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Over the last twenty years of research on cellular mechanisms of pain hypersensitivity, long-term potentiation (LTP) of synaptic
transmission in the spinal cord dorsal horn (DH) has emerged as an important contributor to pain pathology. Mechanisms that
underlie LTP of spinal DH neurons include changes in the numbers, activity, and properties of ionotropic glutamate receptors
(AMPA and NMDA receptors) and of voltage-gated Ca®" channels. Here, we review the roles and mechanisms of these channels
in the induction and expression of spinal DH LTP, and we present this within the framework of the anatomical organization and
synaptic circuitry of the spinal DH. Moreover, we compare synaptic plasticity in the spinal DH with classical LTP described for

hippocampal synapses.

1. Introduction

Long-term potentiation (LTP), an increase in the strength of
synaptic transmission between neurons, has been proposed
as a cellular model of learning and memory formation.
Since LTP was first described for the dentate area of the
hippocampal formation [1], data pertinent to mechanisms of
LTP have been abundantly accumulated in diverse synapses
of hippocampus and other brain areas. In contrast, investi-
gation of LTP in the spinal dorsal horn (DH) [2] is more
recent, beginning twenty years after the first description of
LTP in the hippocampus, and spinal DH LTP has focused
largely upon the synapses formed by primary sensory afferent
fibers, because these synapses are the first checkpoint for
pain signals entering the central nervous system (CNS). At
these primary afferent synapses, LTP has been thought to be
a cellular correlate of pain hypersensitivity and as such has
been proposed as a potential target for therapeutic treatments
of chronic pain.

Neurons in the spinal DH, consisting of superficial
(laminae I and II) and deep (laminae III-VI) DH, receive
synaptic inputs from primary afferent fibers, their cell bodies
located within dorsal root ganglion (DRG) as well as those
from other DH neurons, or neurons in other higher brain
areas. The spinal DH neurons are considered as secondary
neurons because peripheral somatosensory signals conveyed
by primary sensory DRG neurons first reach these neurons.
Synapses formed in these DH neurons mostly use glutamate
for excitatory transmission. Generally, ionotropic glutamate
receptors selectively activated by the artificial agonist «-
amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)
support the largest component of glutamatergic excitatory
synaptic transmission in the CNS, while the N-methyl-D-
aspartate (NMDA) receptor subtype is most important in the
induction of synaptic plasticity, including LTP (see below).
In addition to ligand-gated excitatory ion channels, DH
neurons express various types of voltage-gated ion channels
that generally contribute to neuronal excitability. Among
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the voltage-gated ion channels, voltage-gated Ca** channels
(VGCCs) have been found to be involved in the control of
synaptic plasticity, owing to their control of Ca** influx into
both presynaptic nerve terminals and postsynaptic domains
of neurons.

In this paper, we review the contributions of these two cla-
sses of ion channels to LTP in the spinal DH area. To provide
a context for interpretation of the role of these channels in
LTP, we first briefly discuss the anatomical organization and
synaptic circuitry of the spinal DH and also consider synaptic
transmission and plasticity in the spinal DH. For the sake of
brevity, this review does not consider the roles of other types
of ion channels in plasticity and pain, nor does it focus upon
downstream signaling pathways known to be critical for LTP.

2. The Spinal Cord Dorsal Horn

2.1. Anatomical Organization. The DH of the spinal cord
can be subdivided into six distinct layers (laminae I-VI)
in the dorsal-ventral direction of the gray matter, which
was first proposed in cat [3] as well as in rat [4]. The
Rexed laminae I and II consist of superficial spinal DH
[5], and laminae III-VI are frequently called deeper layer
of the spinal cord. Due to concentrated small neurons and
their processes plus a relative small number of myelinated
axons, the lamina II is observed as a translucent band under
the naked eye or light microscope and is called “substantia
gelatinosa (SG)” [4, 6]. Lamina VI exists only in the cervical
and lumbosacral enlargements [3]. Generally, the spinal DH
consists of the central terminals of primary sensory neurons,
projection neurons, intrinsic DH neurons, and descending
nerve fibers from the brainstem and other higher brain
structures. The cell bodies of the primary sensory neurons
are located in the DRG. Each ganglion cell sends an axon
that branches into a peripheral process and a central process.
The peripheral process contributes to a peripheral nerve and
terminates peripherally as a sensory receptor. The central
process enters into the spinal cord through a dorsal root and
further branches to numerous collaterals. Together, these two
processes form primary afferent fibers that transmit encoded
information from periphery to the spinal cord or trigeminal
nuclei of the brain stem.

Although primary afferent fibers give off most of their
collaterals to the segment of the spinal cord that they
enter, they also spread in the rostrocaudal direction. The
distribution of primary afferent fibers in the spinal DH is in
an orderly way based on fiber size, which affects conduction
velocity and sensory modality [7]. Most fine myelinated (AS;
conduction velocity, 1-1.5 to 5-10 m/sec) or unmyelinated (C;
<l-1.5m/sec) primary afferent fibers end predominantly in
laminae I and II, although a few reach laminae IITI-VI [8, 9].
In detail, high threshold A§ mechanoreceptors terminate in
laminae I and V, while low threshold A§ mechanoreceptors
only terminate in lamina III [9]. Most large cutaneous
afferents (Af; >5-10 m/sec), which function as low threshold
mechanoreceptors, have a characteristic pattern of termina-
tion in the deeper laminae (III-VI) of the DH [10]. Cutaneous
C fibers, occupying ~80% of cutaneous primary afferent
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fibers [11] and the majority of which being high-threshold
polymodal nociceptors in the rat [12], terminate in lamina
IT [13-15], although there is also a contribution to lamina I
[16]. Based on neurochemical markers, the high-threshold C
fibers can be divided into two major groups: peptidergic and
nonpeptidergic [7]. Peptidergic C fibers are nociceptors [17]
and contain neuropeptides such as calcitonin gene-related
peptide (CGRP) and/or substance P and express TrkA or
transient receptor potential (TRP) V1 [18]. The peptidergic
substance P-containing C fibers ends mainly in lamina I
and the outer layer of lamina II (Ilo). It is estimated in
lumbar DRG of rat that approximately half of the C fibers
are peptidergic [19]. Other high-threshold C fibers do not
contain peptides, but most of them can be revealed by their
ability to bind the lectin Bandeiraea simplicifolia isolectin
B4 (IB4) [20], and a subpopulation of the nonpeptidergic
C fibers can be defined by Mas-related G-protein-coupled
receptor member D (MrgprD), a sensory neuron-specific
G-protein-coupled receptor [21]. Although the function of
nonpeptidergic C fibers is poorly understood, this population
also includes many nociceptors [22, 23] and is different
from the peptidergic C fiber because ablation of the MrgprD
afferents in adult mice results in a selective loss of sensitivity
to noxious mechanical (but not thermal) stimuli [7, 24].

Beside the high-threshold C fibers, it should be pointed
out that there are low-threshold mechanosensitive C fibers,
which are nonpeptidergic and innervate specific types of
hair follicles [25]. Interestingly, this type of nonpeptidergic
C fiber expresses neither IB4 nor MrgprD but exclusively
expresses tyrosine hydroxylase, the enzyme catalyzing L-
3,4-dihydroxyphenylalanine production and participates in
forming narrow unique columns in the spinal DH with other
low-threshold Ad and A fibers [25].

2.2. Synaptic Circuitry. The gate control theory, proposed
by Melzack and Wall [26], illustrates how pain signals are
transmitted to higher brain areas via the spinal DH. In this
theory, inhibitory SG neurons control presynaptically both
large- and small-diameter fibers, presumably corresponding
to, respectively, A and C fibers, and these in turn innervate
the transmission system. Therefore, activation of SG neurons
by large-diameter fibers attenuates signals conveyed via both
fiber types to transmission system neurons, which corre-
sponds to gate closing; in contrast, inhibition of SG neurons
by small diameter fibers opens the gate for transmission of
pain information. Although the theory proposes a prominent
role for SG neurons in gating pain transmission, it assumes
only a single type of SG neurons, which is certainly incorrect
in regard to the synaptic organization of the DH [27]; rather,
recent data demonstrate that different subtypes of SG neurons
are present in spinal DH and that these subtypes make
distinct contributions to the function of the complex synaptic
network of the spinal DH. Thus, based on recent morpho-
logical and electrophysiological studies in the spinal DH, we
attempt to assign various SG neurons to three functionally
different SG neurons: inhibitory SG (iSG) neurons, excitatory
SG (eSG) neurons, and transmission system-inhibiting (tiSG)
SG neurons (Figure 1). Large-diameter A fibers directly, or
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FIGURE 1: A diagram modified from the gate control theory. Both
primary afferent A and C fibers directly target the transmission
system that conveys the pain signals from the spinal dorsal horn to
the higher brain areas. However, both fibers differentially innervate
to the substantia gelatinosa (SG) neurons in the spinal DH. Although
polysynaptic inputs are possible in all SG neurons from primary
afferent fibers and other SG neurons, monosynaptic inputs from A
fibers reach the excitatory SG neurons (eSG) and the transmission-
inhibiting SG neurons (tiSG), while those from C fibers only go
into the inhibitory SG neurons (iSG), not the itSG directly. The tiSG
neurons receive the excitatory synaptic inputs from the eSG and the
inhibitory synaptic inputs from the iSG. The main function of tiSG is
inhibiting the transmission system, both presynaptically (in the gate
control theory) and postsynaptically (in this diagram). In this way,
the activation and inhibition of SG neurons (here, called tiSG) by
large-diameter and small-diameter fibers, respectively, are possible,
shown in the gate control theory.

indirectly through eSGs, activate tiSG neurons, whereas
small-diameter C fibers necessarily activate iSG neurons
to inhibit the tiSG neurons. The transmission system is
composed of projection neurons that send pain information
to higher brain centers. In future works, it will be important
to more completely describe the synaptic organization of the
DH, and it will be important to carefully define the three basic
classes of SG neurons.

The primary candidates for iSG neurons are v-
aminobutyric acid- (GABA-) ergic neurons in the spinal DH,
an electrophysiologically heterogeneous group [28, 29] that
make up approximately 30% of neurons in lamina IT (SG) of
the spinal cord [30]. It has been suggested, using combined
single/paired whole-cell patch-clamp recordings and biocytin
labeling, that ~75% of all SG neurons fall into five groups
that differ in firing behavior and other electrophysiological
properties and most prominently, in the structure of their
dendritic arbors: islet, radial, central, medial-lateral, and
vertical cells [31-36]. Among these groups, islet cells are
exclusively GABAergic [37, 38] and receive monosynaptic
input from C fibers and polysynaptic input from A§ fibers [33,
35, 36]. The GABAergic nature of islet cells corresponds with
the finding that, among SG neurons expressing GFP (driven

by the upstream regulatory sequence of the gene encoding
the GABA synthetic enzyme, glutamic acid decarboxylase
(GAD) 67), 62% have islet-type morphology [29]. Because
the islet cells do not directly target projection neurons [34]
yet do influence the pain transmission system through other
SG neuronal types, islet cells are apparently one of the major
sources of SG neurons that act as iSG neurons (Figure 1).

In addition to the islet-type of SG neuron, tonically firing
neurons with central-type dendritic arbors are also likely
GABAergic [32]. Central neurons receiving GABAergic input
from islet cells and glutamatergic input from C fibers are
divided into either tonically firing neurons or transiently
firing neurons [31] and are both excitatory and inhibitory
[32-35]. The tonically firing central neurons synapse on
vertical neurons and recurrently, on islet cells, identifying this
subtype of central neuron as an additional type of iSG neuron.

As noted above, 30% of SG neurons are GABAergic so
that ~2/3 of SG neurons are glutamatergic; eSG neurons are
drawn from this large pool of excitatory interneurons. The
eSG neurons likely include vertical and radial SG neurons
because they predominantly receive monosynaptic inputs
from A fibers [34, 36, 38]. In contrast, it is known that central-
type SG neurons do not receive monosynaptic inputs from
A fibers, thus ruling out central neurons as candidate eSG
neurons.

On the other hand, considerably less is known about
the types of GABAergic SG neurons that make up the tiSG
circuit component, which synapse on projection neurons in
lamina I and deeper laminae [7]. Neurokinin (NK) 1-positive
projection neurons in laminae III-IV are known to receive
inputs from GABAergic neurons that contain neuropeptide
Y (NPY) [39]. Although classification of SG neuronal types
by arborization pattern and electrophysiological properties
remains incomplete, because NPY-expressing neurons com-
prise half of the GABAergic neurons of laminae I and II [40],
we suggest that these NPY-positive neurons inhibit the trans-
mission system and thus may act as tiSG neurons (Figure 1).
Therefore, careful identification of the types of (1) primary
afferent fibers and (2) local interneurons that send inputs to
NPY-positive, GABAergic neurons, would greatly clarify the
synaptic circuitry that contributes to gating of pain signals.
Evidence for another type of tiSG neuron has also been
obtained: “giant marginal” projection neurons, which lack
NKI1 receptors and express the glycine receptor-associated
protein gephyrin [41], are richly contacted by GABAergic
boutons that contain nitric oxide synthase (NOS) but not
NPY [41]. Here again, the neuronal morphology needs to
be defined for this NOS-positive neuron. Altogether, clear
understanding of the synaptic circuitry underlying gating of
pain signals will require a more complete description of the
pattern of SG neuron connectivity with GABAergic, NPY- or
NOS-positive neurons.

2.3. Synaptic Transmission. At chemical synapses in the CNS,
neurotransmitters released from presynaptic nerve terminals
generate graded analogue signals through the opening of
ligand-gated ion channels on the plasma membrane of
postsynaptic neurons. Whereas each presynaptic neuron



possesses the biochemical machinery to release only one
type of neurotransmitter, which can be either excitatory or
inhibitory, individual postsynaptic neurons express a variety
of ligand-gated ion channels that respond to different neuro-
transmitters so that postsynaptic neurons can, for example,
exhibit both excitatory and inhibitory synaptic potentials. In
the CNS, glutamate generates fast excitatory synaptic signals
in postsynaptic neurons by opening any of three types of
ligand-gated glutamate receptor ion channels: based on their
pharmacology and structural homology, these are known as
AMPA receptors (subunit: GluA1-GluA4), kainate (subunit:
GluK1-GluK5) receptors, and NMDA receptors (subunit:
GluN1, GluN2A-GluN2D, GluN3A, and GluRN3B) [42].

It is known from early studies of the spinal DH that
glutamate-mediated fast excitatory synaptic transmission
involves activation of postsynaptic ionotropic glutamate
receptors [43-46]. AMPA receptors mediate the large early
component of fast excitatory synaptic postsynaptic responses,
whereas the more slowly opened NMDA receptors con-
tribute only to the later component of excitatory postsynaptic
responses [2, 45, 46]. Fast synaptic transmission mediated
by kainate receptors is relatively small and produces slowly
decaying synaptic currents [47, 48]. Although most spinal
DH synapses use all three classes of ionotropic glutamate
receptors, some synapses possess only NMDA receptors;
these are known as “silent synapses” because, lacking AMPA-
receptor-driven postsynaptic depolarization, the glutamate-
activated NMDA receptors at these synapses remain blocked
by Mg** and thus fail to generate a synaptic signal [49, 50].

Although inhibitory transmission falls outside the scope
of the present review, we note that many interneurons in
the spinal DH release GABA and glycine, which provide fast
inhibitory transmission that is an essential feature of spinal
DH circuits. Most GABAergic neurons also release glycine in
the spinal DH [30, 51, 52], but GABA-mediated transmission
can be distinguished from glycine-mediated transmission
based on the decay kinetics of synaptic responses [53, 54].

2.4. Synaptic Plasticity. Strength of synaptic transmission
in the CNS is not constant; rather, it is subject to up- or
downmodulation as a consequence of patterns of presynaptic
and/or postsynaptic activity. Such activity-dependent
changes in synaptic strength are accomplished, in part,
through long-term modulation of the properties and
numbers of ion channels that mediate, affect, or respond to
synaptic activity. LTP—a persistent increase in the strength
of synaptic transmission [I]—can be induced by tetanic
stimulation, pairing of presynaptic activity with postsynaptic
depolarization, coincidence between presynaptic release of
glutamate and postsynaptic depolarization, and pharma-
cological treatments that increase excitatory postsynaptic
responsivity. Since the initial discovery of LTP, molecular
and cellular mechanisms subserving this kind of plasticity
have been worked out most clearly for the canonical form
of NMDA receptor-dependent LTP that is found at Schaffer
collateral-commissural synapses onto pyramidal neurons in
the CAl region of hippocampus. Important elements that
have been identified include channel phosphorylation by
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protein kinases such as protein kinase A (PKA), protein
kinase C (PKC), and Ca**-calmodulin-dependent protein
kinase IT (CaMKII) [55-59]; consequent increases in channel
opening probability and single-channel conductance [60, 61];
subunit-specific trafficking of postsynaptic AMPA receptors
[62-64] to the subsynaptic membrane; and changes in glu-
tamate release, both in probability [65] and quantal content
[66] at presynaptic terminals [67]. The cellular processes most
carefully worked out for hippocampal LTP [68] are generally
thought to provide a fundamental basis for information
processing and storage throughout CNS and particularly for
learning and memory in the hippocampus [69-72].

In the spinal cord DH, early studies revealed that repeti-
tive stimulation of dorsal root or peripheral nerve produces
LTP at primary afferent synapses [2, 73, 74]. In addition to
involvement of NMDA receptors and postsynaptic Ca** that
is typical of LTP induction in hippocampus [2, 75], spinal
DH studies have identified roles for NK1 [75, 76], group I
metabotropic glutamate [77], and opioid [78] receptors in the
induction and expression of LTP [2].

Some patterns of synaptic activity can cause a decrease
in synaptic strength, referred to as “long-term depression
(LTD)” [79]. This type of synaptic plasticity has also been
extensively studied in various CNS regions, most particularly
in the context of certain forms of information processing
in the hippocampus [80, 81] and also of motor learning in
cerebellum [82]. Although both high-frequency stimulation
(HFS) and low-frequency stimulation (LFS) can induce LTD
in the spinal DH, protein phosphatases play a role only in the
induction of HFS-induced LTD [83] but not in that of LFS-
LTD [84] in this area.

Because spinal LTP and LTD may play critical roles in
hyperalgesia and allodynia [85, 86] and the activation of
high-threshold C fibers is important to mediate many type
of hyperalgesia, C fiber-mediated field potentials have been
the subject of many LTP studies. LTP of C fiber-evoked field
potentials is reliably produced by HFS of peripheral nerves
(>3 hours), and is dependent upon the activation of NMDA
receptors [75]; interestingly, LFS at C fiber intensity also
induces LTP under certain conditions [87, 88]. Moreover, C
fiber-mediated LTP can be induced by noxious stimulation or
injury [89], revealing a contribution of this form of synaptic
plasticity to induction of hyperalgesia. Although the loci
of mechanisms underlying the LTP of C fiber-evoked field
potential are difficult to clarify, the induction and/or mainte-
nance of this type of LTP involve many channels and signaling
molecules, including NMDA and NKI receptors [75], N-
type and P/Q-type VGCCs [90], TRPV1 channels [91], the
EphB receptor tyrosine kinase [92], ryanodine receptors [93,
94], nitric oxide [95, 96], and many inflammatory agents
[97].

Spinal LTP has also been studied using single (whole)
cell recordings of primary afferent stimulation-evoked exci-
tatory postsynaptic potentials or currents (EPSPs and EPSCs,
resp.). In this case, Ad fiber- and C fiber-mediated synaptic
responses can be distinguished according to stimulus inten-
sity and conduction velocity, which is advantageous in eluci-
dating primary afferent-dependent mechanisms [87, 98, 99]
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or the locus of induction of LTP [93, 100]. In addition, whole
cell recordings are advantageous for study of LTP in partic-
ular types of DH neurons. Combining whole cell recording
from DH neurons with injection of retrograde tracers (e.g.,
Dil) into the parabrachial (PB) area or periaqueductal gray
(PAG) has allowed researchers to determine that HFS induces
LTP of C fiber-mediated EPSCs in lamina I neurons that
project to PB area but not in those that project to PAG [87]; in
contrast, LFS induces LTP in lamina I neurons that project to
PAG area. LTP of C fiber-EPSCs by HES in the PB-projecting
lamina I neurons requires NKI1 receptor-mediated signaling
and activation of T-type VGCCs [99]. LFS-induced LTP of C
fiber EPSCs in the PAG-projecting lamina I neurons requires
nitric oxide signals [87, 93], the latter generated in response to
intracellular Ca** rises that are slower in onset and prolonged
in comparison to the kinetics of Ca®* rises required to elicit
LTP in PB-projecting lamina I neurons [87].

In CAl of hippocampus, LTP of EPSCs can be alter-
natively induced by the coordinated activity of presynaptic
fibers and postsynaptic neurons, which is characteristic of
spike-timing [101] or pairing protocols [102] in the hippocam-
pus. The spike-timing protocol requires low-frequency post-
synaptic spikes timed within 10 ms of the onset of synaptic
responses, while the pairing protocol involves persistent post-
synaptic depolarization (0~+30 mV) during repetitive low-
frequency presynaptic stimulation. These protocols have been
applied to study LTP of EPSCs in the spinal DH as well, in an
effort to overcome the low rate of success (~50%) observed
for the induction of LTP by HES [2]. Spike-timing dependent
LTP is interestingly dependent on expression of the GluK2
(previously known as GluR6) kainate receptor subunit [48],
along with activation of NMDA receptors and elevation of
intracellular Ca** [103]. In spinal DH, LTP of EPSCs by the
pairing protocol requires activation of extracellular signal-
regulated kinase (ERK) [104].

Considering the mixture of excitatory and inhibitory
interneurons and the complex synaptic circuitry in lamina
IT of the spinal DH (see above), the contribution of LTP to
hyperalgesia will necessarily depend upon which synapses
in the DH circuitry specifically undergo LTP. It is therefore
critical that LTP and its pathophysiological role in pain
hypersensitivity be pursued at identified types of SG neuron
synapses. For example, hyperalgesia may be produced by LTP
of excitatory interneurons that synapse upon neurons that,
in turn, project to brain areas involved in nociception. Alter-
natively, hyperalgesia may be reduced by LTP of synapses
onto inhibitory interneurons that target projection neurons.
Hence, careful identification of the specific subtype of neuron
studied will be essential to better understand the roles of
spinal DH LTP in hyperalgesia and allodynia [85].

3. Contribution of Ionotropic Glutamate
Receptors to LTP in the Spinal DH

3.1. AMPA Receptors. AMPA receptors consist of homo-
and heterotetrameric assemblies of GluAl, 2, 3, and 4 sub-
units, with different assemblies of AMPA receptor subunits
exhibiting distinct functional behaviors [42,105]. Among the

GluA subunits, transcripts encoding GluA2 are subject to
RNA editing at position 586, which results in replacement of
the neutral glutamine (Q) residue found in all other GluA
subunits with a positively charged arginine (R). Position
586 is located in transmembrane segment 2 (M2), which
forms the lining of the ion permeation pathway through the
receptor; an arginine at this position decreases the receptor’s
Ca?" permeability and also confers linear current-voltage
behavior. AMPA receptors lacking GluA2 subunits are signif-
icantly more Ca**-permeable, exhibiting a Ca** permeability
ratio (P,/Py,) of 3, and they also display strong inward
rectification in their current-voltage relationships [105, 106].

Because AMPA receptors are the main mediators of
excitatory synaptic transmission in the CNS, they are gen-
erally considered as the final target for induction and
expression of LTP, rather than as inducers or regulators.
Thus, principal endpoints in LTP are phosphorylation and
trafficking of specific AMPA receptor subunit subtypes, along
with changes in AMPA receptor conductance [42, 105].
The GluAl subunit, for example, can undergo phosphory-
lation of Ser831 by CaMKII [107] and PKC [108] and of
Ser845 by PKA [108], which contributes to induction of
LTP by changing the open probability and single-channel
conductance of AMPA receptors containing this subunit
[42]. In regard to membrane trafficking of AMPA receptors,
the induction mechanism for LTP in hippocampal CAl
pyramidal neurons [64] includes increased incorporation of
GluAl/GluA2-containing AMPA receptors into the synaptic
surface membrane [62, 109]; however, subsequent work
suggests that the newly incorporated AMPA receptors are in
fact homotetrameric GluAl complexes [110]. In accordance
with these studies, the induction of LTP at hippocampal CAl
synapses is impaired in mice deficient in the GluAl subunit
[111]. Surface membrane incorporation of homomeric GluAl
receptors may result in the replacement of preexisting GluA2-
containing AMPA receptors, thereby increasing the net Ca®*-
permeability of the AMPA receptor population in the post-
synaptic surface membrane [112]. Increased Ca*" influx via
GluA2-lacking, Ca**-permeable AMPA receptors, is directly
related to enhancement of LTP [113, 114].

Trafficking of AMPA receptors requires their interaction
with transmembrane AMPA receptor regulatory proteins
(TARPs) [115, 116]. Interaction of TARPs with AMPA recep-
tors prevents AMPA receptor degradation [117], and subse-
quent interaction of AMPA receptors with PSD-95 results
in translocation of AMPA receptors from the perisynaptic
region into synaptic sites [118]. In contrast to these studies, a
recent study has found that the GluA1 C-terminal tail, critical
for GluAl trafficking [109, 110], is not required for LTP [119].
This has led to the suggestion that a reserve pool of AMPA
receptors, regardless of their subunit composition, is relied
upon for LTP. Further studies are needed to provide a more
comprehensive picture of the mechanism and role of AMPA
receptor trafficking in hippocampal LTP. In addition, studies
of this process in spinal DH LTP remain to be carried out.

Ca®"-permeable AMPA receptors are expressed in
inhibitory interneurons [120] of lamina I and the outer layer
of lamina II [121], the laminae which receive synaptic input



primarily from nociceptive C fiber afferents. Ca**-permeable
AMPA receptors in layer I and II DH neurons are activated
by synaptic input [122], raising the possibility that these
channels play a special role in mediating sensory input by
unmyelinated fibers [123]. Using GluA2 knockout mice,
it has been shown that Ca**-permeable AMPA receptors
enhance HFS-evoked LTP and mediate induction of NMDA
receptor-independent LTP at primary afferent-DH neuron
synapses [98], which suggests that Ca**-permeable AMPA
receptors contribute significantly to LTP in the spinal
DH and may substitute for NMDA receptors in LTP
induction. In contrast to NMDA receptors, Ca?* -permeable
AMPA receptors allow Ca®* influx at resting membrane
potential, a potential merit for induction of synaptic
plasticity.

3.2. NMDA Receptors. Functional NMDA receptors are
heterotetrameric assemblies composed of two GluN1 sub-
units and either two GluN2 subunits or a combination of
GluN2 and GIuN3 subunits [42]. The glutamate binding
sites are located in the GIuN2 subunits [124] and the
glycine binding sites in the GluN1 and GIuN3 [124-126].
NMDA receptors are characterized by their high permeabil-
ity to Ca®" [127], voltage-dependent block by Mg** [128],
and slow “activation/deactivation” kinetics [129]. NMDA
receptor alternative splice variants exhibit subtle differences
in functional properties, thereby fine-tuning the behav-
ior of NMDA receptors in which they are incorporated
[130]. For example, NMDA receptors containing GluN2A or
GluN2B subunits display high-conductance channel open-
ings and a high sensitivity to block by extracellular Mg,
whereas receptors composed of GluN2C or GluN2D subunits
show low-conductance openings and lower sensitivity to
Mg*". Moreover, GluN1/GIuN2A-containing NMDA recep-
tor currents deactivate rapidly (time constant of tens of
milliseconds), whereas GluN1/GluN2D-containing NMDA
receptor currents deactivate very slowly (time constant of
several seconds) [131-133]. In addition, GluN3 can also
coassemble with GIuN1 [134-136] to form uniquely exci-
tatory glycine receptors [136]. These distinctive properties
may provide particular NMDA receptor subtypes with spe-
cific roles in excitatory synaptic transmission/plasticity and
pathology.

The role of NMDA receptors in the induction of LTP
is well established for various brain synapses, particularly
the Schaffer collateral input to CAl pyramidal neurons
in hippocampus [68-70]. The activation requirements for
NMDA receptors—agonist (glutamate) binding and postsy-
naptic depolarization—are well-matched to the “Hebbian”
properties of LTP induction, namely, specificity, associativ-
ity, and cooperativity [69]. Further, several recent studies
show that a proper subunit composition is essential for the
induction [137-139] and expression [140, 141] of LTP. These
results reflect the fact that specific NMDA receptor subunits
are differentially phosphorylated by various protein kinases,
such as src [142, 143] and also differentially interact with
other accessory and regulatory proteins [144]. In keeping
with the notion of a proper NMDA subunit composition
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in LTP, the association of active CaMKII with GIuN2B is
likely required for the induction of canonical LTP at Schaf-
fer collateral synapses on CAl neurons [145]. Downstream
of these regulatory processes, NMDA receptor-dependent
protein synthesis [146-148] is needed for the expression of
LTP that persists beyond ~4 hours, referred to as late-LTP
[149].

In the spinal DH, in situ hybridization or immunos-
taining has revealed high expression of GluN1 and GluN2D
[150, 151] and lower levels of GluN2A and GIuN2B [152,
153]. Electrophysiological measurements of conductance
ratio have shown that lamina II GABAergic interneurons
express both the GluN2A/GluN2B- and GluN2C/GluN2D-
containing NMDA receptors, while excitatory lamina II
interneurons express primarily GluN2A/GluN2B-containing
receptors [154]. In addition, outside-out patch recordings
of single channel currents have shown that, at least in
extrasynaptic regions, both GluN1/GIuN2B (high conduc-
tance; 57 pS) and GluN1/GluN2D (low conductance; 44 pS
and 19 pS) are present on spinal DH neurons [155].

In the spinal DH, induction of nearly all forms of
LTP is dependent on the NMDA receptors [86]. An early
report showed that HES (100 Hz) of primary afferent fibers
at C fiber-activating intensity induces LTP of EPSPs in
transverse spinal cord slices in vitro; LTP was absent in the
presence of the NMDA receptor antagonist D-2-amino-5-
phosphonovalerate (D-AP5) [2]. In addition, LTP induction
at C fiber synapses also requires activation of NMDA recep-
tors [73, 87, 99]. Recently, LEFS (2Hz at C-fiber intensity)
of sciatic nerve has been shown to induce LTP of C fiber-
evoked field potentials. This LFS-induced LTP is also pre-
vented by an NMDA receptor antagonist, MK-801 in these
experiments [156]. As expected, the noble anesthetic gas
xenon, which has an inhibitory effect on NMDA receptors
[157], prevents induction of LTP at C fiber synapses in
intact rats [158]. LTP can also be induced by chemical
means, for example, by perfusion of spinal cord slices with
NMDA (+ postsynaptic depolarization) [159] or by perfusion
of spinal cord segments with NMDA in spinalized, deeply
anesthetized adult rat [75]. Taking together, these findings
indicate that the NMDA receptor is required for induction
of LTP in synapses of primary afferent fibers onto spinal DH
neurons.

3.3. Kainate Receptors. Kainate receptors are tetramers asse-
mbled from combinations of five different types of subunits,
termed GluK1-5 (formerly, GluR5-7 and KA1-2) [42, 105, 106,
160]. Each kainate receptor monomer possesses a ligand-
binding site and a distinctive amino acid sequence that forms
the channel lumen. Radioligand binding assays indicate that
GluKl, 2, and 3 contribute to low-affinity kainate binding
sites (K, of 50-100 nM) [161], whereas GluK4 and 5 form
high-affinity kainate binding sites (K, of ~4-15nM) [162,
163]. Structural variability of kainate receptors is conferred
by alternative splicing and RNA editing [160]. Alternative
splice variants have been found exclusively for GluK1 (GluK1-
1, 1-2a, 1-2b, and 1-2¢) [164] and GIuK3 (GluR3a and 3b)
subunits [165] in rat; however, the mouse GluK2 exists as two
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splice variants that differ in their C-terminal domains [166].
RNA editing, as for GluA2 subunits, posttranscriptionally
modifies a Q/R site in the M2 segment of GluK1 and GluK2
subunits. The Q-to-R substitution in GluK2 homomeric
kainate receptors decreases Ca** permeability [167, 168] and
increases Cl” permeability [169], reduces unitary conduc-
tance, and transforms channels from inwardly rectifying to
linear or slightly outwardly rectifying. Mice deficient in Q/R
editing in GluK1 have been found to exhibit a reduction in
kainate receptor-mediated currents in DRG neurons [170],
although the responses of these animals to painful stimuli
are unaffected. Besides the Q/R editing site, two additional
positions prone to RNA editing have been identified in the
GluK1 subunit: an isoleucine (I)/valine (V) site and a tyrosine
(Y)/cysteine (C) site [171], both in the M1 segment. Although
the additional editing sites may modulate Q/R site control of
Ca®" permeability, the mechanism of interaction among the
three editing sites remains to be elucidated.

For NMDA receptor-independent LTP at the mossy fiber-
CA3 synapse in hippocampus, there is disagreement regard-
ing the role of kainate receptors [172]. A selective antagonist
for GluKl-containing kainate receptors, LY382884, blocks
the induction of mossy fiber LTP [173, 174], but conflictingly,
mossy fiber LTP can be elicited in the presence of the
AMPA /kainate receptor antagonist, CNQX [175, 176].
Knockout mice deficient in GluK2 subunits [177] display
reduced mossy fiber LTP, but mice deficient in GluK1 possess
normal LTP. Although much more work is needed, the results
point to a potential role for kainate receptors in mossy fiber
LTP, specifically in the NMDA receptor-independent form of
LTP.

For synapses of primary afferents onto spinal DH neu-
rons, fast EPSCs have been shown to be mediated by post-
synaptic kainate receptors [47]. Kainate receptor-mediated
EPSCs are much smaller in peak amplitude and slower in
decay kinetics than those mediated by AMPA receptors.
To date, the kainate receptor subunits mediating synaptic
transmission have not been well-characterized. However, low
expression of GluK1 subunits, moderate expression of GluK3
and GluK4, and strong expression of GluK5 have been found
for spinal DH neurons; no expression of GluK2 has been
detected [150, 178]. Despite the apparent absence of GluK2
subunits from DH neurons, kainate receptor-mediated whole
cell current and synaptic potentials recorded from spinal DH
neurons are significantly decreased in GluK2 mutant mice
[48]. In addition to expression on postsynaptic membrane
in spinal DH neurons, kainate receptors are also expressed
on DRG neurons, including primary afferent presynaptic
terminals within the DH [179, 180]. All kainate receptor
subtypes are present in DRG neurons, with GluK1 expressed
at an especially high level [178, 181-183]. GluKI- or GluK2-
containing presynaptic kainate receptors modulates gluta-
matergic transmission at A§ and C-fiber primary afferent-
activated synapses in the spinal SG [184]. Interestingly,
induction of LTP is impaired in GluK2 knockout mice, while
the late phase of LTP is impaired in GluKl mutant mice
[48], indicating differential involvement of kainate receptor
subunits in LTP of spinal DH neurons.

4. Voltage-Gated Ca** Channels That
Contribute to LTP in Spinal DH and to Pain

Although receptors for L-glutamate, most commonly the
NMDA receptor subtype, mediate induction and expression
of LTP at many synapses in the brain, some forms of LTP
at hippocampal CA1l synapses, such as late-phase LTP (L-
LTP), require activation of L-type VGCCs. Other VGCCs
are also involved in diverse ways in LTP, as discussed
below.

VGCCs consist of a pore-forming transmembrane «;
subunit and the auxiliary 8 subunit and «,0 subunit [185].
Based on sequence homology, the ten different «; subunits of
VGCCs are grouped into three subfamilies: two high-voltage
activated subfamilies, Cay 1-2, and one low-voltage activated
family, Cay3 [186]. The Cay1 subfamily carries L-type Ca*"
current, and the family members are CaylL1 (ayg), Cayl.2
(;c)> Cayl3 («p), and Cayl4 («,5p). The Cay2 subfamily
includes Cay 2.1 (&5 ), Cay2.2 («3), and Cay 2.3 () which
correspond to P/Q-type, N-type, and R-type Ca®" currents,
respectively. The Cay3 subfamily carries T-type Ca** cur-
rents, and the family members are Cay 3.1 («; ), Cay3.2 (a;y),
and Cay3.3 (o;q) [186]. The channel’s auxiliary subunits are
also organized into subfamilies, and these specifically affect
membrane trafficking and expression of channels, voltage-
dependence of channel opening, inactivation kinetics, and
sensitivities to inhibitors, thus greatly expanding the number
of different subtypes of VGCCs [185, 187]. In this section, we
will discuss the contribution of each major type of VGCC to
LTP in the spinal DH to various forms of pain in normal and
pathological states.

4.1. L-Type VGCCs

4.1.1. Contribution to LTP. L-type VGCCs are widely ex-
pressed in the CNS [188], including CA1 of the hippocampus,
the preeminent region for investigations of LTP. The dendritic
localization of L-type VGCCs in the CAl area [189] implies
that their activation contributes to Ca*" signals in dendritic
spines, an important step for the induction of LTP [190].
Although induction of canonical LTP in CAl relies upon
Ca®" flux through NMDA receptors on dendritic spines and
subsequent activation of Ca®*-dependent second messengers
[70], several other forms of LTP in fact require activation of L-
type VGCCs, and not NMDA receptors. In the hippocampal
CAl area, for example, HFS at 200 Hz [191], (higher frequency
than the 100 Hz tetani typically employed for induction
of NMDA receptor-dependent LTP) generates LTP that is
insensitive to the NMDA receptor antagonist D-AP5 but is
blocked by the L-type VGCC antagonist, nifedipine. While
NMDA receptor-dependent LTP is inhibited by antagonists
of serine-threonine kinases, the 200 Hz-induced, L-type
VGCC-dependent LTP is blocked by antagonists of tyrosine
kinases [192]. In addition, prolonged theta burst stimulation
(TBS) in the CAlarea induces a form of LTP that is dependent
upon L-type VGCCs [193]. L-type VGCC-dependent LTP can
also be produced by application of the potassium channel
blocker, tetraethylammonium (TEA) [194, 195]. Interestingly,



the mechanism of induction of this type of LTP partially
overlaps that of NMDA receptor-dependent LTP, particularly
in regard to the timing and intensity of postsynaptic Ca*" sig-
nals [195]. Extracellular matrix molecules, such as hyaluronic
acid and tenascin-R, are important in the development of L-
type VGCC-dependent LTP induced by either TBS [196] or
TEA [197]. As for Schaffer collateral-CAl pyramidal neuron
synapses, L-channel-dependent LTP has been described at
mossy fiber synapses onto CA3 pyramidal neurons [198]
and for thalamic inputs to amygdala [199]. Induction of
NMDA receptor-independent, L-channel-dependent LTP is
distinctive in its reliance upon such electrical phenomena as
dendritic Ca** spikes [200-202].

In spinal DH, although L-type VGCCs are known to
be expressed in soma, dendrites, and axon terminals of
neurons [203, 204], it appears that L-channels do not
induce LTP during 100 Hz repetitive stimulation [98]. L-
type VGCCs contribute instead to an alternative form of
LTP in spinal lamina I neurons, one that is induced by
postsynaptic depolarization without presynaptic stimulation
(“non-Hebbian” LTP) [205]. Gabapentin, which binds to the
a,0 subunit of VGCCs and is used to relieve neuropathic
pain, does not affect C fiber-mediated basal transmission
or LTP induction but does reduce C fiber-mediated trans-
mission during the maintenance phase of LTP [206]. Thus,
postsynaptic Ca®* influx through L-type VGCCs may be
critical to induce or express LTP of excitatory synaptic trans-
mission in certain normal and/or pathological states. More
extensive investigation of distinct types of LTP induced under
normal or neuropathological conditions is clearly needed
to better understand the contribution of L-type VGCCs
to synaptic plasticity and neuropathic pain of the spinal
DH.

4.1.2. Contribution to Pain. Implication of L-type VGCCs in
acute and chronic pain has been controversial. Some reports
show that spinal administration of L-type VGCC blockers
decreases pain sensitivity to acute innocuous or noxious
stimuli [207, 208], but other work has found no effect of these
blockers in the hot plate test [209] or in other tests using acute
mechanical and thermal stimuli [210, 211]. Furthermore, in
a chronic pain model of peripheral nerve injury, intrathecal
administration of a high dose of the L-type VGCC blocker,
diltiazem, has no effect on paw withdrawal in response to
mechanical stimulation [212].

Recently, however, it has been found that prolonged
intrathecal administration of the L-channel blocker nicardip-
ine elevates mechanical threshold in a neuropathic pain
model [213], indicating the involvement of L-type VGCCs
in mechanical allodynia caused by peripheral nerve injury.
Along the same lines, reduced expression of L-type VGCCs in
spinal DH by antisense [213] or microRNA [214] technologies
suppresses the hypersensitivity of DH neurons following
peripheral nerve injury. Taken together, these findings indi-
cate that L-type VGCCs can contribute to some components
of acute or chronic pain behaviors produced by tissue
damage, likely reflecting the contribution of L-type VGCCs
to certain forms of LTP in the spinal DH.
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4.2. P/Q-Type VGCCs

4.2.1. Contribution to LTP. P/Q-type VGCCs are expressed
in a subpopulation of DRG neurons [203, 215, 216] that does
not respond to capsaicin and rarely expresses substance P, a
marker for small high-threshold primary afferent terminals
[203]; P/Q channels thus play only a small role in the
control of glutamate release from small diameter, peptidergic
nociceptive primary afferent fibers. In addition, it has been
suggested that P/Q-type VGCCs are expressed in fewer
numbers of primary afferents than are N-type VGCCs [203,
217, 218]. In the spinal DH, P/Q-type VGCCs are expressed
in the laminae IT-VI [203] and are preferentially involved in
inhibitory neurotransmission [219, 220], indicating a limited
contribution of P/Q-type VGCCs to excitatory synaptic
transmission in the spinal DH.

Blockers of P/Q-type VGCCs strongly suppress induction
of LTP for C fiber-evoked field potentials [90], suggesting that
induction of this form of spinal DH LTP may rely in part upon
P/Q-type VGCCs [221]. Similarly, in visual cortical neurons,
P/Q-type VGCCs have also been proposed to contribute to
the induction of LTP at the inhibitory synapses [222].

4.2.2. Contribution to Pain. In accord with the minimal
contribution of P/Q-type VGCCs to glutamate release
from small-diameter, high-threshold primary afferents [203],
intrathecal administration of the selective P/Q channel
blocker, w-agatoxin IVA, has little or no effect on C- or
AS fiber-mediated nociceptive transmission [223] or in tests
of mechanical and thermal thresholds in neuropathic pain
models [212, 224]. However, development of hyperalgesia or
pathological pain is prevented by intrathecal pretreatment
with blockers of P/Q-type VGCCs [209-211], as well as in
animals with either a genetic deficiency [225] or spontaneous
mutation [226] in P/Q-type VGCCs. These observations
correlate with studies of spinal LTP that indicate a critical
role for P/Q-type VGCCs in the induction of LTP of C fiber-
evoked field potentials [90]. Therefore, as for L-type VGCCs,
P/Q-type VGCCs may also be involved in the development
or regulation of certain forms of chronic pain.

4.3. N-Type VGCCs

4.3.1. Contribution to LTP. N-type VGCCs are expressed in
dorsal root ganglia, as well as in primary afferent nerve ter-
minals in the superficial area (laminae I-1I) of DH [203, 217].
In accord with these findings, glutamatergic transmission
between DRG and spinal DH neurons is blocked by w-
conotoxin GVIA, a selective blocker of N-type VGCCs [227].
Many of the presynaptic nerve terminals with N-type VGCC
immunoreactivity also contain substance P, suggesting that
N-type channels also support the release of substance P and
CGRP from peptidergic, high-threshold C fibers in the spinal
DH [228, 229].

As for other VGCCs, the involvement of N-type VGCCs
in synaptic plasticity, particularly LTP, appears to be spe-
cific to the synaptic pathway and induction protocol. An
early study showed that when a 100 Hz induction proto-
col is used, N-type VGCCs are not involved in LTP of
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the hippocampal mossy fiber-mediated CA3 pathway [201].
However, at hippocampal CA3-to-CAl Schaffer collateral
synapses, when TBS or 200 Hz HFS is used to induce LTP, N-
channel-mediated component of excitatory transmission can
be identified after induction of LTP [230]. For perforant path
synapses onto CAl neurons, induction of LTP by 200 Hz HES
relies upon an increased contribution from presynaptic N-
type VGCCs [231]. In the spinal DH, the N-channel blocker
w-conotoxin GVIA does not prevent induction of LTP of C
fiber-field potentials, but this N channel antagonist inhibits
synaptic transmission once LTP has been induced [90]. These
results indicate that presynaptic N-type channels contribute
to the maintenance phase of LTP in the spinal DH [231].

4.3.2. Contribution to Pain. Implication of N-type VGCCs
in acute and chronic pain states correlates with the fact
that N-type channels are predominantly expressed in DRG
neurons, particularly small-diameter peptidergic DRG neu-
rons and the fact that N channels may control release
of neurotransmitters such as glutamate and substance P
onto spinal DH neurons [228, 229]. Antagonists of N-type
channels block the release of glutamate, substance P, and
CGRP in the spinal DH [229, 232, 233], and in various
acute, inflammatory, and neuropathic pain models, produce
antinociceptive and analgesic effects [234, 235]. In addition,
genetic ablation of Cay 2.2 («,3), the pore-forming subunit of
N-type channels, significantly reduces mechanical allodynia
and thermal hyperalgesia in a neuropathic pain model with
spinal nerve ligation [236]. Moreover, the antinociceptive
effects of N-channel antagonists are enhanced in chronic pain
states [237, 238], as N-type channels are upregulated after
peripheral nerve injury [239]. Interestingly, these findings
correlate with the observation that the block of N-channels
inhibits synaptic transmission once LTP has been established
[90].

Even though neuropathic pain can be reduced by blockers
of N-type channels, and blockers such as w-conotoxin MVIIA
(SNX-111, ziconotide, or Prialt) have received approval by the
FDA for the treatment of chronic pain; N-channel blockers
are of limited use owing to side effects attributable to the
fact that almost all of the presynaptic terminals in the brain
express the N-type VGCCs. Thus, N-channel antagonists
must be administered intrathecally, an invasive method used
when other pain management options have failed. It may
therefore prove useful to develop N-channel blockers that are
either specific to particular Cay1.2 o, splice variants [240,
241] or that modulate N-type channel in selective neuronal
subtypes [242].

4.4. T-Type VGCCs

4.4.1. Contribution to LTP. Although the lack of a specific
antagonist prevents clean isolation of the contribution of T-
type VGCCs to LTDP, there is evidence indicating that T-type
VGCCs are involved in the induction and/or expression of
LTP in hippocampal CAl [243] neurons and dentate gyrus
[244]. The late phase of LTP in the CAl area, which can
be induced by 100 Hz HFS and is dependent on NMDA

receptors, is not maintained (<120 min) in Cay3.2 T-type
VGCC knockout mice [243]. LTP induction in dentate gyrus
is sensitive to Ni*", a blocker of T-type as well as R-type
VGCCs, and is dependent on the induction protocol: the
Ni**-sensitive component of LTP can be induced by pairing
of 1 Hz presynaptic stimulation with postsynaptic depolariza-
tion, but not by 100 Hz HFS [244]. T-type VGCCs may also
be involved in LTP that is induced by TBS [245] or TEA [246]
in the CAl area, although L-channels have alternatively been
reported to mediate TEA-induced LTP [195]. T-type VGCCs
in CAl are implicated in the enhancement of LTP, rather than
its induction or expression, with the mechanism involving
muscarinic acetylcholine receptors and phospholipase C-
mediated K* channel inhibition [247].

T-type VGCCs are expressed in the superficial DH of
the spinal cord, as well as in medium- and small-diameter
DRG neurons [248], raising the possibility of both pre- and
postsynaptic contributions to synaptic plasticity at primary
afferent-DH neuron synapses. T-type Ca** currents have
been reported in spinal DH neurons [223, 249-253]. In
addition, the contribution of T-type Ca** channels to LTP
of C fiber-initiated EPSCs in lamina I neurons that project
to the PB area has been demonstrated [99], suggesting that
T channels may play a significant role in amplification of
pain signals via their contribution to spinal LTP. On the other
hand, LFS-induced LTP of C fiber-EPSCs in PAG-projecting
lamina I neurons [87] likely involves T-type VGCCs [254].
These results underscore the idea, once again, that spinal LTP
is cell type-specific.

4.4.2. Contribution to Pain. The involvement of T-type
VGCCs in pain is likely specific to T-channel subtypes.
Nociceptive responses induced by nerve injury are decreased
after knock down of Cay3.2, but not of Cay3.1 or Cay3.3
[255], presumably reflecting the abundance of Cay3.2 in
DRG neurons [255-257] and indicating that the T-channel
subtype involved in spinal LTP may be Cay3.2. In support
of this interpretation, genetic knockout of Ca, 3.2 attenuates
behavioral responses to noxious stimuli such as formalin
[258]. In contrast, knockout of Cay 3.1 causes hypersensitivity
to noxious visceral stimuli, but this involves a supraspinal
mechanism [259]. Therefore, although some nonselective T-
type blockers such as ethosuximide or mibefradil can reverse
both tactile hypersensitivity and thermal hyperalgesia in
various pain models [260, 261], development of subtype-
specific antagonists of T-type channels is desirable. In this
regard, downregulation of T-type channel activity and of
hyperalgesia by oxidizing agents [262, 263] or by lowering lev-
els of the endogenous gasotransmitter hydrogen sulfide [264,
265] may prove useful as leads in developing novel subtype-
selective T-channel drugs for the treatment of inflammatory
or neuropathic pain.

4.5. R-Type VGCCs

4.5.1. Contribution to LTP. The involvement of R-type
VGCCs in LTP can be difficult to isolate, in part because
a commonly-used R-type channel blocker Ni** is also an
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effective blocker of T-type channels. However, there is strong
evidence that R-type channels support a presynaptic form of
LTP found at parallel fiber synapses onto Purkinje cells in
the cerebellum [266]. Because cerebellar granule cells (which
give rise to parallel fibers) do not express T-type channels,
in this system, the effects of Ni** block of Ca®" current can
be entirely attributed to antagonism of R-type channels. In
comparison to N- and P/Q-channel-mediated Ca** influx
at parallel fiber terminals, R-type channels contribute only
modestly to bulk changes in intracellular Ca**, suggesting
that R-channel Ca** microdomains in presynaptic terminals
are important for the induction of parallel fiber LTP [266].

On the postsynaptic side, R-type VGCCs in CAl pyra-
midal neurons contribute to Ca®" influx evoked by TBS-
triggered, back-propagating dendritic action potentials [267,
268]. In turn, R-channel Ca" influxin distal dendrites of CA1
pyramidal neurons helps generate plateau potentials that are
critical for perforant path LTP [269].

Although R-type VGCCs are expressed in a subpop-
ulation of DRG neurons [270], it is unclear whether the
primary afferent terminals or spinal DH neurons bear R-
type channels. In addition, whether R-type channels are
involved in synaptic plasticity in the spinal DH remains to
be determined.

4.5.2. Contribution to Pain. There is evidence that R-type
VGCCs are involved in the transmission and processing
of inflammatory and neuropathic pain information. SNX-
482, an inhibitor of R-type VGCCs (and less potently of L-
type channels) [271], decreases nociceptive responses during
the second phase of the formalin test [217] and inhibits
neuropathic pain behavior [272]. In addition, studies using
Cay2.3 knockout mice suggest a contribution of R-type
VGCCs to pain transmission [217, 273].

5. Concluding Remarks

Many studies have attempted to elucidate rules and signaling
mechanisms for synaptic plasticity, particularly LTP, in the
spinal DH. Together, these studies show that LTP in the spinal
DH shares many features with LTP in the hippocampus and
with “central sensitization” in the spinal DH during hyper-
algesia [274]. In this review, we have considered how inter-
relationships between synaptic circuitry in the spinal DH,
ionotropic glutamate receptors, voltage-gated Ca** channels,
and induction/expression of LTP in the spinal DH are
together involved in pain hypersensitivity.

Up to the present time, the complexity of synaptic
circuitry in the spinal DH has hampered the understanding
of LTP mechanisms in spinal DH. Generally, thorough
classification of postsynaptic neurons and presynaptic fibers
remains to be worked out. Although presynaptic fiber type
can be identified during electrophysiological recording based
upon conduction velocity and stimulus intensity, selective
stimulation of a single class of primary afferent fiber remains
challenging, because the range of stimulus intensities that
activate C fibers overlaps the range of intensities that activates
A fibers. Postsynaptically, in the spinal DH, although multiple
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morphological and electrophysiological criteria are available
to distinguish neuronal subtypes, studying synaptic plasticity
in a single type of spinal postsynaptic neuron has yet to be
achieved, owing to inhomogeneities in physiological behav-
ior, neurotransmitters, and cellular markers even within a
group of neurons that carries out a similar function, such as
the lamina I projection neurons [7].

In the future, progress in this field will likely rely
upon studies that make use of powerful new experimental
approaches, such as combining transgenic means to identify
postsynaptic neurons [29, 32] and presynaptic fibers [25] with
optogenetic tools to selectively activate specific fiber types
[275]. This kind of approach will make it possible to study
LTP at synapses between specific types of primary afferent
fibers and spinal DH neurons or between specific spinal
DH neurons, thereby facilitating the correlation between
mechanisms of LTP and nociception in the spinal DH.
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