
RESEARCH Open Access

Simultaneous inferences based on empirical
Bayes methods and false discovery rates ineQTL
data analysis
Arindom Chakraborty1,2, Guanglong Jiang1,2, Malaz Boustani3, Yunlong Liu1,2, Todd Skaar4, Lang Li1,2,4*

From The International Conference on Intelligent Biology and Medicine (ICIBM 2013)
Nashville, TN, USA. 11-13 August 2013

Abstract

Background: Genome-wide association studies (GWAS) have identified hundreds of genetic variants associated
with complex human diseases, clinical conditions and traits. Genetic mapping of expression quantitative trait loci
(eQTLs) is providing us with novel functional effects of thousands of single nucleotide polymorphisms (SNPs). In a
classical quantitative trail loci (QTL) mapping problem multiple tests are done to assess whether one trait is
associated with a number of loci. In contrast to QTL studies, thousands of traits are measured alongwith thousands
of gene expressions in an eQTL study. For such a study, a huge number of tests have to be performed (∼ 106).
This extreme multiplicity gives rise to many computational and statistical problems. In this paper we have tried to
address these issues using two closely related inferential approaches: an empirical Bayes method that bears the
Bayesian flavor without having much a priori knowledge and the frequentist method of false discovery rates.
A three-component t-mixture model has been used for the parametric empirical Bayes (PEB) method. Inferences
have been obtained using Expectation/Conditional Maximization Either (ECME) algorithm. A simulation study has
also been performed and has been compared with a nonparametric empirical Bayes (NPEB) alternative.

Results: The results show that PEB has an edge over NPEB. The proposed methodology has been applied to
human liver cohort (LHC) data. Our method enables to discover more significant SNPs with FDR<10% compared to
the previous study done by Yang et al. (Genome Research, 2010).

Conclusions: In contrast to previously available methods based on p-values, the empirical Bayes method uses local
false discovery rate (lfdr) as the threshold. This method controls false positive rate.

Introduction
Genome-wide association studies (GWASs) have done a
remarkable progress in searching for susceptibility genes.
In GWAS, instead of one gene at a time, variation across
the entire genome is tested for association with disease
risk. GWASs exploit the linkage disequilibrium (LD) rela-
tionships among single nucleotide polymorphisms (SNPs),
making it possible to assay genome by testing a finite
number of SNPs. Till date, the signals that can be discov-
ered through GWAS has not been reported exhaustively.

It is important to annotate SNPs information on expres-
sion for the better understanding of the genes and
mechanisms driving the association. In many situations,
there are more common variants truly associated with dis-
ease. These variants are highly likely to be expression
quantitative trait loci (eQTLs). eQTLs are derived from
polymorphisms in the genome that result in differential
measurable transcript levels. Microarrays are used to mea-
sure gene expression levels across genetic mapping popu-
lations. For at least a subset of complex disorders, gene
expression levels could be used as a surrogate/biomarker
for classical phenotypes. The gene underlying the eQTL is
considered to be an excellent candidate for phenotypic
QTL.
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eQTL mapping is a statistical technique to locate geno-
mic intervals, that are likely to regulate the expression of
each transcript, by correlating quantitative measurements
of mRNA expression with genetic polymorphisms segre-
gating in a population. In a GWAS, millions of SNPs are
tested at once. Associations that initially appear to be sig-
nificant must be statistically adjusted to account for the
large number of tests being performed. A large number
of false positives will result in if this correction is ignored.
The multiple-testing correction, however, sets a very high
threshold for genome-wide significance, on the order of
5 × 10−8 when a million SNPs are tested. In the vast
majority cases, however, association studies have
achieved only limited success. Large sample sizes are
needed to achieve sufficient statistical power to detect
risk alleles with effects weak enough to have escaped
detection in the past; the disease risk alleles identified by
GWASs so far do have weak effects, each with odds
ratios of 1.1 or 1.2 [1].
Two closely related inferential procedures for multiple

testing have been discussed in this work-afrequentist
approach based on Benjamini and Hochberg’s ([2]) false
discovery rate procedure, and an empirical Bayes metho-
dology developed in Efron et al. [3,4]. These two methods
are not only very closely related, they can be used to sup-
port each other. In a classic two-sample problem in a
microarray experiment, these approaches have been dis-
cussed by Efron and Tibshirani[5]. However, they have
considered nonparametric empirical Bayes (NPEB) model.
Parametric Bayesian modeling has been considered by
Newton et al. [6], Lee et al. [7], Kendziroski et al. [8-10],
Gelfond et al. [11]. Hierarchical models like gamma-
gamma [6] or lognormal-normal [8] are used quite often
in PEB procedures. These models suffer from a serious
drawback that the variation is constant among genes. An
extension has been done to these models by considering
gene specific variations[12]. The application of empirical
Bayes has been somehow not very common in literature.
The obvious reason is that, experimenters have not
brought us many data sets having the parallel structure
necessary for empirical Bayes to do its stuff. Because of
the recent surge in high-throughput ([13]) technologies
and genome projects, many genome studies are now
underway. These studies have become a major data gen-
erator in the post-genomics era. Empirical Bayes proce-
dures seem to be particularly well-suited for combining
information in expression data.
One of the fundamental statistical problems in micro-

array gene expression analysis is the need to reduce
dimensionality of the transcripts. This can be achieved
by identifying differentially expressed (DE) genes under
different conditions or groups. Regulatory network can
be obtained by associating differential expressions with
the genotype of molecular markers. It is possible to have

a large number of DE genes that influences a certain
phenotype while their relative proportion is very small.
It is very important to identify these DE genes from
among the number of recorded genes [6,7,9,14,15].
Empirical Bayes methods provide a natural approach to
reduce the dimensionality significantly [16,17]. Following
the empirical Bayes approach DE genes are identified
using the posterior probability for differential expres-
sion. EB approaches detect a DE gene by sharing infor-
mation across the whole genome.
The development of the empirical Bayes methodologies

that improve the power to detect DE genes essentially
reduces to the choice of whether gene-specific effects
should be modeled as fixed or random [18]. Both mean
and error variance can be of either of these two: fixed or
random. Fixed mean and random error variance has been
considered by Wright and Simon [19] and Cui et al. [20]
whereas Lonnstedt et al. [21], Tai and Speed [22], Lonn-
stedt and Speed [23] have considered both the para-
meters to be random. Random mean effect with
homogeneous fixed error variance has been considered
by Newton et al. [6,24], Kendziroski et al. [9] and Kend-
ziroski et al. [10]. However an extension to this fixed
error variance has been considered by Gelfond et al. [11].
They have considered discrete uniform prior for the var-
iance component.
The paper is organized as follows. In the Methods sec-

tion we introduce the necessary notations for our addi-
tive genetic model along with the notions of false
discovery rate (fdr). In this section we have tried to estab-
lish the relationship between fdr and empirical Bayes.
Methods section also describes, the proposed Expecta-
tion/Conditional Maximization Either (ECME) (Liu and
Rubin [25]) in details. This algorithm generalizes the
Expectation-Maximization algorithm with better conver-
gence rate. A simulation study has been performed and
described in the Results section. We show that proposed
parametric empirical Bayes performs better compared to
nonparametric empirical Bayes in terms of controlled fdr.
In the Results section, as an application, we have applied
the proposed methodology to the Liver Cohort (LHC)
dataset. We conclude the article the Discussion section.

Methods
In a microarray experiment, we obtain several thousand
expression values, one or many for each gene. These
studies offer an unprecedented ability to do large-scale
studies of gene expression. Let us define Gii = 1.....l as
the genomic marker(i.e. SNP), and Tj( j = 1......J) as the
transcripts. The identified eQTLs refer to the significant
Gs that are associated with Ts. These associations can
be found using a test statistics based on all n samples.
The genetic model for this association can be one of the
three models: dominant, recessive and additive. Under
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the dominance model, we can have two genotypes for
each of the SNPs. However for an additive model, three
genotype groups are available. A transcript Tj is assumed
to be associated with marker Gi if the mean level of
expression of transcript Tj for one genotype group is dif-
ferent from that of the other genotype group corre-

sponding to that marker. Let μ
(1)
T,G and μ

(0)
T,G be the group

means corresponding to the genotypes Gi. To test the

hypothesis H0 : μ
(1)
T,G = μ

(0)
T,G, a few test statistics are pro-

posed for microarray data analysis[26]. The present
work is based on the statistic proposed by Efron et al.
[4]. The test statistic is defined as

Zij =
x̄(1)

T,G − x̄(0)
T,G

(a0i + Sij)
(1)

where Sij is the usual standard deviations and a0i is
defined to minimize the difference in the coefficient of
variation of Zij within classes of genes with approxi-
mately equal variance. A drawback of calculating a0i is
the computational cost. Note that if a0i = 0, this reduces
to usual t-statistic. Here a0i is considered to be 90th per-
centile of all Sij values (Efron el al. [4]).
When expression measurements between two groups

are compared for any transcript, the observations are par-
titioned into two user defined groups of sizes n1 and n2

with n1 + n2 = n. If there is no significant difference
between the group means, the transcript is assumed to be
equivalently expressed (EE). On the contrary, if significant
difference is observed, the transcript is termed as differen-
tially expressed (DE). For any transcript Tj and SNP Gi it
may be either of these two: DE or EE. This uncertainty
can be modeled by a mixture of two distributions as
follows:

f
(
Zij|θ

)
= πof0

(
Zij|θ

)
+ π1f1(Zij|θ) (2)

where π0 is the mxining proportion of EE transcripts
and π1 = (1 − π0) is the proportion of DE transcripts, θ
is a vector parameters involved to characterize the dis-
tributions. Let Fi be the minor allele frequency of the
ith SNP then we model the distribution of Zij as a mix-
ture model of the form:

Pr(Zij|Fi) ∝ [f0
(
Zij|Fi

)
]1−δij [f1

(
Zij|Fi

)
]δij (3)

where f1(.) denotes the distribution of Zij for nonzero
associations between Gi and Tj and f0(.) denotes the dis-
tribution of Zij for the zero associations. δij isdefined as

δij =
{

1 if nonzero association is present
0 if zero association is present

For any transcript and any SNP there may be three
possible relations: no association, positive association

and negative association. Extending the idea of two
component mixture model, the distribution of the test
statistics is modeled by the following mixture model:

f
(
Zij|ψi, Fi

)
=

∑2
k=0 πikfk

(
Zij; μk, τ 2

k , νk
)

(4)

Where

ψi = (π ′
i, θ

′
i, ν

′
i)

π i = (π0i, π1i) θ i =
(
μ1i, μ2i, τ 2

1i, τ
2
2i

)
ν i = (ν1i, ν2i)

with μ0i = 0, τ 2
0i = 1. Mixing proportions πik are non-

negative constantsand sum to one for fixed i. f0(.) cor-
responds to distribution for no associationwhereas f1(.)
and f2(.) correspond to distributions related to positive
and negativeassociation respectively. In a recent work,
Noma and Matsui [27], have used semiparametric hier-
archical mixture model where the distribution of mean
expression level of a transcript is considered to be a
three-component mixture distribution.
Full Bayesian analysis of (4) will require prior specifica-

tions of π , θ , ν, f0(Z) and f1 (Z). However, one can use the
massively parallel structure of microarray data to estimate
an empirical Bayes estimate of the posterior probability.
These huge data motivates to be quite empirical rather
than specifying a-priori models in favor of data-based
investigations [27].

Empirical Bayes, false discovery rates (fdr) and local false
discovery rate (lfdr)
False discovery rate (fdr) is defined as the expected pro-
portion of errors committed by falsely rejecting null
hypotheses. Benjamini and Hochberg’s [2]fdr criterion
has very close relation with the empirical Bayes analysis.
This relation improved the connection between Bayesian
and frequentist testing theory. The close connection
between fdr and the empirical Bayes methodology fol-
lows directly from Bayes theorem and this has been
established by the “Equivalence theorem”[28]. Tail area
rejection regions like {Zij < z} are common in the fre-
quentist framework. According to this theorem, if the
tail area rejection region is taken to be as large as possi-
ble subject to the constraint that the estimated Bayes
proportions of false discoveries is less than α, then the
frequentist expected proportion of false discoveries is
also less than α.
The empirical Bayes approach suggests a local version

of the fdr called local false discovery rate (lfdr). The
Bayes probability that a transcript Tj for SNP Gi is “EE”
given the test statistic Zij, is known as lfdr(Zij) and it is
defined as

lfdr
(
Zij

) ≡ Pr
(
Tj is EE|Zij

)
= πi0f0(Zij)/f (Zij)
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Analytically, fdr is a conditional expectation of lfdr
defined as

fdr
(
Zij

)
=

Zij

∫
−∞

lfdr (Z) f (Z) dZ/
Zij

∫
−∞

f (Z) dZ = Ef {lfdr(Z|Z ≤ Zij)}

For the above set up in (3), 1 − δij represents the local
false discovery rate (lfdr) and fdr can be estimated:

δ̂ij =
πi1f1

(
Zij

)
(1 − πi0)f0

(
Zij

)
+ πi1f1

(
Zij

) ; lfdr
(
Zij

)
= 1 − δ̂ij (5)

and hence

fdr
(
Zij

)
=

(1 − π1i) ∫∞|Zij| f0 (x) dx

(1 − π1i) ∫∞|Zij| f0 (x) dx + π1i ∫∞|Zij| f1 (x) dx
(6)

ν0i is estimated bypermutation method (Efron et al.
[4]) and poi is estimated from the nonnegative constraint

p0i ≤ min
Z

fi(Z)
fi0(Z)

All other parameters will be estimated by EM algo-
rithm assuming fi0(.) to be known. There are some prac-
tical difficulties with the lfdr that relies on densities. The
estimation of null becomes more problematic in the far
tails. It is relatively easier to work with cumulative distri-
bution function than work with densities. Identification
of discoveries by lfdr may not be reproducible for a new
data. Therefore, even in empirical Bayes framework, fdr
should be preferred.
Nonparametric empirical Bayes (NPEB)
The main difference between parametric empirical Bayes
(PEB) and nonparametric empirical Bayes (NPEB) is the
way in which f1(.) andf2(.) are treated. In PEB model,
the functional form of f1(.) andf2(.) are known, i.e., we
have a parametric family of priors. In contrast, the NPEB
does not assume the functional form to be known.
Though NPEB methods are quite powerful, these are
more suitable for large sample analyses. To compute the
fdr under NPEB setup, we have followed the algorithm
proposed by Efron et al. [4].
ECME algorithm
To fit a mixture model, EM algorithm is widely used. In
case of t distribution the mean parameter μ and variance
component τ 2 can easily be estimated by EM algorithm
assuming that degrees of freedom ν is known. However
when ν is unknown EM still can be used as demonstrated
by Lange, Little and Taylor [29]. But this method appears
to be very slow (Liu and Rubin [30]) and an extension
has been proposed by Meng and Rubin [31] as ECM
algorithm. This is a generalization of EM algorithm
where the E step remains the same butthe M step is
replaced by CM (constrained or conditional maximiza-
tion) step. ECM algorithm is basically a generalized EM

(GEM) as shown by Meng and Rubin [31]. Incidentally,
the rate of convergence, in terms of iterations, for this
ECM algorithm is slower compared to EM. To overcome
this computational problem, Liu and Rubin [30] propose
an efficient algorithm ECME which is again an extension
of ECM algorithm. Though this is not a GEM, it con-
verges faster.
For the i -th SNP, the complete data is defined as

DiC = (Zij, δijk1, δijk2 . . . . . . . . . .δijkn, Ui1, Ui2 . . . . . . .Uin)

where

δijks =
{

1 if s th observation of Zij ∈ kth component
0 otherwise

and Ui s are independently distributed gamma
variables.
McLachlan and Krishnan [32] have already discussed the

application of the EM algorithm for ML estimation in case
of single component t distribution. In ECME algorithm,
this result has been extended to cover the present set up
of a 3-component mixture of t distribution. For the sake
of brevity, in this section we omit the suffix ij for all the
variables. To define t distribution with mean μ, variance
τ 2 and degrees of freedom ν, we proceed as follows:

If Z|U = u, δks = 1 ∼ N
(

μ,
τ 2

u

)
and U ∼ Γ

(ν

2
,
ν

2

)

then marginally, Z ∼ t(μ, τ 2, ν).
Following the above definition, the complete data likeli-

hood LiC can be factorized a product of three terms-
marginal densities of δ s, the conditional densities of U|δ,
and conditional densities of Z|U = u, δ. In notation, the
log-likelihood of the complete-data can be expressed as

log LC(ψ) = log L1C(π) + log L2C(ν) + log L3C(θ) (7)

where

log L1C (π) =
∑2

k=0 .
∑n

s=1 δks log πk (8)

log L2C (ν) =
∑2

k=0 .
∑n

s=1 δks{− log Γ
(νk

2

)
+

1
2

νk log Γ
(νk

2

)
+

1
2

νk
(
log us − us

)−
log us}

(9)

and

log L3C (θ) =
∑2

k=0 .
∑n

s=1 δks{−1
2

πk log (2π) − 1
2

τ 2
k − 1

2
us(z − μk)

2

τ 2
k

} (10)

E-Step
To compute the E-step of the proposed algorithm, at (t+1)
th step we need to calculate Q(ψ ; ψ (t)), the current condi-
tional expectation of the complete-data log likelihood
function log LC (ψ). From equation (4) to (7), we can write

Q
(
ψ ; ψ (t)) = Q1

(
π ; ψ (t)) + Q2

(
ν; ψ (t)) + Q3

(
θ ; ψ (t))(11)
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where

Q1
(
π ; ψ (t)) =

∑2
k=0 .

∑n
s=1 Eψ(t) (δks—zs) =

∑2
k=0 .

∑n
s=1 ξ

(t)
ks log πk (12)

and

ξ
(t)
ks =

π
(t)
k f

(
Zs; μ

(t+1)

k , τ 2(t+1)

k , ν(t+1)

k

)
f (Z; ψ(t+1))

(13)

which is the posterior probability that Z belongs to the
k-th component of the mixture based on current fit ψ(t).
Similarly,

Q2
(
ν; ψ (t)) =

2∑
k=0

.
n∑

s=1
ξ

(t)
ks [− log Γ

(νk

2

)
+

1
2

νk log Γ
(νk

2

)
+

1
2

νk{
n∑

s=1

(
log uks

(t) − u(t)
ks

)
+

ψ

(
ν

(t)
k + 1

2

)
− log(

ν
(t)
k + 1

2
)}]

(14)

Where

u(t)
ks =

ν
(t)
k + 1

v(t)
k +

(
Zs − μ

(t)
k

)2
/τ (t)

k

(15)

ψ(.) is a digamma function and

Q3
(
θ ; ψ (t)) =

∑2
k=0 .

∑n
s=1 ξ

(t)
ks [−1

2
log (2π) +

1
2

log uks
(t) − 1

2
u(t)

ks

(
(Zs − μk)/τk

)2}] (16)

CM-step
In usual M-step parameters π, ν, θ can be estimated by
considering equations (10) - (12) independently. The
new updates for π, θ can be obtained as a closed form
solution whereas for ν an iterative procedure may be
used using the following equations:

π
(t+1)
k =

n∑
s=1

ξ
(t)
ks

n
(17)

μ
(t+1)

k =
(∑n

s=1 ξ
(t)
ks u(t)

ks Zs

)/∑n
s=1 ξ

(t)
ks u(t)

ks (18)

τ
(t+1)

k =
∑n

s=1 ξ
(t)
ks u(t)

ks

(
Zs − μk

τk

)2
/∑n

s=1 ξ
(t)
ks (19)

and ν
(t+1)

k is the solution of the following equation

{−ψ
(νk

2

)
+log

(νk

2

)
+1+

1

n(t)
k

∑n
s=1 ξ

(t)
ks log Γ

(νk

2

)
+

1
2

νk{
∑n

s=1

(
log uks

(t) − u(t)
ks

)
+

ψ

(
ν

(t)
k + 1

2

)
− log(

ν
(t)
k + 1

2
)} = 0

(20)

To get an efficient algorithm, let us partition ψ as
(ψ′

1, ψ ′
2)′ where ψ1 contains all the parameters except

parameters corresponding to degree of freedom of t-dis-
tributions. The above M-step is replaced by two CM-
steps, as follows.
CM-Step 1. Keeping ψ2 fixed, i.e. ν is fixed at ν(t),

maximize Q
(
ψ; ψ(t)

)
to get ψ

(t+1)
1

CM-Step 2. Now fix ψ1 at ψ
(t+1)
1 and calculate ψ

(t+1)
2

by maximizing Q
(
ψ; ψ(t)

)
Furthermore to make the algorithm more efficient,

after the first CM-step, we replace the E-step with
ψ = (ψ(t+1)′

1 ,ψ(t)′
2 )′ instead of ψ = (ψ(t)′

1 ,ψ(t)′
2 )′.

Results
Simulation study
To assess the proposed methodology, a small sample
simulation study has been performed. This gives an idea
whether or not the parameters are well estimated and
most importantly, they provide information of false dis-
covery rates.
First we simulated a dominant model with 10,000

transcripts and 10 SNPs. The equivalently expressed
(EE) transcripts are generated from N(0,1) after log-
transformation. We have simulated the data under three
choices of proportions of differentially expressed (DE)
transcripts (p1). We have taken p1 to be (0.01, 0.05,
0.10). If the transcript is DE, it has to be generated from
N(4,0.5) after log-transformation. The controlled fdr are
also assumed to be (0.01, 0.05, 0.10) for these data sets.
For p1 = 0.05, the simulated data is given in Figure 1.
The impact of minor allele frequency (MAF) on the

distributions under null has also been studied. Under
null, for a t-distribution, the only parameter to be esti-
mated is its degrees of freedom. The comparison has
been made by computing different quantiles for six
choices of MAFs. For the lower quantiles, they almost
overlapped with each other. Very small deviations are
observed for upper quantiles (Figure 2).
For the 10 SNPs, we fitted the null distribution using

permutation method in a balanced way. From each
group, randomly selecterd 35 samples are shifted from
one group to the other and the value of the statistic is
noted. This process is repeated 40 times and histograms
are plotted. From the histograms, the degrees of free-
dom corresponding to the null distribution for eack
SNP is estimates. To get an idea about the goodness-of-
fit, Q-Q plots are done (Figure 3). These plots show
that the null distribution is well approximated by the
standardized t-distribution with appropriate degrees of
freedom.
Parameters related to the mixture model (4) are esti-

mated using proposed ECME algorithm after estimating
the null distribution using permutation method. Then
FDR is computed under both proposed parametric
empirical Bayes and nonparmetic empirical Bayes setup
and the result is given in Table 1.
It is evident from the above table that the nonparma-

teric empirical Bayes is much conservative compared to
its parametric alternative. For parametric set up, the
true FDR is very much close to the controlled one,
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whereas, for nonparametric empirical Bayes these values
are not so close as the true fraction of DE transcripts
increases.

HLC data analysis
We applied the empirical Bayes model to analyze a
sequencing data publicly available. In the current
study, we have started with liver tissue data of 213
Caucasian samples from apreviously described human
liver cohort (LHC) (Yang et al. [33]). To get the geno-
types and gene expression profiles, DNA and RNA
have been isolated. Illumina platform is used to get the
expressions. After putting some filtration (MAF>5%,
HWE<10-5,) we are left with 173 samples, 472,000
SNPs and 30,000 expressions.

The distribution of minor allele frequency (MAF) over
SNPs is given in the histogram (Figure 4). For all possi-
ble SNP-transcript combinations, test statistic, Zij s are
computed. We fit the mixture model using the ECME
algorithm in R 2.15.1 after estimating the null distribu-
tion using permutation method. However, due to high
dimension data, it becomes very difficult to fit a mixture
model using the proposed algorithm. For the sake of
parsimony, we further filtered the data and ECME algo-
rithm is used for only top SNPs with p − value < 10−3.
For these top SNPs, the mixture model is fitted and esti-
mates are obtained. To compute lfdr and FDR from (5)
and (6) respectively, these estimates are used.

Conclusion
To compare our result with [33], we focus on 18 of the 54
P450 genes used in the study. These are CYP3A5, CYP2D6,
CYP4F12, CYP2E1, CYP2U1, CYP1B1, CYP2C18,
CYP4F11, CYP4V2, CYP2F1, CYP39A1, CYP26C1,
CYP2C19, CYP2C9, CYP2S1, CYP46A1, CYP4A11 and
CYP4X1.However our method fails to identify a single SNP
with FDR<10% for CYP2R1 and that gene symbol has been
excluded from the table (Table 2). It can be seen from the
table (Table 2) that for a threshold of 10% FDR number of
significant eQTL pairsis4916.Since we have considered only
top SNPs, this may be an overestimate. SNPs which are
within <1-Mb distance from gene location are defined as

Figure 1 A part of the simulated data for p1 = 0.05.

Figure 2 Effect of minor allele frequency (MAF) on the null
distribution. Only upper quantiles (from 80%) have been
considered as lower quantiles showing almost no difference.
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cis-SNPs. It is interesting to note that, among these 18
genes, the first five (CYP3A5, CYP2D6, CYP4F12, CYP2E1
and CYP2U1) having more than 40 cis-SNPs. In all cases
FDR based analysis results in identifying more cis-SNPs for
these 18 genes compared to that of Yang et al. (2010) [33].

Discussion
In contrast to previously available methods based on p-
values, the empirical Bayes method uses local false dis-
covery rate (lfdr) as the threshold. This method controls
false positive rate. For a particular SNP, the lfdr is com-
puted for the site-specific evidence whereas the FDR
averages over other sites with stronger evidence. There
are some limitations of using FDR which may result in

Figure 3 QQ-plot for eight SNPs.

Table 1 The True FDR Performance of Controlled FDR in EB Models

True fraction of DE Controlled FDR

Nonparametric empirical Bayes Parametric empirical Bayes

0.01 0.05 0.10 0.01 0.05 0.10

0.01 0.004 0.029 0.067 0.005 0.042 0.090

0.05 0.006 0.041 0.079 0.006 0.045 0.094

0.10 0.007 0.043 0.087 0.008 0.047 0.097

Figure 4 Minor allele frequency (MAF) distribution . X axis
corresponds to minor allele frequency 25% to 50%.
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misleading inferences in genome studies. In such a situa-
tion, it is better to use lfdr which is a bit difficult to esti-
mate compared to FDR.However there is still one
computational problem which needs much attention. Due
to the high dimensionality in the data, sometimes existing
algorithms fail. This necessitates the need to find some
more efficient algorithms. The choice of threshold FDR
value is an important deciding factor in such studies. It
would be interesting to see, how number of cis-SNPs vary
with the change in FDR threshold. In this way FDR criter-
ion can be used to estimate number of SNPs that we may
need to consider.
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