierarchical clustering of huge
datasets: tackling the entire protein space

Yaniv Loewenstein'-*, Elon Portugaly!, Menachem Fromer' and Michal Linial®-*
1School of Computer Science and Engineering and 2Department of Biological Chemistry, Institute of Life Sciences,

The Hebrew University of Jerusalem, Israel

ABSTRACT

Motivation: UPGMA (average linking) is probably the most popular
algorithm for hierarchical data clustering, especially in computational
biology. However, UPGMA requires the entire dissimilarity matrix in
memory. Due to this prohibitive requirement, UPGMA is not scalable
to very large datasets.

Application: We present a novel class of memory-constrained
UPGMA (MC-UPGMA) algorithms. Given any practical memory
size constraint, this framework guarantees the correct clustering
solution without explicitly requiring all dissimilarities in memory.
The algorithms are general and are applicable to any dataset.
We present a data-dependent characterization of hardness and
clustering efficiency. The presented concepts are applicable to any
agglomerative clustering formulation.

Results: We apply our algorithm to the entire collection of protein
sequences, to automatically build a comprehensive evolutionary-
driven hierarchy of proteins from sequence alone. The newly created
tree captures protein families better than state-of-the-art large-scale
methods such as CluSTr, ProtoNet4 or single-linkage clustering.
We demonstrate that leveraging the entire mass embodied in all
sequence similarities allows to significantly improve on current
protein family clusterings which are unable to directly tackle the sheer
mass of this data. Furthermore, we argue that non-metric constraints
are an inherent complexity of the sequence space and should
not be overlooked. The robustness of UPGMA allows significant
improvement, especially for multidomain proteins, and for large or
divergent families.

Availability: A comprehensive tree built from all UniProt sequence
similarities, together with navigation and classification tools will
be made available as part of the ProtoNet service. A C++
implementation of the algorithm is available on request.

Contact: lonshy@cs.huiji.ac.il

1 INTRODUCTION
1.1 Background

Clustering is a fundamental task in automatic processing of large
datasets, in a broad spectrum of applications. It is used to unravel
latent natural groupings of data items. Hierarchical clustering
methods aim to furthermore categorize data items into a hierarchical
set of clusters organized in a tree structure. For instance hierarchical
clustering is used for automatic recognition and classification of
patterns in digital images, stock prediction, text mining and in
computer science theory.

*To whom correspondence should be addressed.

Hierarchical connections are especially evident in the biological
domain. Gene Ontology (GO; Ashburner et al., 2000) classifies
genes into hierarchies of biological processes and molecular
functions. The SCOP, CATH and DALI databases classify protein
structures into a hierarchy based on structural similarities (Murzin
et al., 1995). The ENZYME commission (EC) nomenclature
classifies enzymes into a hierarchy based on biochemical classes.
Classical taxonomy classifies organisms into an evolutionary tree
structure. Notably, the evolutionary tree process driving sequence
divergence, underlies the hierarchical classification of protein
families, and make it an especially appealing playground for
hierarchical clustering methods. UPGMA (Unweighted Pair Group
Method using arithmetic Averages) is arguably the most popular
hierarchical clustering algorithm in use to date, especially for gene
expression (D’haeseleer, 2005) and for protein sequence clustering
(Liu and Rost, 2003).

One of the daunting problems in the field of computational biology
is the development of automatic methods for structure and function
prediction from protein sequence. This challenge is emphasized by
the glut of protein sequences deposited in public databases (Suzek
et al., 2007).

ProtoNet (Kaplan et al., 2004, 2005) uses UPGMA to build a
hierarchy of protein sequences from sequence similarities. It was
shown that this automated procedure is especially useful for
prediction of function (Sasson et al., 2006), remote homology
(Shachar and Linial, 2004) and structure (Kifer et al., 2005).
Since the clustering is unsupervised, it is independent of available
knowledge, and can thus automatically unveil clusters of novel
biological significance. Other large-scale unsupervised (i.e. using
only sequence) methods are Systers (Krause et al., 2005) and CluSTr
(Petryszak et al., 2005), which utilize single-linkage clustering to
cope with the data size.

1.2 Hierarchical clustering by UPGMA

Hierarchical clustering algorithms construct a hierarchy of input data
items. Agglomerative clustering methods create a hierarchy bottom-
up, by choosing a pair of clusters to merge at each step. The result
is a rooted binary tree. N leaves correspond to input data items
(singleton clusters), and N — 1 inner nodes (clusters) correspond to
groupings in coarser granularities at higher tree levels. Merge scores
correspond to dendrogram heights. The hierarchy is often used to
infer knowledge from cluster statistics, as well as relatedness at
varying granularities.

Agglomerative clustering methods usually take an input of
pairwise similarities among data items, from which cluster
similarities are then inferred. Different formulations have been
used to define pairwise similarities across clusters. Single-linkage
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Table 1. Size of clustered UniRef90 data, extrapolated future sizes and the
appropriate memory requirements

Memory |E|
(GB) (No. of edges)

Current — UniRef90 rel. 8.5, June 2006 (N =1.80M)
Raw BLAST similarities (directed multi-graph) 50 2.5x 107
Actual sparse similarities (symmetric, undirected) 30 1.5x10°
Full non-sparse possible similarities 12981 1.6x 1012
Extrapolated Future — UniRef90 rel. 13.1, March 2008 (N =3.61M)
Actual sparse similarities (symmetric, undirected) 122 6.1x 107
Full non-sparse possible similarities 52262 6.5x 1012

Expected memory requirements are based on a conservative estimate of 20 bytes per
edge for sparse data, and 8 bytes for full matrices. Extrapolation is based on the actual
growth in the number of sequences in UniRef90, when a fixed degree of sparsity is
assumed. A strong 32-bit workstation has up to 4 GB of physical memory, which in
practice can hold about 40-200 M edges.

methods, use the nearest pair of data points. A careful single-linkage
implementation can cluster the whole set, reading one edge at a time
(0(1) edges in memory). Hence, single linkage is scalable to large
datasets, however it is highly susceptible to outliers since only the
minimum edge is considered in each step.

The most commonly used hierarchical clustering formulation is
average linkage (Sokal and Michener, 1958) commonly referred
to as UPGMA . It uses the mean similarity across all cluster data
points and is thus more robust than single-linkage methods. UPGMA
is intuitively appealing, and is a particularly practical algorithm
owing to the stability of the arithmetic mean. It has been cited
extensively, especially in the biological domain (e.g. D’haeseleer,
2005).

UPGMA is a text-book algorithm for correct reconstruction of
sequence divergence processes (Durbin ez al., 1999). Thus the exact
UPGMA solution carries practical implications for understanding
of tree processes underlying molecular evolution. Whilst more
sophisticated algorithms exist for reconstruction of evolutionary
trees, UPGMA ’s runtime scales well to input size, and is often the
algorithm of choice for the clustering of large sets with comparable
performance (Lazareva-Ulitsky et al., 2005).

The problem however, is that UPGMA (or e.g. complete-linkage)
requires the entire similarity matrix in memory. Since the number
of pairwise relations is asymptotically quadratic in the number of
clustered items (O(N 2)), the matrix becomes impossibly large to
hold in memory even for moderately large datasets. Even for sparse
similarity data, as in the case of a BLAST (Altschul et al., 1997)
similarities reported here, data is still orders of magnitude too large
to hold in memory for UPGMA. Due to rapid accumulation of
data (e.g. Table 1), UPGMA is rendered impractical for a variety
of tasks.

Current large-scale methods for sequence clustering cope with the
size issue by either single-linkage clustering (Krause et al., 2005;
Petryszak et al., 2005), supervised data pre-selection (e.g. Tatusov
etal., 1997), or other heuristics. The ProtoNet method (Kaplan ez al.,
2005) addressed size by using a reduced set of Swiss-Prot sequences
(10%) to build a high quality UPGMA tree skeleton, to which the
larger TTEMBL set was appended.

Here, we develop a framework for finding the correct UPGMA
tree for very large data under any practical memory constraint.
The mass of all detectable sequence similarities in the entire set
of protein sequences is now directly clusterable. The result is a
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Fig. 1. Illustration of non-metric constraints imposed by BLAST similarities
(edges) for three multidomain Swiss-Prot sequences. False transitivity is
possible due to CSKP_HUMAN. The missing triangle edge is due to no
biological relatedness and no sequence similarity. It violates the triangle
inequality since ej £ej+e;j. Triangle-offending missing edges prevent
UPGMA from falsely clustering unrelated proteins together, by increasing
average cluster dissimilarities.

robust evolutionary-driven tree of nearly 2 million non-redundant
sequences. The tree corresponds very well with known protein
families.

1.3 Goal

We aim to provide a practical UPGMA algorithm which is not limited
by memory requirements but guarantees the correct clustering
solution. Non-metric considerations are of special interest, as shown
for the case of protein sequence clustering. We thus set out to
develop a general clustering framework for any type or size of data
(not necessarily metric), while maintaining the relative simplicity of
hierarchical clustering.

2 THEORY

2.1 Preliminaries

Agglomerative hierarchical clustering algorithms differ in the choice
of cluster dissimilarity objective. For clarity, we refer only to
UPGMA (average-linkage) throughout the article. The concepts
presented here, however, easily apply to other hierarchical clustering
formulations as well.

2.1.1 Problem statement and notation UPGMA takes an input
undirected graph of G=(V,E) and edge weights d, where V is the
set of data items (vertices), E C V x Vis the edge set, and d :E — R+

denotes the actual pairwise dissimilarities. We define N élVl.

As clusters are being merged, multiple edges are possible between
a pair of non-singleton clusters. These are collated into average
edges, and are referred to as ‘thick’ edges throughout this article.
Thick edges are cluster-pair unique, and possibly encompass more
than one ‘thin’ input edge in the cluster multi-graph. For presentation
clarity, we will assume that E is symmetric (i.e. d;; =d};) and ignore
meaningless self-loops (e;;). We will think of dissimilarities as
distances. Hence lower dissimilarities can be interpreted as ‘closer’
clusters. However, we do not require that dissimilarities are metric
distances, by the formal mathematical notion, unless otherwise
stated. Moreover, the triangle inequality does not hold for our data
(Fig. 1).
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2.2 Sparse UPGMA

E is considered sparse if not all possible pairs exist in the input graph
(3i,j€V:ejj ¢ E). For instance, the sets (E) of all BLAST sequence
similarities, or all protein—protein interactions, are sparse.

In this section, we formulate UPGMA for sparse inputs, and give
a suitable algorithm—Sparse-UPGMA (Fig. 2). We take advantage,
in time and memory complexity, of the data’s sparsity, to allow
clustering of large sets. It is correct and efficient for non-sparse
inputs as well. Based on Sparse-UPGMA, in the next sections
we present a novel class of memory-constrained UPGMA (MC-
UPGMA) algorithms which do not require all edges in memory at
once.

2.2.1 Missing edges In UPGMA the arithmetic mean is used to
measure distance across clusters.

A 1
Y=g 2 .
" peCigeq

Equation (1) (or any other average-linkage formulation) is not well
defined for sparse inputs (i.e. when ey, ¢ [E). To expand d’s domain to
all vertex pairs (i.e. now d:V x V— RT), we override the previous
notation to introduce a missing value completion rule.

2 max(E)
dl]é{ dij ifeijGE
Y otherwise.

Where input dj;’s are used when available and v is used otherwise.
Hence, v is a detection threshold used to account for missing edges
in the average distance across two partially connected clusters. It
does not imply that all clusters are connected; rather, it is used only
for missing value completion across connected clusters. Throughout
this work, e;;’s are replaced with dj; in Equation (1) to denote the
actual average dissimilarity.

2.2.2 Leveraging sparsity For suitable inputs, a sparse
representation for E decreases the memory requirement
considerably. Furthermore, new thick edges can efficiently
be computed recursively (in O(1)). This calculation, denoted

as Vél}'(o,o) hereby, requires ¥, cluster sizes |Cx|, and two
precalculated edges. For UPGMA we have:

G=CUGy .

|Cildii+1Cjldj
k= BT

(dj, djp)=
T |Cil +1Cjl

UPGMA @)
A similar O(1) expression is easily derived and plugged into
our algorithms for other (non-UPGMA) formulations (e.g. for the
geometric mean).

2.2.3 Complexity and scalability Using a suitable binary heap
data structure for maintaining E sorted, Sparse-UPGMA requires
O(ElgV)-time and O(E)-memory, instead of the straightforward
O(V3)-tirne and O(Vz)-memory algorithm. These improvements
allow for clustering of considerably large sparse datasets. For
instance, it can cluster the sparse 75Kx75K set of mouse cDNA
measurements, that could not be hierarchically clustered in the
supplementary data of Frey and Dueck (2007). We were also able
to cluster the ProtoNet4 data (114K) requiring time (3min on a
2.80 GHz machine) that was negligible as compared to the similarity

| Procedure Sparse-UPGMA (E, )
Input : ' - edge set, ¢’ - missing edge value
Output: tree (forest) T C C x C x BT (C - clusters)
k — |V|
|G [y |Ck| « 1
while (£ # (1) do
kE—LkE+1
ei; «— argmin(FE)
E — E\e;j
Cul = ICil +1C;
/** Now update neighbors of C; and C; **/
foreach C; € {(Ci : exs & E)V (e E E)}do
[ [’E_vﬁlf(dn.dﬂ)
E— EU{en}\{ei e}
end foreach
end while

Fig. 2. Sparse UPGMA. E is typically implemented as a minimum heap
data structure, extended with logarithmic time removal of non-minimum
elements. The output tree and cluster heights are given by e;;s. The algorithm
is correct for non-sparse inputs as well.

computation preprocessing time. However, this algorithm could not
cope with huge datasets, where an O(E) memory requirement is
intolerable (e.g. Table 1). Due to poor locality of reference, this
algorithm is rendered impractical when the virtual memory demand
exceeds the physically available memory.

2.3 Exact (correct) clustering

We define a (UPGMA) clustering solution as exact (or correct),
if the order of merges is correct (up to equidistant merges), i.e. it
always yields the same solution as UPGMA (or Sparse-UPGMA
for sparse inputs), regardless of computational limitations such as
memory requirements.

2.4 Multi-Round MC-UPGMA

2.4.1 Outline We introduce the concept of MC-UPGMA. The
proposed solution, breaks the clustering process into multiple
rounds. Two computation units carry out each round (Fig. 3). A
memory constrained clusterer, holding only a subset of [E that fits
in memory, outputs successive parts of the overall hierarchy. The
second unit, the merger (Fig. 3), is a modular unit, external to the
clustering, but memory constrained as well. It processes the partial
clustering and the set of current edges, to produce valid edges. Edges
grow thicker as clusters grow larger. The current set of valid thick
edges is input for the clusterer and is used to resume clustering in
the successive round.

2.4.2 Memory-constrained clustering Round ¢ of clustering
starts from an input (sparse) set of edges, [/, between valid

(unmerged) clusters. Initially, EoéE. Clustering is governed by a
fixed memory budget parameter M, denoting the maximal number
of maintained edges (based on memory size). At initialization, the
clusterer loads only the best (minimal) M edges denoted by IE;L
Higher Ms may require fewer rounds (due to additional progress
per round). We also define

Al EY maximum of (at most M) loaded edges at round ¢
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Input: - cluster
similarity data similarities

clusterer:
MC-UPGMA
Output: o (partial)
Complete tree tree
to next B
_____ merger:
round edge re-calculation

Fig. 3. Multi-round MC-UPGMA scheme.

2.4.3 Incorrect naive clustering At first, it is compelling to
naively cluster all loaded edges. We give a simple counter example
which will create a wrong tree when this is done. The intention is to
motivate construction of a proper stop criterion thereafter.

Assume A =10 and ¢ =100. Let C; and Cj be merged to some
Cr=C;UC;j at height djj=1. Let d; = 2, and dj; > A (a non-loaded
edge). Suppose Cy, is merged with some C, # C; at height d, =7.
Then, C, may not have been the closest neighbor, if e.g. dj;=10

(since dy = W =6 <d,=7). On the other hand, if C} and

C; are indeed merged, then set d;; =1 =100 and thus merging is
still incorrect (dg =7 < djg = P2 = 51),

Hence, a correct clusterer should be mindful of unseen edges (>1),
effecting clustering before A. Such examples are rather prevalent in
non-metric datasets. Figure 1 portrays the relevance of this example

for the case of clustering sequence similarities.

2.4.4 Uncertain edge intervals To prevent false clustering of a
non-minimal edge, we maintain suitable bounds per edge. The value
of dj; is lower (l;;) and upper (;;) bounded as follows:

l,“é dij ife,-je]E;
71 A" otherwise.

Ald; ife;elk!
uﬁj:{ dfl] othgrwisé.

It follows that /;; <d;; <uj; (for clarity, round indices are omitted
hereafter). Hence, maintained edges e;; are now represented as
uncertainty intervals [l;, u;;], rather than by exact dj; values. The
exact value of dj; is not known to the clusterer unless u;; =1;;.

2.4.5 Clusterer algorithm The clustering algorithm (Fig. 4)
design is rather similar to Sparse-UPGMA. Now however, the
clusterer loads only the M minimal edges in E’ (which determine
Ab). Edges djj are replaced with intervals [lij,uij] to accomodate
uncertain edge values (due to partial edge data at hand). Clustering
halts when it is impossible to identify the minimal edge in the
entire [/, including the edges in E’\[E!, which are unknown to
the clusterer.

2.4.6 Stop criterion A potential merge (e;; in Fig. 4) may not
be provably minimal if (A) a smaller edge may exist outside the
clusterer memory scope E' i or (B) the minimal edge may be at hand
but could not be determined unequivocally (as in the given counter
example). Since unseen edges are > A, requiring that a merged edge
ejj satisfies u;; < A assures that situation (A) never happens. The latter

| Procedure Multi-Round-MC-UPGMA (E", |c.|, M, k, )

|

Input : E' - current edges, |C!| - current cluster sizes, M -
memory constraint , k - current cluster , 1 - missing edge value
Output: partial tree (forest) 7 C C x C x R

FE —LOADBESTEDGES(E®, M) //M minimal edges
A — max F
while(Je;; € E :Ve,s € B uj < s < A)do
... /las in Sparse-UPGMA
foreach 1 € {Cy : (e E E)V (e € E)}do
E}ﬂl * r':c_,*ljr{l{ff-!_f.')
g — (o, F (e, uje)
E — EU{en} \ {eu, €}
end foreach
end while

Fig. 4. Multi-round MC-UPGMA clustering—the clusterer. This is a
modified version of the code for Sparse-UPGMA (Fig. 2).

case (B) manifests itself as edge interval clashes. To assure that dj;
is provably minimal, we consider its interval.

Clustering proceeds while a distinctly minimal edge is at hand—
an edge whose upper bound u;; is below the lower bound of any other
edge in Ea (i.e. Jejj € E:Veys € E:ujj <lys; Fig. 4). By maintaining
the criterion uij > Irs in the case where (i, j)=(r, s) we assert that the
output merge values d;; are exact. If only correct merge order, but not
exact merge values is required, this criterion can be relaxed to apply
only when (i, j) # (7, s). In order to construct a full dendrogram (with
heights) for the studied proteins, we have used the harsher criterion
throughout our analysis.

2.4.7 Correctness and progress The clusterer always progresses,
since after initialization all edges are exact and <A. Furthermore,
progress is optimal for this setting, since we have shown a counter
example that falsifies the algorithm if it does not halt. Therefore,
the number of clusters is reduced in each round, and |Ef +1| is
accordingly reduced at a quadratic rate. Once all edges fit in memory
(|IET| <M), all edge intervals become exact, and Multi-Round MC-
UPGMAreduces to Sparse-UPGMA. The clusterer maintains the
loop invariant that e;; is minimal over all edges, if the stop criterion
has not been met. Combined with the fact that the clusterer always
makes some progress, we conclude that the correct tree is output.

2.4.8 Progress guarantee—metric setting If the data obeys the
triangle inequality, then further clustering progress can be made in
each round. The clustering is guaranteed to progress well in this
metric setting, so that the tree is complete within only very few
rounds. We provide a short claim that shows how good progress can
be provably guaranteed for the first iterations. We aim to show how
constraints implied from metric considerations render the clustering
easier. With some technical rigor, it is possible to generalize this
claim.

METRIC PROGRESS LEMMA. If input edges satisfy the triangle
inequality, than Multi-Round MC-UPGMA clusters all edges < %

PrOOF. Exact minimal edges do not halt clustering. We will show
that inexact edges appear only after % Let ey GE}: be an inexact
edge appearing along the clustering process, and assume w.l.o.g.
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that C was created before C; is merged. Let C; and C; be the
clusters merged to create Cy, i.e. Cx =C;UC;. Either djy <A or dj; <
A, otherwise dyy > L= ey ¢ IE;L Assume w.l.o.g. that only dj <\
(i.e. djj £2), since otherwise ef; would not have been inexact. From
merge order, we have d,-j <d;; <X.Now, note that d;; > %, otherwise
dij<dj < % implying dj; <dj;;+djj < %—l—% =X (due to the triangle
inequality), contradicting our assumption. Plugging in Equation (2),

eq|Cil+ei|Ci| _ 21CI+AG] _
> >4
IGIGT = IGlIGI =2 .

we have ey =

The progress guarantee is given on the height axis of the
forming tree. This translates to very good progress when the data
is exponentially distributed (i.e. edges are orders of magnitude
different). For instance, this is the case for BLAST similarity
E-values. Note that the triangle inequality assumption is never used
explicitly by the algorithm, but only to characterize its worst-case
progress—the algorithm is correct regardless. Furthermore, if the
triangle inequality is used explicitly in Multi-Round MC-UPGMA,
the rather crude global v bound can be replaced with an edge
dependent bound (using the triangle), to reduce clashes and allow
further clustering per round. From our experiments (data not shown),
the metric assumption can sustain some (bounded) noise, and still
yield good progress, i.e. if ¢jj <(1 +€)(ejx +e;) is satisfied for some
fixed € > 0.

2.5 External edge merging

Due to space limitations, we discuss external edge merging very
briefly. We then quickly turn to a clustering algorithm which does
not need it in the next section.

The merger unit collates edges of newly merged clusters, into
thicker edges between the respective parents in the forming tree
(as in LOADEDGES, Fig. 5). Merging requires the previous set of
edges Ef ~1 and the forming tree. A naive algorithm will form E’ in
memory, thus invalidating the memory constraint. If edges were
read in the correct order, however, it is possible to collate one
thick edge at a time in memory. This is achieved by appropriate
on-disk sorting of only modified edges in E'\E/~!. Sorting may
be prohibitedly slow when more than a few rounds are required
however. The two ideas can be combined to do some limited merging
in memory. Notably, merging can be distributed to any number of
parallel merging processes. It requires that all edges composing a
single thick edge be delivered to the same merging process. This is
achieved by mapping edges to processes based on a hash function
that is mindful of the current cluster indices to which edges belong.

2.6 Single-Round MC-UPGMA

2.6.1 Motivation Up until now, MC-UPGMA built the clustering
tree round by round. Although this yielded a practical solution, most
of the computation time is spent on preprocessing for the next round
of clustering. We address this issue by devising a MC-UPGMA
scheme that clusters the entire dataset in a single round.

2.6.2 Approach Here we aim to combine ideas from the
algorithms for external computation of valid edges, together with
the idea of careful clustering with A-missing edges and uncertainty
intervals. Clearly, when Multi-Round MC-UPGMAhalts, it is not
using its entire memory budget M, since each merge reduces the
number of edges in memory. The newly formulated hybrid algorithm

| Procedure Single-Round-MC-UPGMA (E,M )
... [Minitialization
while(LOADEDGES(E, M ,th,parents) = TRUE) do
A +— max F
while(3e;; € E : Ve, € E : i < lys < A) do
.../l as in Sparse-UPGMA
parents|i]| — parents[j] — k
foreach C; € {C} : (ea EEJ‘ E)V (en JEJ E)} do
{E-H — f};x &5 f},';.'
E—FEU {f.’;,-;} \ {E;;,.‘.’_H}
end foreach
end while
if (|| = M) then // =>still stuck after reloading
LOOKAHEAD(E, fh,is,parents) //=only edges exact
end if
end while

| Procedure LOADEDGES(E,fh,M parents,|C, )

Input: E - current edge set, fh - edge file handle, M - memory
constraint, parents - cluster ancestors, |C\ | - cluster sizes
Output: returns TRUE if edges remain on disk, FALSE
otherwise. I and d are modified.
while(|[E[ < M) do
if(—HasNext(fh)) then return FALSE //No edges remain
ei; = Next(fh)
pi +——FINDANCESTOR(i,parents)
p; «—FINDANCESTOR(j,parents)
if (p; # p;) then
dp;p; — dp,p;® < €45, |Ci||Cj| >
E — EU{ei;}
end if
end while
return TRUE //some edges remain

Fig. 5. Ilustration of single-round MC-UPGMA . FINDANCESTOR uses a
suitable data structure for disjoint sets to allow efficient parent look-up.
LooKAHEAD peeks at unloaded edges on disk, and loads only components
of currently maintained edges. Afterwards, uncertain edges can be inferred
as definitively missing. See text for definition of d and @ notations.

presented in this section, will use the freed-up memory to load fresh
edges (up to M edges in total) from disk. This reloading enables
the clustering to proceed. We assume that input edges are sorted
on-disk, and are loaded in order of ascending d;; values.

An immediate difficulty for reading edges after doing some
clustering is imposed by reading ‘old’ invalid edges—those
involving clusters which have already been merged. The Single-
Round MC-UPGMA algorithm addresses this difficulty. To
accommodate edge reading after some clustering has been done, we
introduce a new edge representation, that is invariant to the ongoing
merging process.

Rereading more edges allows further clustering, where the
previous algorithm had to halt. First, once more edges are read, the
value of A increases dynamically and is no longer fixed. Hence,
A-dependent recalculation of /s’ reduces interval clashes, and
clustering may proceed. Furthermore, uncertain edges resulting from
a missing edge can now be updated with certainty to the exact
d;j value, by reading previously missing information, from disk.
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This capability is due to the introduction of an update procedure for
edge intervals.

2.6.3 Edge representation and notation Let g,j eRt xNie. 3,]
is now a pair of two quantities; (1) an unnormalized sum of seen
singleton (thin) edges and (2) a count parameter, a non-negative
integer indicating the number of seen edges accounted for in the
sum. We denote the first component as edge_sum(g,-j) and the second
as count(;?,-j), corresponding to the numerator and denominator in
Equation( 2), respectively. We define the @ operator for E,J as the
piecewise (dot) plus operator.

The missing e;; (ej;), previously replaced with a fixed A bound, is
now dynamically updated with the current A-value:

7 A edge_sum(g,-j) +A (I GillGj|— count(glj))

= 3)
v ICi11Cjl

A edge_sum(dij)+ (1C;1|C;| — count(dyy))
v IGilIG;

@

We think of (|C;||Cj|— count(zij)) as a dynamic uncertainty weight.
Now, when a missing component of an uncertain edge is read while
reloading edges from disk, count(d;;) is incremented. Consequently
the respective uncertainty weight diminishes, and the interval
tightens up around d;;. Fully linked edges (i.e. count(gij) =|CilIC;])
become certain (=dj;). For uncertain edges, missing components of
the sum are replaced by the current tightest bound.

Since edges are read in ascending order, A grows as more edges
are loaded. Because uncertain intervals are computed dynamically,
lower bounds become tighter as A grows. Consequently, intervals
tighten-up, and edge interval clashes are reduced as more and more
edges are loaded. Hence, reloading allows further clustering.

2.6.4 Progress If the data is metric, the per-round-progress
proof shown by the triangle inequality is extended to show that
clustering in one round is possible. The reasoning is similar.
The triangle inequality guarantees that missing edges are loaded
promptly to allow clustering progress. For hard non-metric input,
it is theoretically possible that clustering still can not proceed after
reloading, while the entire memory budget M is in use. To assure
progress, we introduce a look-ahead procedure after which all edges
become exact and clustering can effectively resume (Fig. 5).

2.6.5 Complexity Single-Round MC-UPGMA now requires O(N)
(typically N < M) memory for holding the forming tree. The path
compression heuristic allows for efficient cluster look-up.

3 METHODS

3.1 Clustered sequence data

We undertake the comprehensive set of all proteins in the UniProt
(release 8.1) (Suzek et al., 2007), composed of Swiss-Prot (rel. 50.1) and
TrEMBL (rel. 33.1) proteins. UniRef90 (rel. 8.5) non-redundant (<90%
identity) sequences were used to represent the protein space. Non-UniRef90
sequences are redundant since they (1) show the same similarity patterns
with the rest of the data, thus adding no clustering relevant information
and (2) can be regarded as functionally equivalent (Liu and Rost, 2003). The
number of sequences affects the volume and especially time for the intensive
computation of all-against-all similarities, rather than the clustering.

3.2 BLAST sequence similarities

All sequences in the UniRef90 set were compared using the blastp program
of the BLAST (Altschul et al., 1997) 2.2.16 suite, using a E=100
threshold, low-complexity filtering and default parameters (BLOSUMG62,
-11,-1). BLAST runs were executed in parallel using a MOSIX grid, as part
of the new ProtoNet standard build process.

Sequences were compared using a reciprocal-BLAST-like setting where
each sequence is used both as query and database entry. The result is a
directed multigraph. It is then transformed to an undirected graph (symmetric
dissimilarities) by keeping only e;; =min(e;;, ej;) for i <, i.e. half of the now-
triangular all-against-all sparse dissimilarity matrix. The data sizes before
and after this processing are shown in Table 1. Relying on the high capacity
of our novel algorithm for very large edge sets, we allow a very permissive
threshold (£ =100). This allows for more edges to guide the clustering
process, especially for the cases of barely detectable similarities. We rely
on UPGMA'’s robustness to filter out noise manifested as spurious non-
significant edges, or amplify weak but consistent similarities by averaging
over large clusters. For the case of single-linkage clustering (which is
part of our comparative evaluation), including low-significance edges does
not interfere with performance either, since they are used only after more
significant edges are utilized.

3.3 Protein family keywords

To evaluate the quality of a clustering solution, we measure the
correspondence of a tree to external expert classifications of protein families.
Here, we use the InterPro (rel 12.1) (Mulder et al., 2007) classification of
protein families as a mapping of keywords to protein sequences. InterPro
is a consortium of protein families derived from member databases of
protein sequence signatures such as Pfam (Finn et al., 2006). InterPro further
categorizes keywords into (1) InterPro domains which appear in the context
of at least two different non-overlapping protein signatures, and are thus
considered a modular protein fragment (positional) and (2) Protein families
which refer to a group of proteins in a match set (whole proteins, rather than
a sub-region). For this study we have used keywords which incident on at
least 2 (10) UniRef90 proteins, with a total of 3752 (3528 are >10) InterPro
domains, and 8965 (7047) families.

3.4 Performance metrics

A single protein might be associated with multiple keywords, e.g. as in
the case of multi-hetero-domains. In the context of a particular keyword
k (e.g. InterPro accession IPR001267—thymidine kinase) and the cluster
C;, a protein in C; is regarded as a true positive (7P) if it has the particular
keyword, and as a false positive (FP) if it has a keyword, but it does not have
k. Classified proteins outside the cluster, having or not having the particular
keywords, are regarded as false and true negatives (FN and TN), respectively.
Proteins having no keywords participate in the clustering, but do not affect
the evaluation.

A cluster is assigned three quality measures. Specificity (= %) and
sensitivity (= TPﬁ—iPFN) measure the accuracy of a cluster with respect to
cluster members or the reference keyword, respectively. Tree leaves (root),
contain a single (all) protein(s), and therefore trivially have full specificity
(sensitivity). However, neither convey interesting groupings. A clustering
captures a protein family keyword k well, if it contains a cluster having
both high specificity and sensitivity for k. This is captured by assigning
each cluster-keyword pair a correspondence-score which accounts for both
specificity and sensitivity.

J(C,-,k)é |CiNk| _ TP

|C;Uk| TP+FP+FN
This set-theoretic inspired score (Jaccard score) is a standard clustering
performance metric (Kaplan et al., 2005; Krause et al., 2005). The value of
J ranges from O for no correspondence (intersection), to 1 for full agreement
when specificity =sensitivity=1. Since J <specficity and J <sensitivity,
it is a harsh performance metric.

(&)
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3.5 Best cluster
To evaluate the tree with respect to a particular keyword k, we select the
corresponding best cluster. For keyword k, this policy is reflected by taking

A
J(k)= max
CieC:|Ci|>1

J(Ci.k) Q)

Singleton clusters are omitted, since they do not convey information about
classification or clustering quality. By balancing specificity and sensitivity,
this score (Equations (5) and (6)) effectively selects against clusters near the
root or leaf. This scheme calibrates the groupings (clusters) for the required
evolutionary granularity, and selects against intermediate clusters—partial
groupings which are artifacts of clustering into a binary tree. It selects
biologically meaningful clusters, e.g. with respect to protein family size.
To evaluate the tree with respect to a set of keywords K (e.g. InterPro
domains) , we select the best cluster per keyword [Equation (6)], and average
across K using either equal weights (family-centric) or denote by J" a
family-size-weighted average (protein-centric).

3.6 Comparison with other methods

To evaluate the contribution of the newly formulated UPMGA tree of
all protein sequences, we compare it with trees resulting from other
methodologies. We aim to assess the contribution of our work on very
large datasets, rather than to assess various clustering methods. We test the
clustering performance for different sequence databases, reflecting different
difficulty levels and data sizes. We compare MC-UPGMA with three other
methodologies which could be applied to this size of data.

3.6.1 CluSTr slim (Petryszak et al., 2005)—contains the CluSTr pruned
tree, downloaded from the EBI ftp. CluSTr uses an in-house single-linkage
clustering algorithm, applied to pairwise similarities derived from Smith—
Waterman alignments of UniProt (rel. 12.5) and genomic sequences. ClusTR
applies a significantly more conservative similarity threshold of £ = le —40
than we (E = 100). CluSTr Slim is a pruned tree of clusters <1000 with <90%
cluster overlap, which maintains CluSTr’s predictive power (Petryszak et al.,
2005). Removal of proteins in isolated clusters (not in the hierarchy) or the
root cluster did not alter results significantly.

3.6.2  Single-linkage clustering controls for the effects of different
alignment algorithm (BLAST versus Smith—Waterman) and similarity
thresholds compared to CluSTr. This method applied an in-house single-
linkage implementation to our BLAST similarity data.

3.6.3 ProtoNet4 protocol uses sparse UPGMA clustering to build a tree
skeleton from a reduced-size set of high-quality Swiss-Prot proteins, which
are regarded as protein family representatives. Sequences from the much
larger UniRef90 set (or TTEMBL), are then appended to the existing skeleton
independently, based only on similarities to sequences in the reference
skeleton. It can thus be regarded as a representative-based heuristic for
clustering of very large sets. Accordingly, this method is unable to capture
protein families which are not represented well in the Swiss-Prot skeleton.
This method does not use similarities within the larger set, but only the
manageable smaller clustered set.

4 RESULTS AND DISCUSSION

Sneath (1957) offered the application of computers to taxonomy.
10 years later and some 40 years ago, Fitch and Margoliash (1967)
provided what was probably the first automated evolutionary tree
for the largest available family at the time—twenty cytochrome-
¢ sequences. Here we tackle the challenge of accurate clustering of
nearly 2 million non-redundant sequences, to build a comprehensive
tree which aims to capture the evolutionary processes underlying
protein families.

4.1 The complete protein families tree

The process started from 1 801 506 UniRef90 proteins. 1107 (0.06%)
proteins are singletons having no BLAST similarities, and do not
enter the clustering process. From the clustered set, 1791206
proteins (99.5%) are clustered into a single tree.

For the first time, we are able to provide an extensive tree of all
UniProt sequences in a suitable evolutionary context. The tree is
built from the massive set of all sequence similarities detected by
an exhaustive search comparing all non-redundant sequences in the
UniRef90 set, and agrees very well with external resources. Multiple
nearly identical UniProt sequences may be collapsed into a single
UniRef90 representative. Here we analyze the UniRef90 collapsed
tree, to avoid redundancy issues due to overrepresented protein
families. Since our method is unsupervised, it is not fine-tuned for
detection of well-characterized protein families.

4.2 MC-UPGMA maintains performance on hard data

The performance of MC-UPGMA on different sets is summarized
in Table 2. Swiss-Prot (220 K) is a relatively easy set for UPGMA
as well as for single linkage, and surprisingly the performance
relative to InterPro families is quite high. Expanding the analysis to
a much larger set (UniRef90) slightly reduced the performance for
MC-UPGMA but gravely affected single linkage. This observation
suggests that Swiss-Prot does not represent the complexity of the
whole sequence space. On the other hand, the performance on
the UniRef50 set is surprisingly stable (relative to UniRef90).
Considering the significantly increased difficulty of UniRef50, this
suggests that the richness of the entire tree is maintained by this
set. The improvement of MC-UPGMA over single linkage is even
more dramatic for the harder case of InterPro domains. Furthermore,
UPGMA demonstrated enhanced capacity for handling large protein
families (Table 3 and Figure 6). Single linkage performs poorly for
large families and thus performance is deteriorated by family size
weighting. The ProtoNet4 protocol performs fairly well for large
families, since large families are presumably well represented in the
Swiss-Prot skeleton. The improvement is due to enhanced sensitivity
(Fig. 6).

Notably, the 1.54 M clusters provided by CluSTr slim produced
significantly lower performance than the 1.17M single-linkage
clusters (tied merges are pooled to non-binary clusters). Single-
linkage tree performance suffered only minor performance loss,
when the CluSTr SLim pruning protocol was applied (not shown).
Hence, the difference in performance does not stem from tree
pruning. Furthermore, the CluSTr Slim data contained clusters at
a variety of granularities. Thus, it is hard to establish the reason
for this discrepancy, considering that the two methods do not use
exactly the same data.

4.3 Sparse sequence space—well-connected tree

Only 0.09% of the edges (pairs related by BLAST) exist in the
input sequence similarity graph (Table 1). However, 1497733 of
the tree clusters (83.6%) are fully linked, including 426 360 large
clusters with at least 10 members. Hence, the edge distribution
in the resulting tree is highly non-random even though a very
permissive BLAST cutoff was used. Edges appear in dense clusters
corresponding to protein families at different levels of evolutionary
granularities. The surprisingly high connectivity of the protein
tree emphasizes the potential wealth of information laying in
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Table 2. Clustering performance evaluation based on InterPro keywords

InterPro Families InterPro Domains

J  Spec. Sens. J  Spec. Sens.

UniRef90
MC-UPGMA (current) 0.900 0.965 0.926  0.735 0.895 0.798
CluSTr Slim 0.280 0.934 0.292  0.239 0.881 0.253
Single-linkage 0.808 0.952 0.842  0.566 0.878 0.619
ProtoNet4 protocol 0.795 0.941 0.832  0.669 0.901 0.720

UniRef50
MC-UPGMA (current) 0.881 0.959 0.911 0.717 0.887 0.782

Single-linkage 0.794 0.947 0.830 0.557 0.877 0.608

Swiss-Prot
MC-UPGMA (current) 0.935 0.980 0.952 0.809 0.948 0.842
Single-Linkage 0911 0.968 0.938 0.747 0.941 0.783
UniProt
CluSTr Slim 0.470 0.955 0.489 0.375 0.889 0.406

UniRef90 (1.8M sequences) reflects non-trivial difficulty (sequence identity <90%).
UniRef50 (960K) reflects a hard setting (<50%). Swiss-Prot (220K) reflects a
moderately sized high-quality set, with some trivial redundancies. All methods,
excluding CluSTr Slim and ProtoNet4, were benchmarked by clustering the respective
set alone. CluSTr Slim performance on UniProt (redundant, contains trivial cases) is
given for reference. CluSTr slim performance is based on an evaluation based only on
UniRef90 representatives, but clustering is based on all UniProtKB proteins.

Table 3. Average UniRef90 performance, unweighted () and weighted by
non-redundant protein family size (J")

InterPro Families InterPro Domains

J Jv J Jv
MC-UPGMA (current) 0.900 0.856 0.735 0.654
Single-linkage 0.808 0.598 0.566 0.306
ProtoNet4 protocol 0.795 0.782 0.669 0.618

Table 4. Clustering progress for the hard UniRef90 data

t No. of Last merge |tree| |E!| |E"|/|E°|
merges (%)
1 679915 6e—69 679915 5.58e+08 36.77
2 430486 le—24 1110401 3.15¢+08 20.77
3 258122 8e—05 1368523 2.24e+4-08 14.78
4 26774 0.004 1395297 2.14e+08 14.06
5 39712 0.444 1435009 1.89¢+-08 12.47
6 11534 1.052 1446543 1.82¢+08 11.98
7 5225 1.474 1451768 1.78e+-08 11.75
8 5948 2.062 1457716 1.75¢+08 11.50
9 11011 3.533 1468727 1.68e+08 11.03
10 4286 4.277 1473013 1.65¢+08 10.88

First 10 iterations are shown out of total 200. Here, clustering progress per round is
significantly slowed down in advanced iterations (see text).

similarity patterns across large families (clusters). This information
is overlooked by single-linkage methods, which only use O(N) of
the input edges.

sensitivity - MC-UPGMA best cluster

0 0.2 0.4 0.6 0.8 1

0 L

sensitivity — single-linkage best cluster

Fig. 6. Sensitivity of the best cluster for single-linkage (x-axis) versus
MC-UPGMA (y-axis) for large protein families—InterPro domains and
families with at least 100 UniRef90 representatives. Diagonal line represents
identity (x =y). Points above diagonal correspond to higher sensitivity for
MC-UPGMA and vice versa. Average specificities are comparable across
this set (MC-UPGMA = 0.90 £ 0.15, single-linkage = 0.88 £ 0.18).

4.4 Clustering detects poorly connected families

Out of 10 808 InterPro keywords which cover more than 10 proteins
in UniRef90, 8218 are captured very well (J > 0.70). Of the 7992
best clusters for these families, only 2467 are fully linked (i.e.
not sparse), 2793 are <50% linked, and 792 clusters are highly
divergent and are <10% linked. Yet, all are picked up by our method
with high accuracy. This demonstrates the capacity of the method
to pick up even highly divergent protein families. The latter are
dominated by homologous pairs which are not detectable by even a
very permissive BLAST threshold, yet MC-UPGMA is able to pick
them up, leveraging transitive similarities in large clusters.

4.5 Analysis of multi-round MC-UPGMA run

The Multi-Round MC-UPGMAalgorithm applied to the UniRef90
set required 200 clustering rounds overall (Table 4). Using a single
4 GB memory 4-CPU workstation, we are able to parallelize external
merging, and tolerate multiple clustering rounds to cluster the whole
set within about 1-2 days. This is orders of magnitude less than the
CPU-time required for preprocessing—computation of all BLAST
sequence similarities. Additional speedup is possible using grid-
computing. In the first three rounds 76% of the clustering (reducing
the edge data by 85%) was done. Although the triangle inequality
does not hold even for these first rounds, the algorithm is able to
sustain some metric distortion and still progress well. The clustering
becomes computationally challenging only in the absence of edges,
in otherwise connected clusters. The clustering progress per round
is significantly slowed down when the triangle inequality is strongly
violated due to non-existent BLAST edges (first encountered after
1.37 M merges out of total 1.8 M). Initial tests indicate that Single-
Round MC-UPGMA is able to considerably speed up the process
(not shown).

4.6 Protein sequence space inherently non-metric

We argue that the non-metric considerations are inherent to the
protein sequence space, and should not be overlooked due to
arising computational difficulties. Some of this difficulty stems
from limited detection of highly divergent sequences by sequence
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1
du :ﬁ((du +d_|.6 +d2A4 +d2.ﬁ +d3,5 +dl6))+ W(3'4_6)
l; = ?’%((du tdy, tdyy tdys + dx.r))) +A(3:4-5)
1
L =ﬂ((d1,4 +d,, +dyg +d3,5 +d3.6))+ y(3-4-5)

Fig. 7. Illustration of thick edges (grey) connecting clusters (blue), and thin
input edges (red and black). A thick edge calculation for a pair of clusters C;
and C; is demonstrated based on three possible components: known (< A) thin
edges (black), unknown thin edges (due to the memory constraint) that do
exist (red, dashed lines), and possible edges connecting C; and C; members
but do not exist in the sparse input graph (green). Corresponding components
in the calculation are color coded accordingly. It is impossible to distinguish
non-existing edges from unknown edges without reading the whole input
graph. The cluster graph is broken into two connected components in Ef , as
long as d7 9 is missing.

alignment, as reflected by the partial connectivity of most protein
families. However, non-metric constraints are inherent to the protein
sequence space due to the modular nature of protein domains.
Domain shuffling events may create mixtures of distinct divergence
processes, which could not be captured by a single tree for
whole proteins. Yet, incorporating this constraint into the clustering
problem—by taking into account missing edges in the average
cluster dissimilarity—seems to aid UPGMA avoid the pitfalls of
false transitivity, as reflected by local sequence alignment (Fig. 1).
This is demonstrated by the significant improvement of UPGMA
over single-linkage methods as shown for the case of InterPro protein
domains (Table 2). Even when the reduced set of Swiss-Prot proteins
is used to partition the much larger UniRef90 set (ProtoNet4 in
Table 2), the underrepresented UPGMA skeleton still significantly
outperforms single-linkage clustering using the whole data.

4.7 Top levels of tree surprisingly meaningful

Since a significant amount of protein families coincide with poorly
connected clusters, we stress that the top levels of the UPGMA
cluster tree are biologically meaningful and should not be pruned
out. Furthermore, our results show that hidden, remote connections
between protein families, some overlooked by state-of-the-art
specialist methods (e.g. Profile—Profile comparisons), are picked up
at these seemingly uninteresting levels. Averaging across large sets
of sequence similarities is able to weed out these faint connections,
otherwise below the level of random BLAST hits. Indeed, 710
evolutionary connections between protein families were suggested

by a systematic scan for putative evolutionary links in the novel
tree, most of them have been previously overlooked (submitted for
publication).
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