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ABSTRACT

The neural structures that support the retention of memories over time has been a subject of intense
research in cognitive neuroscience. However, recently much attention has turned to pattern separation,
the putative process by which memories are stored as unique representations that are resistant to con-
fusion. It remains unclear, however, to what extent these two processes can be neurally dissociated. The
trial-unique delayed nonmatching-to-location (TUNL) task was developed to assess spatial working
memory and pattern separation function using trial-unique locations on a touch-sensitive screen (Talpos,
McTighe, Dias, Saksida, & Bussey, 2010). Using this task, Talpos et al. (2010) showed that lesions of the
hippocampus led to both impairments with a 6 s delay, and impairments in pattern separation. The pres-
ent study shows that lesions of the medial prefrontal cortex lead to a different pattern of effects: impair-
ment at the same, 6 s delay, but no hint of impairment in pattern separation. In addition, rats with medial
prefrontal lesions were more susceptible to interference in this task. When compared with previously
published results, these data show that whereas the prefrontal cortex and hippocampus likely interact
in the service of working memory across a delay, only the hippocampus and not the medial prefrontal

cortex is essential for pattern separation.

© 2013 The authors. Published by Elsevier Inc. Open access under CCRY license

1. Introduction

The neural structures that support the retention of memories
over time has been a subject of intense research in cognitive neuro-
science. Recently, however, researchers have become increasingly
interested in the putative process of pattern separation, through
which memories are stored as unique representations that are resis-
tant to confusion (Clelland et al., 2009; Gilbert, Kesner, & DeCoteau,
1998; Yassa & Stark, 2011). It remains unclear, however, to what ex-
tent these two processes can be neurally dissociated. To achieve this
aim, both memory across a delay and pattern separation must be as-
sessed using the same procedure. There is some very intriguing evi-
dence using such an approach. Kesner and colleagues, for example,
provided evidence that hippocampus lesions can impair both mem-
ory across a delay, and pattern separation (Gilbert et al., 1998; Kes-
ner, Lee, & Gilbert, 2004; Lee & Kesner, 2002, 2003). However more
selective dentate gyrus lesions could impair memory in a separa-
tion-dependent manner (Gilbert, Kesner, & Lee, 2001); CA3 lesions,
in contrast, did not produce the same separation-dependent deficit,
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but rather impaired memory at all separations, and at the shortest
delays (Gilbert & Kesner, 2006).

Subsequent studies using a number of different approaches
have provided further evidence that spatial pattern separation in-
volves cells within the dentate gyrus (Clelland et al., 2009; Good-
rich-Hunsaker, Hunsaker, & Kesner, 2008; Kesner, 2007; McHugh
et al., 2007). In contrast, the structure most often associated with
the process of working memory - “holding information on-line”
across a delay interval - is the prefrontal cortex (PFC) (Brown &
Bowman, 2002; Courtney, Petit, Haxby, & Ungerleider, 1998). In
the present study, we tested the hypothesis that whereas the hip-
pocampus is important for both memory across a short delay and
pattern separation (Kesner et al., 2004; Talpos et al., 2010), the
PFC is likely to be important only for the former, with spatial pat-
tern separation the selective domain of the dentate gyrus. To test
this idea, we used the trial-unique delayed nonmatching-to-
location (TUNL) task, developed to assess spatial working memory
and pattern separation function using trial-unique locations on a
touch-sensitive screen (Talpos et al., 2010). These authors exam-
ined task performance after excitotoxic lesions of the hippocampus
on performance of TUNL under conditions in which either delay, or
spatial separation, was varied parametrically. Hippocampal lesions
had no effect at minimal delays and short separations, but signifi-
cantly impaired performance when the delay period was increased,
or the separation decreased. In the present study the effects of
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medial prefrontal cortex (mPFC) lesions were examined under
these same conditions. We also tested the additional hypothesis
that mPFC lesions would increase susceptibility to interference
(Badre & Wagner, 2005; Jonides & Nee, 2006; Postle, Brush, & Nick,
2004).

2. General materials and methods
2.1. Subjects

Male 250-275 g Lister Hooded rats were obtained from Harlan,
UK. Rats were group housed on a reverse light-dark schedule
(lights on 7 pm-7 am) and tested during the dark phase. A re-
stricted diet was employed to maintain rats at no less than 85%
of free-feeding weight, with water available ad libitum. Rats were
habituated to the facility and handling for one week prior to any
behavioural training. This experiment was conducted in accor-
dance with the United Kingdom Animals (Scientific Procedures)
Act, 1986.

2.2. Apparatus

Med Associates (Vermont, USA) rat chambers were similar to
those used in previous touchscreen studies (Talpos et al., 2010).
The inner chamber is 30 cm wide, 25 cm deep, and 25 cm high con-
sisting of a metal frame with clear Perspex walls. The floor con-
sisted of stainless steel bars spaced 1 cm apart and 3 cm above a
tray lined with filter paper. The touchscreen monitors register
touch by infrared detectors (Craft Data Ltd., Bucks, UK; ELO Touch-
systems, Wiltshire, UK; Displaze, Aylesbury, UK) interfaced by ELO
touchscreen software (ELO Touchsystems Inc). The touchscreen
monitor (4 cm x 29 cm viewable area, Craft Data Ltd., Chesham,
UK) was covered by a black Perspex mask to create 14 active re-
sponse windows 2 cm by 2 cm, separated by 0.9 cm and raised
16.5cm from the floor. A spring-hinged ‘shelf was attached
16 cm above the grid floor. This shelf was at a 90° angle to the
mask and had a depth of 6 cm with a width of 20.5 cm. Masks were
attached to the screen leaving a gap of 5 mm between the mask
and monitor to ensure that it would not trigger the touchscreen
area. On the wall opposite from the monitor was a food magazine
(ENV-200R2M) equipped with a 3 W light and infrared detector to
register nose pokes (Med Associates Inc., Vermont, USA). The mag-
azine was serviced by a pellet dispenser (Med Assoc. ENV-203-45)
delivering 45 mg 5-TUL AIN-76A dustless pellets (TestDiet, Indiana,
USA). Above the food magazine was a house light (3 W, Med Assoc.
ENV-215M), and tone generator (Med Assoc. ENV-223HAM). Each
operant box is housed within a sound-attenuating chamber
equipped with a 28 V DC fan. The boxes and monitors were con-
trolled using IBM Netvista and Dell Optiplex computers running
custom programs written in Microsoft Visual Basic 6.0.

2.3. Behavioural methods

The TUNL task consists of two phases: sample and choice. At the
sample phase one location within a grid of fourteen squares is illu-
minated. The rat must respond to the illuminated sample location,
then return to the rear food magazine (sample is rewarded in 33%
of trials) to initiate the choice phase. During the choice phase the
sample square and a novel square are illuminated, and the rat must
correctly non-match by selecting the novel square (Fig. 1). A delay
can be placed between the sample and choice phases to tax work-
ing memory.

As previous discussions of the touchscreen have highlighted, an
advantage of this method over two-lever tests such as in delayed
non-matching to position (DNMTP) is that stimulus options are
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Fig. 1. The TUNL task. Images adapted from Talpos et al. (2010). A large separation
condition is shown.

not limited to merely two locations (Talpos, Dias, Bussey, & Saks-
ida, 2008). Although the TUNL task is similar to DNMTP in that
two locations are used during a given trial, any of the thirteen
alternative locations can serve as the correct stimulus on choice.
Thus, unlike in DNMTP, the animal cannot know, during the delay,
which location will be correct on choice - and therefore cannot ori-
ent toward it. Indeed, systematic video analysis of TUNL showed
little evidence for performance-enhancing mediating behaviours
(Talpos et al., 2010). The use of multiple locations confers an addi-
tional advantage; namely, pairs of locations can be chosen which
are either close together, far apart, or somewhere in between. This
allows assessment of pattern separation alongside the assessment
of memory across a delay.

Pretraining followed a similar procedure to that previously re-
ported (Talpos et al.,, 2010). Session length was 80 trials (sam-
ple + choice) or 1h, with a 20s intertrial interval (ITI) and no
programmed delay between sample and choice phase. The trial
structure of TUNL is described in Table 1.

Rats were trained to stable above-chance performance across
separations and the 14 best performers were taken forward to
the task proper. Rats were baselined pre-surgery on three condi-
tions presented in separate sessions (two blocks of three sessions
per condition): large separation, no (that is, minimum possible) de-
lay (LND); large separation with 6-s delay (LWD); and small sepa-
ration, no delay (SND). Large separation was defined as five
locations as horizontal distance between active choice locations.
Small separation was defined as two locations as horizontal dis-
tance between active choice locations. Each condition was given
as a session of 40 trials in 1 h, cycling through the three conditions
across days and punctuated with sessions of all separations and no
programmed delay (as during acquisition) to minimise the adop-
tion of possible mediating behaviours. Rats were assigned to sham
and lesion groups based on baseline performance. Post surgery
testing was conducted similarly to pre-surgery baselining. Initial
short sessions of 10 and 20 sessions were used to ensure all ani-
mals were ready to complete sessions, before cycling though full
sessions of all three conditions.

After exploration of LND, LWD, and SND, an interference condi-
tion was also tested to investigate whether early trials could inter-
fere with later trials in a given session. In spatial working memory

Table 1
Trial structure of TUNL.

House light and magazine light on
Nose-poke to magazine — Magazine light off, sample location illuminated
Nose-poke to sample location —»  33.3% of trials: tone, magazine light 1s,
reward
All trials: start delay timer
Delay timer end — Magazine light illuminated
Nose-poke to magazine — Choice phase locations illuminated
Incorrect response — House light off for 5 s followed by correction trial
Correct response — Tone, magazine light on, reward delivered
Reward collected — Magazine light off, ITI begins
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tasks massed presentation of trials (increasing the number of trials
and decreasing the interval between trials) has been shown to re-
sult in proactive interference (Cohen, Reid, & Chew, 1994; Hoffman
& Maki, 1986). Thus, in the interference condition the sessions
were 60 trials or 1h long, large separation during choice only,
but without ITI or delay.

2.4. Surgery

The mPFC lesions generally followed the protocol established by
Birrell and Brown (2000). Lesions were centred on prelimbic and
infralimbic cortex. Rats were anaesthetized with 5% isoflurane
and maintained at 2% during surgery (IsoFlo isoflurane, Abbott
Labs, UK administered via VetTech Solutions Ltd. apparatus, UK).
They were positioned in a stereotaxic frame (David Kopf Instru-
ments) fitted with atraumatic ear bars (Kopf 955) with nose bar
set to+5 mm. Bilateral injections (four in total) of 0.2 pL of
0.06 M ibotenic acid or vehicle were made at AP+3.5mm;
L+0.6 mm; V—-52mm and AP +2.5mm; L+ 0.6 mm; V-5 mm
relative to skull surface bregma using a custom infusing line
connected to a 10 pL Hamilton syringe and Harvard Instruments
(Holliston, Massachusetts, USA) ‘Pump 11’ infusion pump. One
sham animal was culled perioperatively due to a poor reaction to
the anaesthesia. Subjects recovered for at least one week with ad
libitum food and water prior to behavioural testing.

2.5. Histology

Rats were terminally anaesthetized with sodium pentobarbi-
tone (Dolethal, Vetoquinol, UK) and perfused transcardially with
0.01 M PBS followed by formaldehyde solution (4% paraformalde-
hyde in PBS). Brains were removed and post-fixed in formaldehyde
solution. Prior to sectioning on a freezing microtome brains were
transferred into 20% sucrose in 0.01 M PBS and left overnight.
Coronal sections (60 pm) were stained with NeuN and lesion loca-
tions were mapped onto standardised sections of the rat brain
(Paxinos & Watson, 2007).

Lesions were centred on prelimbic cortex, with damage extend-
ing into infralimbic cortex and overlying anterior cingulate (Figs. 2
and 3). One lesioned animal was excluded from data analysis due
to an incomplete lesion.

3. Results

There was no significant effect of lesion in the LND condition
(Fig. 4). Performance was stable across three blocks of testing
(three sessions/block repeated measures ANOVA F;g)=2.44,
p =0.22) with no effect of lesion on percent correct Fg)=0.01,
p=093 and no lesion x session interaction Fgg)=0.29,
p=0.75).mPFC impaired accuracy in the LWD condition (Fig. 5).
Performance was stable across three blocks of testing (three ses-
sions/block repeated measures ANOVA F314)=2.77, p=0.097)
with a significant effect of lesion on overall mean percent correct
(Fis)=6.71, p=0.021) and no lesion x session interaction
(F(2'14) =1.75, p= 022)

No significant difference was seen in performance between
sham and lesion in the SND condition (Fig. 6). Performance was
stable across three blocks of testing (three sessions/block repeated
measures ANOVA F,14y=1.11, p=0.36) with no significant effect
of lesion on mean percent correct Fggy=1.55 p=0.25) or
lesion x session interaction (F,,14)=0.086, p = 0.92).

These results suggested that mPFC lesions have no effect on pat-
tern separation ability. To test this idea stringently, rats were
tested on still smaller separations. Decreasing separation led to
increasing difficulty, but equally so for both groups (Fig. 7).

Fig. 2. mPFC lesions in the present study. Damage common to all subjects is shown
in black. The maximum extent of any damage is shown by the black line. Coronal
sections are taken at 3.72 mm, 2.76 mm, and 1.08 mm anterior to bregma. Images
adapted from Paxinos and Watson (2007).

Fig. 3. Composite image of sham on left and lesion on right.

Repeated measures ANOVA showed a significant effect of separa-
tion on accuracy Fgz20)=92.5, p = <0.001), but no main effect of le-
sion F,10=0.54, p=0.48) or lesion x separation interaction
Fi220y=1.03, p=0.37). While performance decreased significantly
with smaller separations, accuracy was still greater than chance
when choice locations were adjacent (sham ) = 2.5, p = 0.046; le-
sion f(5y=2.95, p = 0.032).
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Fig. 4. Large separation, minimal delay condition (LND: a horizontal distance of five
locations between active choice locations). There was no effect of lesion on accuracy
in this condition. Data presented as means + 1SEM.
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Fig. 5. Large separation with delay condition (LND: a horizontal distance of five
locations between active choice locations and a 6-s programmed delay). There was

a significant effect of lesion on accuracy in this condition. Data presented as
means + 1SEM. * = p < 0.05.
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Fig. 6. Small separation minimal delay condition (SND: a horizontal distance of two
locations between active choice locations). There was no effect of lesion on accuracy
in this condition. Data presented as means + 1SEM.

Interference was then increased by removing the inter-trial
interval (ITI), while maintaining minimal delay. An overall impair-
ment was observed in this high interference condition, with le-
sioned animals significantly less accurate than shams (Fig. 8).
This impairment was obtained in the minimal delay condition un-
der which mPFC were significantly impaired, when a 20s ITI was
used. Performance was stable across three blocks of testing (three
sessions/block repeated measures ANOVA F12)=1.77, p=0.21)
with a significant effect of lesion on overall mean percent correct
(Fis)=7.92, p=0.043) and no lesion x session interaction
(F2,12) = 1.64, p = 0.55). There was no significant difference in per-
formance early versus late in the session (paired t-tests sham
t=0.038, p = 0.73; lesion t=0.027, p = 0.80).
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Accuracy at Smaller Separations
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Fig. 7. Accuracy at smaller separations. As both groups completed the SND
condition at a relatively high level of accuracy, a separation challenge was
conducted where one block was given of each smaller separation (sessions cycled
through separations, punctuated with sessions of all separations). While smaller
separations were more difficult, there was no difference between sham and lesion.
Separation shows the number of horizontal locations in between the active choice
locations (0 being adjacent). Data presented as block means + 1SEM.

Interference Condition
100,

90

80

—

Percent Correct

70

60

50
Sham Lesion

Fig. 8. Interference condition. There was a significant effect of lesion on accuracy in
this condition. Data presented as means + 1SEM. * = p < 0.05.

There was no effect of lesion on reaction times or magazine la-
tency in any condition (Tables 2-4).

4. Discussion

The major finding of the present study was that prefrontal cor-
tex lesions impaired memory across a delay in TUNL, while com-
pletely sparing spatial pattern separation. In addition, mPFC
lesions impaired performance under conditions of increased inter-
ference (no ITI) under minimal delay conditions, but not when a
long (20s) ITI was used. These data are consistent with previous
investigations of prefrontal cortex function and working memory
in humans and non-human primates (Castner, Goldman-Rakic, &
Williams, 2004) and similar lesions in rats (Delatour & Gisquet-
Verrier, 1996; Sloan, Good, & Dunnett, 2006), and with the sugges-
tion that PFC lesions can increase susceptibility to interference in
memory (Granon, Vidal, Thinus-Blanc, Changeux, & Poucet, 1994,
Ragozzino & Rozman, 2007). In the present study, PFC lesions led
to impairments at a long, but not a short delay. Although others
have found delay-dependent impairments after lesions of the PFC
(Sloan et al., 2006b), Others report delay-independent impairments
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Table 2

Mean sample reaction time across conditions + 1SEM. Sample reaction time is the
duration between initiating a trial and responding to the sample location. Reaction
times were log transformed prior to analysis. No significant difference was seen
between sham and lesion in any condition.

Condition Mean sample reaction time
Sham Lesion Significance
LND 3.36+0.21 3.84+0.89 t=0.58 p=0.82
LWD 3.32+044 3.32+0.13 t=0.20 p=0.85
SND 3.16+0.61 3.69+0.24 t=0.86 p=042
Interference 423+1.22 6.4+238 t=0.97 p=0.37
Table 3

Mean choice reaction time across conditions + 1SEM. Choice reaction time is the time
taken to select a location during the choice phase. Reaction times were log
transformed prior to analysis. No significant difference was seen between sham and
lesion in any condition.

Condition Mean choice reaction time
Sham Lesion Significance
LND 4.01 +£0.46 3.50+0.23 t=0.74 p=0.48
LWD 3.37+0.56 3.40£0.45 t=0.20 p=0.85
SND 437 +0.30 415+0.12 t=0.69 p=0.52
Interference 3.87+0.82 4.68 £0.29 t=0.44 p=0.67
Table 4

Mean magazine latency across conditions + 1SEM. Magazine latency is the duration
between selecting a choice location and collecting the reward. Latencies were log
transformed prior to analysis. No significant difference was seen between sham and
lesion in any condition.

Condition Mean magazine latency

Sham Lesion Significance
LND 1.27£0.12 1.34+0.15 t=0.47 p=0.66
LWD 1.34+0.18 1.07 £0.07 t=1.08 p=032
SND 1.07 £0.12 1.11 £0.06 t=0.54 p=0.61
Interference 1.18+0.17 1.10 £ 0.06 t=0.22 p=0.83

(Porter et al., 2000; Chudasama and Muir (1997); for review see
Dudchenko, Talpos, Young, and Baxter (2012). One reason for this
discrepancy could be differences between the lesions in these var-
ious studies. However, another salient difference is the testing
method; locations in TUNL are relatively trial-unique compared
to DNMTP in a 2-lever operant chamber. Indeed, the repetition of
the same two locations across all trials in DNMTP likely increases
interference, in some cases making the task more sensitive to
PFC damage, consistent with the increased susceptibility to inter-
ference demonstrated in the present study. Thus TUNL may more
readily enable detection of delay-dependent impairment following
at least some experimental manipulations.

Particularly striking were the clear contrasts — but also the
similarities — between the pattern of impairment following mPFC
lesions and that following hippocampal dysfunction. Both prefron-
tal cortex lesions and hippocampal lesions produced significant
impairments in the presence of a 6s delay (Fig. 9). However,
whereas lesions of the hippocampus impaired pattern separation
(as shown by impairments at small separations and not large ones),
mPFC lesions in the present study had no effect on pattern separa-
tion at minimal delay, even when separations were made so small
as to bring performance well down from ceiling. This pattern sug-
gest that whereas both the hippocampus and mPFC are essential
for retention of memories across a short delay, and likely function-
ally interact in this regard, only the hippocampus is necessary for
spatial pattern separation. In addition, the finding of no impair-
ment in difficult pattern separation conditions shows that PFC
lesions do not simply produce impairments in any condition in
which the task is made more difficult.

Large Separation, With Delay
100

95
90

85

80

75

Percent Correct

70 i
65 ‘
60 ‘ i

\
HPC Sham PFC Lesion
Treatment

ss .

HPC Lesion

L e

FC Shal

Fig. 9. PFC and HPC lesions on LWD condition. HPC lesion data adapted from Talpos
et al. (2010).

Other studies have reported similar dissociations between PFC
and hippocampus lesions on tests of memory. For example, inacti-
vation of the mPFC (prelimbic and infralimbic) or dorsal hippocam-
pus on a spatial delayed-alternation task showed that while both
manipulations resulted in delay-dependent impairments in accu-
racy, mPFC lesions did not impair reference memory or choice la-
tency, which was impaired following hippocampal inactivation
(Yoon, Okada, Jung, & Kim, 2008). To investigate the nature of
the prefrontal-hippocampal interactions that underlie working
memory, Wang and Cai (2006) investigated the effects of unilateral
or bilateral mPFC inactivation (prelimbic), unilateral or bilateral
hippocampus inactivation (ventral), or a crossed ‘disconnection’
preparation involving unilateral inactivation of the hippocampus
along with contralateral inactivation of mPFC. Behavioural probes
on a delayed spatial alternation task demonstrated that unilateral
inactivation of either structure did not impair performance, bilat-
eral inactivation of either structure impaired performance, and
the unilateral-contralateral inactivation impaired performance.
Earlier Seamans, Floresco, and Phillips (1998) had used a more sub-
tle disconnection manipulation of PFC-hippocampal circuitry,
showing that unilateral injection of a dopamine D1 antagonist into
mPFC combined with contralateral injection of lidocaine into the
hippocampus impaired memory in a radial arm maze. These stud-
ies provide compelling evidence for the putative interaction of
mPFC and hippocampus in the service of memory.

Such prefrontal cortex-hippocampus interaction may be of par-
ticular relevance to schizophrenia, as it has been widely acknowl-
edged that structural and functional changes in both the
hippocampus and prefrontal cortex play an important role in the
pathophysiology of the disorder. Furthermore, schizophrenic
brains show altered connectivity between hippocampus and pre-
frontal cortex (Meyer-Lindenberg et al., 2005), and impaired hip-
pocampal-prefrontal synchrony during performance on a working
memory task has been observed in a mouse with a microdeletion
on human chromosome 22 (22q11.2), a genetic risk factor for
schizophrenia (Sigurdsson, Stark, Karayiorgou, Gogos, & Gordon,
2010). This finding mirrors human data where abnormal coupling
is seen between the prefrontal cortex and hippocampus in patients
with schizophrenia and healthy carriers of rs1344706 risk geno-
types (Esslinger et al., 2009). Thus the TUNL task, with its ability
to assess working memory and pattern separation within the same
task, and indeed demonstrate dissociations between the two, may
be a particularly useful paradigm for studying cognition in rodent
models of schizophrenia.

Dissociation in the pattern separation condition is also consis-
tent with previous literature. A number of studies have linked the
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hippocampus, and dentate gyrus in particular, with pattern separa-
tion (Clelland et al., 2009; Creer, Romberg, Saksida, van Praag, &
Bussey, 2010; Gilbert et al., 1998, 2001; Yassa & Stark, 2011). The
present TUNL data are supported by a similar touchscreen study
that demonstrated that lesions of the dorsal hippocampus impaired
spatial discrimination when the locations were close together, but
not far apart (McTighe, Mar, Romberg, Bussey, & Saksida, 2009),
indicating an impairment in pattern separation. However to our
knowledge this is the first time PFC lesions have been assessed on
pattern separation.

mPFC lesions in the present study also increased susceptibility
to interference. Development and investigation of the interference
condition was originally inspired by theories of proactive interfer-
ence: the memory of earlier events interfering with memory of
more recent events (Postman & Underwood, 1973). In a radial
arm maze proactive interference has been described as ‘intertrial’
when resulting from a previous trial, or ‘intratrial’ when resulting
from visiting other arms within a trial (Cohen, Sturdy, & Hicks,
1996). Intertrial proactive interference has been observed in both
radial arm and alternation tasks when trials are massed (Dale &
Roberts, 1986; Grant, 1981; Roberts & Dale, 1981). In particular,
lowering the ITI decreased performance, which was ameliorated
with a longer ITI (Cohen et al., 1994). These intertrial effects have
been described as resulting from a failure in temporal discrimina-
tion: in the radial arm maze this manifests as confusion over
whether arms to be visited in later choices were visited earlier in
the current trial, or in previous trials (Roberts & Dale, 1981). Intra-
trial interference has been demonstrated in the T-maze delayed
alternation task by adding forced pre-study runs (Gordon &
Feldman, 1978; Gordon & Schlesinger, 1976; Grant, 1980). An
analogous task in the radial arm maze showed impaired
performance following forced visits to arms in a pre-study phase
(Hoffman & Maki, 1986), with similar effects in a subsequent study
(Cohen et al., 1996).

Human studies of working memory function have demon-
strated differences in item-specific and item-nonspecific proactive
interference (PI). Item-specific proactive interference occurs when
a negative probe matches an exemplar from a previous trial
(Monsell, 1978). Item-specific PI has been linked to longer reaction
times and the memory probe/response epoch in Brodmann'’s area
45 of the left inferior prefrontal cortex (Jonides, Badre, Curtis,
Thompson-Schill, & Smith, 2002; Nelson, Reuter-Lorenz, Sylvester,
Jonides, & Smith, 2003; Postle et al., 2004). Item-nonspecific PI re-
sults from the accumulation of irrelevant memory from previous
trials—and thus related to processes of forgetting in short-term
and working memory (Bunting, 2006; May, Hasher, & Kane,
1999; Wickens, Born, & Allen, 1963). Studies to examine the neural
basis of item-nonspecific PI suggest that similar mechanisms
underlie both types of interference. Postle et al. (2004) found that
item-nonspecific effects were also linked to probe epochs in left
Brodmann’s area 45. Further studies have supported a key role of
the left inferior frontal gyrus in proactive interference ((Badre &
Wagner, 2005; Mecklinger, Weber, Gunter, & Engle, 2003) re-
viewed in Badre and Wagner (2007) and Jonides and Nee (2006)).

Results from the present study are consistent with these find-
ings. However it is worth noting that while mPFC did result in im-
paired performance of the interference condition, there was no
difference in accuracy early versus late in the session, indicating
that there was not a significant cumulative effect of early trials
interfering with later trials. This finding does not, however, dis-
count an immediate effect of intertrial interference, as the immedi-
ately preceding trials could interfere with the current choice and
result in consistently poorer performance. It is also worth noting
that another way the lack of an ITI may have resulted in an in-
creased cognitive demand, leading to increased dependence on
PFC, may have been the lack of an obvious ITI to cue whether the

phase of the trial was a sample or a choice. The resulting ambiguity
could conceivably render the task more susceptible to dysfunction
of the mPFC. However it is worth noting that performance of con-
trol animals in the minimal delay conditions with and without ITI
were very similar; thus the no ITI condition does not appear to be
substantially more difficult for normal animals. Our final caveat
regarding our findings is that the sample sizes were relatively
small, resulting is relatively low power and effects that were,
although significant, not highly so. We would recommend that fu-
ture studies using this paradigm use higher group numbers to en-
sure enough power to detect differences, especially when using
more subtle perturbations of the system than the lesion approach
used here.

5. Conclusion

Combined with the results of previous work by Talpos et al.
(2010), the current study demonstrates both similar, and different
contributions of prefrontal cortex and the hippocampus to working
memory and pattern separation. While prefrontal cortex is neces-
sary when working memory load is increased, it is not necessary
even for the most difficult pattern separation conditions. These
findings also demonstrate the utility of the TUNL paradigm for re-
search into the functions of prefrontal-hippocampal circuitry, and
rodent models of disorders of cognition such as Alzheimer’s
disease (Braak & Braak, 1997; Dickerson & Eichenbaum, 2010;
Vargha-Khadem et al.,, 1997). Furthermore as PFC-hippocampal
interaction is abnormal in schizophrenia, and both working mem-
ory and pattern separation impairments are linked to schizophre-
nia (reviewed in Goldman-Rakic (1999), Kuperberg and Heckers
(2000), and Tamminga, Stan, and Wagner (2010)), the TUNL task
may prove to be a particularly valuable tool for preclinical research
into schizophrenia.
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