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Abstract: Aromatic imide derivatives play a critical role in boosting the electroluminescent (EL)
performance of organic light-emitting diodes (OLEDs). However, the majority of aromatic imide-
based materials are limited to long wavelength emission OLEDs rather than blue emissions due to
their strong electron-withdrawing characteristics. Herein, two novel polycyclic fused amide units
were reported as electron acceptor to be combined with either a tetramethylcarbazole or acridine
donor via a phenyl linker to generate four conventional fluorescence blue emitters of BBI-4MeCz,
BBI-DMAC, BSQ-4MeCz and BSQ-DMAC for the first time. BSQ-4MeCz and BSQ-DMAC based
on a BSQ unit exhibited higher thermal stability and photoluminescence quantum yields than BBI-
4MeCz and BBI-DMAC based on a BBI unit due to their more planar acceptor structure. The
intermolecular interactions that exist in the BSQ series materials effectively inhibit the molecular
rotation and configuration relaxation, and thus allow for blue-shifted emissions. Blue OLED devices
were constructed with the developed materials as emitters, and the effects of both the structure of
the polycyclic fused amide acceptor and the electron donor on the EL performance were clarified.
Consequently, a sky-blue OLED device based on BSQ-DMAC was created, with a high maximum
external quantum efficiency of 4.94% and a maximum luminance of 7761 cd m−2.

Keywords: OLEDs; polycyclic fused amide; electron acceptor unit; blue emission

1. Introduction

As the next generation of display and lighting technology, the development of organic
light-emitting diodes (OLEDs) has been undergoing a marvelous revolution since the first
double-layered electroluminescent (EL) device was discovered by Tang and Van Slyke
in 1987 [1]. Blue emission materials are of particular attention thanks to their variety of
merits for application in OLEDs [2–4]. Firstly, as one of the three-primarily colors, the
blue emitter is an indispensable component of full-color flat panel displays and solid-state
lighting [5]. Secondly, the display structure can be greatly simplified by energy transfer
from blue emissive materials to long-wavelength emission materials [6]. Moreover, blue
emission materials can fully meet the obligation of energy-saving and a wide color gamut
for commercial applications [7]. Nevertheless, the development of blue fluorophores is
far from satisfactory due to their tough molecular designs in contrast to green and red
fluorophores [8]. To date, the majority of works based on thermally activated delayed
fluorescence (TADF) and “hot exciton” emitters have explored, but only a few can truthfully
exhibit excellent stability for commercial blue OLEDs [9–11].

As of yet, conventional fluorophores are still the best choices for stable blue emis-
sion. However, molecular design units mainly focus on anthracene, pyrene, fluorene and
their derivatives [12–14]. Therefore, the design and synthesis of novel building blocks
for constructing highly efficient and stable conventional OLED devices are of particular
importance. Recently, aromatic imide-based materials aroused huge attention thanks to
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several advantages such as their high photoluminescence quantum yields (PLQYs), rigid
planar structure, excellent photochemical stability and strong electron-withdrawing charac-
teristics [15–17]. For instance, in 2018, Yang and co-workers explored two novel efficient
imide-based emitters using 1,8-naphthalimide and rigid acridine as the acceptor and donor,
respectively [18]. The two reported emitters showed high PLQYs and preferentially hori-
zontal emitting dipole orientation characteristics with external quantum efficiencies (EQEs)
approaching 30%. Bin et al. designed and synthesized two materials with a new acceptor
fused by pyrazine and maleimide in 2021 [19]. By elaborating the device structure, the
orange-red OLED exhibited high EL performance with an EQEmax of 26.0% and a remark-
ably low efficiency roll-off. They demonstrated that the imide unit is an effective candidate
for building highly efficient OLEDs. Nonetheless, a lot of imide-based materials utilized
for OLED applications show red-shifted emissions upon straight conjugation with acceptor
units [20–22]. This results in an alteration in the spectral pattern and harshly breaks color
purity. Hence, it is still challenging to develop controllable acceptor units for achieving
high blue EL performance [23].

In this work, we reported four donor-bridge-acceptor (D-π-A) blue emissive materials,
13-(4-(1,3,6,8-tetramethyl-9H-carbazol-9-yl)phenyl)benzo[cd]benzo [5,6][1,2]thiazino[2,3-
a]indole 8,8-dioxide (BBI-4MeCz), 13-(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)benzo[cd]b
enzo[5,6][1,2]thiazino[2,3-a]indole 8,8-dioxide (BBI-DMAC), 13-(4-(1,3,6,8-tetramethyl-9H-
carbazol-9-yl)phenyl)-8H-benzo[3,4]indolo[1,2-b]isoquinolin-8-one (BSQ-4MeCz) and 13-
(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)-8H-benzo[3,4]indolo[1,2-b]isoquinolin-8-one (BS
Q-DMAC), based on novel polycyclic fused amide skeletons as electron acceptor units.
Compared with conventional imide units, the lack of carbonyl groups in the amide unit effi-
ciently decreases the electron-withdrawing ability and thus controls intramolecular charge
transfer (ICT) to maintain blue emissions. The polycyclic fused structure can provide high
PLQYs, and the large torsional angle derived from the highly twisted structure provides
high color purity by restricting unattractive intermolecular interactions. The photophysical
properties of the four emitters were systematically investigated here. The four emitters
exhibited similar photophysical behavior with the corresponding acceptor units, indicating
the predominance of novel amide skeletons. Additionally, the BSQ derivatives showed
greater blue emissions than the BBI derivatives for the more inflexible molecular planarity
structures. Blue OLED devices based on the use of the as-synthesized materials as emitters
were fabricated with a low turn-on voltage (Von) and decent EL performance. Specifically,
the devices based on BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-DMAC as emitters
achieved EQEs of 2.95%, 2.97%, 4.13% and 4.45%, with emission peaks of 494 nm for the
BBI derivatives and 488 nm for the BSQ derivatives, respectively. Furthermore, the best EL
performance based on the use of BSQ-DMAC as an emitter was obtained by elaborating
the dopant concentration, with an extremely low Von of 2.8 V and an EQEmax of 4.94%
at an EL peak of 492 nm. This work might provide effective suggestions for the future
exploration of blue emission materials.

2. Results and discussion
2.1. Synthesis and Single crystals

All reagents and solvents were purchased from commercial sources and used without
further purification. The synthetic routes of the four compounds are outlined in Scheme 1.
The detailed synthesis information is summarized in the Supporting Information. The
compounds BSQ-Br and BBI-Br were synthesized by copper-catalyzed cyclization reac-
tions, according to previously reported works [24–28]. Then, the target materials were
successfully acquired through the reaction of transition metal-catalyzed N-C bond forma-
tion between the intermediate compounds [29]. Afterward, the products were purified by
silica column chromatography and temperature-gradient sublimation with 1H/13C NMR,
MALDI-TOF mass spectrometry (Figure S1–S9, Supporting Information) and single crystal
X-ray diffraction (XRD).
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Scheme 1. The synthetic routes of the target compounds.

Single crystals of BBI-4MeCz and BSQ-4MeCz (CCDC 2201090 and 2201089) were
successfully obtained through slow diffusion from a mixed solution of chloroform and
methanol. The crystal structures and molecular packing are presented in Figure 1. Ob-
viously, the minimum unit cell is formed by four monomers for two crystals. Both BBI-
4MeCz and BSQ-4MeCz exhibited twisted structures with a torsion angle between the
central phenyl ring and D/A unit of almost 90◦, which matched well with the quantum
computation (vide infra). However, compared with BSQ-4MeCz, BBI-4MeCz displayed
an arc-shaped single crystal structure due to the two oxygen atoms connected to the sulfur
atom. This non-planar structure led to a broken conjugation and thus resulted in a low
PLQY. With the introduction of a bulky tetramethylcarbazole unit into the BBI acceptor unit,
only weak π-π stacking existed between two molecules, with a distance of 3.549 Å. On the
contrary, the BSQ-4MeCz crystal displayed more intermolecular π-π stacking interactions
(3.265 and 3.356 Å) between the monomer skeletons. The relatively stronger intermolecular
interactions in the BSQ-4MeCz can improve molecular rigidity and significantly restrain
the nonradiative decay, thus enhancing the PLQY and charge transport capacity. These
results demonstrate that BSQ-based emitters can perform better than BBI-based emitters in
OLED devices.
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Figure 1. Single crystal structures and packing modes of (a) BBI-4MeCz and (b) BSQ-4MeCz.

2.2. Theoretical Calculations

Density functional theory (DFT) was implemented based on the Gaussian 16 program
package at a B3LYP/6-31g(d,p) level to analyze the structure-property relationships. As
shown in Figure S10, the optimized ground state geometries of all four emitters exhibited
nearly orthogonal structures. The dihedral angles between the benzene ring and the D/A
units were (86.8◦, −98.7◦), (88.7◦, −99.3◦), (90.3◦, −91.3◦) and (88.5◦, −100.0◦) in the BBI-
4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-DMAC, respectively. Owing to the highly
distorted structure, the intermolecular conjugation and electron exchange were efficiently
suppressed to avoid exciton quenching and to give blue emissions [10]. The distributions
of the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular
orbitals (LUMOs) of the four emitters were similar (Figure 2). In general, the HOMO was
distributed in the carbazole or acridan donor units and the LUMO was located on the
acceptor moieties.
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Moreover, natural transition orbitals (NTOs) were also investigated with time-dependent
density functional theory (TD-DFT). As shown in Figure S11 and S12, all emitters exhibited
similar distributions of “holes” and “particles”. Specifically, the “holes” of the lowest
singlet excited states (S1) were mainly distributed on the electron-donating carbazole or
acridine units, while the “particles” were separated in the acceptor moieties. In the lowest
triplet excited states (T1), their “holes” and “particles” were clearly located at the acceptor
cores, representing the locally excited (LE) features. The S1 and T1 energy levels itemized
in Table 1 were also calculated by TD-DFT. The S1 energy levels of the BBI-4MeCz, BBI-
DMAC, BSQ-4MeCz and BSQ-DMAC were 2.62, 2.46, 2.74 and 2.56 eV, respectively, and
the T1 energy levels were calculated as being 1.73, 1.73, 1.81 and 1.81 eV, respectively. No
matter whether tetramethylcarbazole or acridan was combined with a BBI or BSQ unit,
the T1 energy levels were unchanged for the BBI or BSQ-based materials, indicating that
the triplet emission may have originated from the acceptor fragments. Besides this, the
corresponding splitting energies (∆ESTs) between the S1 and T1 were over 0.7 eV, suggesting
that no TADF properties existed for these four emitters [30].

Table 1. Key photophysical data of the as-synthesized materials.

Compound λabs[a] λPL[b] Φf [c] τ[d] ET1/ES1[e] HOMO/LUMO[f] Eg[g] Tg/Td[h]
[nm] [nm] [%] [ns] [eV] [eV] [eV] [◦C]

BBI-4MeCz 334/348/409/427 482/512 9.1 0.8/6.9 1.73/2.62 −5.87/−3.14 2.73 137/408
BBI-DMAC 409/427 481/533 7.6 1.1/24.4 1.73/2.46 −5.77/−3.04 2.73 131/419
BSQ-4MeCz 392/413/438 474/484 77.3 4.6/6.3 1.81/2.74 −5.93/−3.17 2.76 n.d./463
BSQ-DMAC 392/413/438 474/517 78.1 5.1/12.6 1.81/2.56 −5.72/−2.96 2.76 126/430

[a] Absorption peaks in 10−5 M toluene solution; [b] PL peaks in 10−5 M toluene solution and thin film formed by
spin-coating; [c] Absolute fluorescence quantum yields detected in toluene solution; [d] PL lifetimes in dilute
toluene solution and thin film; [e] S1/T1 energy levels calculated based on B3LYP/6-31G(d,p); [f] HOMO level
obtained from atmospheric ultraviolet photoelectron spectroscopies, LUMO level calculated from the equation:
LUMO = HOMO + Eg; [g] Optical energy gap; [h] Glass transition temperature and decomposition temperature
(5% weight loss), n.d. means not detected.

2.3. Thermal and Electrochemical Properties

The thermal stabilities of the four materials were verified by thermogravimetric analy-
sis (TGA) and differential scanning calorimetry (DSC) under a nitrogen atmosphere. The
TGA and DSC results of the target compounds are shown in Figure S13, with detailed data
summarized in Table 1. All the materials presented high decomposition temperatures (Tds,
weight loss of 5%) and the Tds for the BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-
DMAC were 408, 419, 463 and 430 ◦C, respectively. The higher Tds of the BSQ-4MeCz
and BSQ-DMAC were attributed to the more planar structure of the BSQ unit. Then, DSC
measurements were employed to detect the glass transition temperatures (Tgs) of these
four emitters. Apparently, the Tgs with endothermic steps was observed at 137, 131 and
126 ◦C for BBI-4MeCz, BBI-DMAC and BSQ-DMAC, respectively, whereas no obvious Tg
was observed for BSQ-4MeCz. Generally, the outstanding thermal performance indicated
that all the as-synthesized materials were thermodynamically stable during the fabrication
process of the electroluminescent devices [31].

A photoelectron emission spectrometer was used to measure the frontier orbital
energy levels. The related atmospheric ultraviolet photoelectron spectroscopies are shown
in Figure S14 and the detailed data are listed in Table 1. The HOMOs were estimated
to be −5.87, −5.77, −5.93 and −5.72 eV for the BBI-4MeCz, BBI-DMAC, BSQ-4MeCz
and BSQ-DMAC, respectively. The shallower HOMO levels of the BBI-DMAC and BSQ-
DMAC can be ascribed to the stronger electron-donating ability of DMAC. Simultaneously,
the shallower HOMO energy was in favor of hole injection, especially for the BSQ-DMAC.
According to the value of the optical bandgap (Eg, calculated from the absorption edge), the
corresponding LUMOs were estimated as −3.14, −3.04, −3.17 and −2.96 eV, respectively.
Suitable orbital energy levels are a prerequisite for highly efficient electroluminescent devices.
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2.4. Photophysical Properties

The photophysical properties of the BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-
DMAC in toluene solution and spin-coating film were tested by ultraviolet-visible (UV-vis)
absorption and photoluminescence (PL) spectrometers. The related spectra are shown in
Figure 3 and the detailed parameters are listed in Table 1. With the same acceptor moiety,
analogous strong absorption characteristics were observed in the range of 390–450 nm for
the BSQ-4MeCz and BSQ-DMAC, which should be ascribed to the π-π* transitions of the
BSQ unit. Similarly, the BBI-4MeCz and BBI-DMAC also exhibited the same absorption
band, with BBI-Br at the long wavelength for the common acceptor, while the short-
wavelength absorption in the range of 300–370 nm for the BSQ-4MeCz and BBI-4MeCz
should be attributed to the carbazole group. It is also worth mentioning that no obvious ICT
character was observed, which is probably due to the twisted molecular structure (Figure 1).
The Egs were calculated from the absorption edge to be 2.73, 2.73, 2.76 and 2.76 eV for
the BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-DMAC, respectively, indicating their
potential to realize sky-blue emissions.
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For the PL spectra (Figure 3c,d), the emission peaks of the BSQ-4MeCz and BSQ-
DMAC were located at 474 nm (toluene solution), blue-shifted by approximately 8 nm
compared to that of the BBI-4MeCz and BBI-DMAC (482 and 481 nm), which were de-
rived from a more twisted structure. The unchanged PL peaks for the introduction of
electron-donating elements indicated the main control of the polycyclic fused amide frames.
In the film, the emission peaks of the BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-
DMAC were located at 512, 533, 482 and 517 nm. The shorter emission wavelength of
the BBI-4MeCz and BSQ-4MeCz can be ascribed to the weak electron-donating ability of
tetramethylcarbazole. Meanwhile, the small redshift seen with the BBI-4MeCz (30 nm)
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and BSQ-4MeCz (10 nm) in the solid state compared to that in toluene solution was also
attributed to the steric hindrance of the tetramethylcarbazole.

In addition, the PL properties of the four target materials and the acceptor moi-
eties were also tested in different-polarity solvents; the related PL spectra are shown in
Figure S15. Apparently, from low-polarity hexane to high-polarity acetonitrile, no obvious
redshift was observed for the BBI-4MeCz and BSQ-4MeCz, indicating the LE characteris-
tic in the excited state. However, an intense long-wavelength emission peak appeared in
high-polarity solvents for the BBI-DMAC and BSQ-DMAC, suggesting CT features in the
excited state. Besides this, the PLQYs in the solution conditions were detected to be 9.1%,
7.6%, 77.3% and 78.1% for the BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-DMAC,
respectively, indicating that a higher EL performance is expected with the BSQ-4MeCz and
BSQ-DMAC. The lower PLQYs for the BBI-4MeCz and BBI-DMAC were ascribed to the
structural relaxation of the BBI unit. Transient PL decay spectra exhibited single exponential
decay with a nanosecond lifetime in both toluene solution and thin film (Figure 4 and
Table 1), suggesting the conventional fluorescence properties of these four emitters. The
corresponding radiative rates (KF) were calculated, in which the BSQ-4MeCz possessed
the highest KF of 1.7× 108 s−1. Furthermore, the fluorescence and phosphorescence spectra
at 77 K of these four emitters were also tested. In general, the low temperature fluorescence
spectra exhibited hypochromatic shifts compared with those at room temperature, which
can be attributed to suppressed molecular relaxation [32]. As shown in Figure S16, the
PL spectra exhibited fine vibrational and structural bands, indicating the LE feature of all
the emitters, which is perhaps due to the emissions coming from the donor or acceptor
fragments.
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Figure 4. Transient PL decay spectra of the four emitters in (a) toluene solution and (b) non-doped
thin film formed by spin-coating.

2.5. Device Performance

Considering the above-mentioned properties, blue emission devices using mCP (1,3-
di(9H-carbazol-9-yl)benzene) as a host were fabricated with a configuration of ITO/TAPC
(30 nm)/TCTA (20 nm)/mCP: 10 wt% dopant (20 nm)/PPF (10 nm)/TmPyPB (40 nm)/LiF
(1 nm)/Al (100 nm). Here, ITO (indium tin oxide) and Al (aluminum) stand for an-
ode and cathode. TAPC (4,4′-cyclohexylidene-bis(N,N-bis(4-methylphenyl)benzenamine])
and TCTA (4,4′,4′′-tris(carbazol-9-yl)triphenylamine) are hole transporting and electron-
blocking materials, respectively. PPF (2,8-bis(diphenylphosphoryl)dibenzo[b,d]furan),
TmPyPB (1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene) and LiF (lithium fluoride) serve as hole-
blocking, electron transporting and electron injecting materials, respectively. By using
BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-DMAC as emitter dopants, four OLED
devices were obtained as devices A, B, C and D, respectively. The corresponding device
architecture and energy diagram, related chemical structures of the materials used in the
devices, current density-voltage-luminance (J-V-L) and EQE-luminance (EQE-L) character-
istics are presented in Figure 5 with the key EL data listed in Table 2. As a result, the EL
performance of the devices with BSQ-4MeCz and BSQ-DMAC as emitters were generally
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superior to those with BBI-4MeCz and BBI-DMAC in terms of EQE, emission peaks and
luminance, etc. This can probably be ascribed to the higher PLQY and large KF in the
BSQ-based emitters. Specifically, devices A and B achieved an EQEmax of 2.95% and 2.97%,
with the same emission peak of 494 nm, while the EQEmax of devices C and D was 4.13%
and 4.45%, with an emission peak of 488 nm (Figure 5c). Apparently, no emission peaks
other than those of the dopants were observed, demonstrating an effective energy transfer
from the host to the emitters. Since the BSQ-DMAC-based OLED devices achieved the
best EL performance, with a maximum luminance (Lmax) of 6042 cd m−2, maximum power
efficiency (PEmax) of 9.95 lm W−1 and maximum current efficiency (CEmax) of 9.50 cd A−1,
we further optimized the structure of this device by changing the dopant concentration.
Finally, the highest EQE of 4.94% was obtained with an emission peak of 492 nm and an
Lmax of 7761 cd m−2 (Figure S17 and Table S1).
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Table 2. EL performances of the fabricated devices.

Emitter
Von [a] λEL Lmax CE[b] PE[b] EQE[b] CIE[c]

[V] [nm] [cd m−2] [cd A−1] [lm W−1] [%] [x, y]

mCP: 10 wt% BBI-4MeCz 3.0 494 1703 7.54 7.88 2.95 (0.19, 0.40)
mCP: 10 wt% BBI-DMAC 3.2 494 2230 7.34 7.21 2.97 (0.18, 0.40)
mCP: 10 wt% BSQ-4MeCz 3.0 488 6187 8.58 8.90 4.13 (0.16, 0.31)
mCP: 10 wt% BSQ-DMAC 3.0 488 6042 9.50 9.95 4.45 (0.16, 0.32)

[a] Turn on voltage at 1 cd m−2; [b] maximum current efficiency (CE), power efficiency (PE), and external quantum
efficiency (EQE); [c] Commission Internationale de l’Eclairage (CIE) coordinates at 6 V.

3. Conclusion

In conclusion, we designed and synthesized a series of sky-blue emitters, namely
BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-DMAC based on novel polycyclic fused
amide acceptor units. They all possessed orthogonal configurations between the D/A and
π-spacers, forming a spatial steric effect. Moreover, the structure–property relationships
of these four materials were studied completely with quantum computation, thermal
analysis and photophysical characterization, and device performance was also assessed by
fabricating OLED devices. As a result, due to the higher PLQY and KF, the photophysical
properties and EL performance of the BSQ-based materials were generally superior to
those of the BBI-based compounds. Eventually, the BSQ-DMAC-based device exhibited
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the highest EQE of 4.94% and a maximum luminance of 7761 cd m−2, with an emission
peak of 492 nm. These findings demonstrate that polycyclic fused amide units can be a
suitable candidate for the construction of blue emission materials due to their intrinsic
features of a rigid planar structure and a high PLQY.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27165181/s1 [33], Figure S1: 1H-NMR spectrum of compound BSQ-Br in deuter-
ated CDCl3 solvent, Figure S2: 1H-NMR spectrum of compound BSQ-4MeCz in deuterated CDCl3
solvent, Figure S3: 13C-NMR spectrum of compound BSQ-4MeCz in deuterated CDCl3 solvent,
Figure S4: 1H-NMR spectrum of compound BSQ-DMAC in deuterated CDCl3 solvent, Figure S5:
13C-NMR spectrum of compound BSQ-DMAC in deuterated CDCl3 solvent, Figure S6: 1H-NMR
spectrum of compound BBI-4MeCz in deuterated CDCl3 solvent, Figure S7: 13C-NMR spectrum of
compound BBI-4MeCz in deuterated CDCl3 solvent, Figure S8: 1H-NMR spectrum of compound
BBI-DMAC in deuterated CDCl3 solvent, Figure S9: 13C-NMR spectrum of compound BBI-DMAC in
deuterated CDCl3 solvent, Figure S10: The optimized ground state geometries of the investigated
emitters, Figure S11: The natural transition orbitals (NTOs) distribution of S1 of the four emitters,
Figure S12: The natural transition orbitals (NTOs) distribution of T1 of the four emitters, Figure S13:
(a) TGA and (b) DSC curves of the as-synthesized materials, Figure S14: Atmospheric ultraviolet
photoelectron spectroscopies of (a) BBI-4MeCz, (b) BBI-DMAC, (c) BSQ-4MeCz and (d) BSQ-DMAC,
Figure S15: The PL spectra of (a) BSQ-4MeCz, (b) BSQ-DMAC, (d) BBI-4MeCz, (e) BBI-DMAC, (c)
BSQ-Br and (f) BBI-Br in different solvents, Figure S16: The fluorescence and phosphorescence PL
spectra of BSQ-4MeCz, BSQ-DMAC, BBI-4MeCz and BBI-DMAC at 77K, Figure S17: (a) EQE-L and
(b) J-V-L characteristics of the optimized device based on BSQ-DMAC. (c) EL spectra of the optimized
device based on BSQ-DMAC in different voltages. Table S1: The key data of optimized blue devices
based on BSQ-DMAC.
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