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Abstract

The available medications for the treatment of major depressive disorder have limitations, particularly their limited efficacy,

delayed therapeutic effects, and the side effects associated with treatment. These issues highlight the need for better

therapeutic agents that provide more efficacious and faster effects for the management of this disorder. Ketamine, an

N-methyl-D-aspartate receptor antagonist, is the prototype for novel glutamate-based antidepressants that has been

shown to cause a rapid and sustained antidepressant effect even in severe refractory depressive patients. Considering the

importance of these findings, several studies have been conducted to elucidate the molecular targets for ketamine’s effect.

In addition, efforts are under way to characterize ketamine-like drugs. This review focuses particularly on evidence that

endogenous glutamatergic neuromodulators may be able to modulate mood and to elicit fast antidepressant responses.

Among these molecules, agmatine and creatine stand out as those with more published evidence of similarities with keta-

mine, but guanosine and ascorbic acid have also provided promising results. The possibility that these neuromodulators and

ketamine have common neurobiological mechanisms, mainly the ability to activate mechanistic target of rapamycin and brain-

derived neurotrophic factor signaling, and synthesis of synaptic proteins in the prefrontal cortex and/or hippocampus is

presented and discussed.
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Introduction

Major depressive disorder (MDD) is a common and
chronic neuropsychiatric condition, characterized by
affective and physiological impairments that cause a pro-
found impact on the health of the affected individuals
worldwide and a great economic burden.1 The World
Health Organization estimates that more than 300 million
individuals are affected by MDD at present, and the
number of individuals affected by this disorder increased
by almost 20% in the last 10 years.2 Given this scenario,
MDD is now the leading cause of disability worldwide.

Despite the high prevalence of MDD, and the
advances obtained in the last years in the comprehension
of the neurobiological basis of this disorder, its treatment
still represents a challenge. The limitations of the
currently available antidepressants are related to their
limited efficacy (only approximately 50% of the patients
fail to achieve remission), the delayed therapeutic effects

and a great number of adverse/side effects, which includes
headaches, constipation, weight changes, and mainly
sexual dysfunction.1,3,4 These limitations are particularly
problematic for patients with elevated risk for suicide.
Noteworthy, it is estimated that up to 50% of the
800,000 suicides that occur per year worldwide are asso-
ciated with MDD, and patients affected by this disorder
are almost 20-fold more likely to die by suicide than the
general population.1,2,5 Therefore, appropriate and
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effective treatments are necessary to be established for a
better management of this disorder. The most promising
therapeutic strategy for this challenge emerged at the
beginning of the 21st century, when Berman et al. demon-
strated for the first time that the N-methyl-D-aspartate
(NMDA) receptor antagonist ketamine caused fast and
long-lasting antidepressant effects.6 This study represents
the onset of a series of other studies that aimed at inves-
tigating the ability of ketamine to provide fast antidepres-
sant responses, even in refractory patients, as well as
those that have been focused on the investigation of the
mechanisms underlying the fast antidepressant responses
of ketamine.7–11 Despite the promising effects of keta-
mine, its prolonged use has some limitations, mainly
related to side effects and the possibility of neurotoxic
effects upon chronic use. In addition to these drawbacks
associated with ketamine’s pharmacological/toxicological
properties, the oral bioavailability of ketamine is slow.12

Thereby, ketamine is generally administered by intraven-
ous route in hospitalized patients.13

Novel drugs that may afford fast antidepressant
responses have been extensively investigated. Here, we
provide a brief history and overview of the development
of antidepressant drugs, the discovery of ketamine, and
novel targets for fast antidepressant responses, particu-
larly the potential role of endogenous neuromodulators.

Beyond Monoamine-Based Therapies

The first hypothesis formulated to explain the neurobiol-
ogy of MDD postulated that depressive symptoms occur
as a consequence of reduced levels of monoamines in the
synaptic cleft.14 This assumption was based on serendip-
itous discoveries. Reserpine, an antihypertensive drug that
causes noradrenaline depletion, was reported to cause
depressive symptoms.15,16 In parallel to this finding, the
role of monoamines in MDD was further supported by
discovery of the first antidepressant agents, tricyclic anti-
depressants (TCAs) and monoamine oxidase inhibitors
(MAOIs), which have robust effects on monoaminergic
transmission.1 TCAs such as imipramine act by inhibiting
the serotonin and noradrenaline reuptake, while MAOIs
such as iproniazid inhibit MAO, an enzyme responsible
for catabolizing the monoamines serotonin, noradren-
aline, and dopamine. These events increase monoamine
levels in the synaptic cleft, ultimately resulting in mood
improvement in patients with MDD generally three to
four weeks after the onset of the treatment.1,17,18 The dis-
covery of the mechanisms of imipramine and iproniazid
was a crucial breakthrough for the development of mono-
aminergic hypothesis of MDD, which initially postulated
that MDD could be due to low levels of noradrenaline in
the synaptic cleft.14,19 This hypothesis was extended to
acknowledge that depressive symptoms may also be
related to a deficiency of serotonin in the synaptic cleft

in central nervous system (CNS).20,21 These theories
were reformulated, and subsequently, the monoaminergic
theory was postulated suggesting that patients with MDD
present a reduction of monoaminergic neurotransmitters
(basically serotonin, noradrenaline, and dopamine) in the
synaptic cleft.22

Fluoxetine, a selective serotonin reuptake inhibitors
(SSRI) was discovered in 1984 in the Eli Lilly pharma-
ceutical company and went on sale in 1988 after some
clinical reports confirming its efficacy in the MDD,
along with the advantage of having fewer adverse/side
effects when compared to TCAs and MAOIs.23 In view
of the growing need for agents to treat MDD and
considering fluoxetine as prototype drug, other SSRIs
were developed, but the delayed therapeutic effect is a
key limitation of all of these drugs.

Although monoamine-based antidepressant agents
reestablish monoamine levels within a few hours after
administration, their therapeutic response only occurs
lately, rendering the monoaminergic hypothesis of MDD
overly simplistic.1,3,24 It has recently been reported that
serotonin may be co-released with glutamate in serotoner-
gic neurons, and antidepressant agents appear to affect
this mechanism.25 This event is especially pronounced
within the raphe nuclei, but not restricted to them.
Particularly, acute administration of SSRIs blocks the
serotonin transporter, increasing extracellular serotonin
levels, which results in the activation of serotonin-1A
autoreceptors (5-HT1A). As a consequence, the release of
serotonin and glutamate is decreased in nerve terminals on
the presynaptic neuron.26,27 When autoreceptors desensi-
tize, approximately two to three weeks after the onset of
SSRIs intake, firing rates are restored, reestablishing the
glutamatergic component.28 Interestingly, the restoration
of adequate synaptic levels of glutamate may contribute to
the strengthening of excitatory synapses29 and may result
in antidepressant responses.25

According to the assumption that the monoaminergic
system does not fully explain the pathophysiology of
MDD and considering that the administration of
NMDA receptor antagonists produces an antidepres-
sant-like effect in rodents,30 in 1999, Skolnick proposed
that the antidepressants for the new millennium would be
based on the glutamatergic system modulation.31 At the
beginning of 2000, Berman et al. published a ground-
breaking study, which for the first time showed that it
was possible to obtain fast (within 4 h) and long-lasting
(for up to three days) antidepressant effects.6 Following
these findings, the rapid and efficacious antidepressant
actions of ketamine were confirmed in a larger double-
blind, placebo-controlled study by Zarate et al. that
demonstrated a single subanesthetic dose of ketamine
produced improvement of depressive symptoms in refrac-
tory depressive patients.7 This effect was observed within
110min and was sustained for up to seven days in most of
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the patients. A great body of clinical evidence32–34 and
experimental studies8,9,11,35 have demonstrated the rapid,
robust, and sustained antidepressant-like effect elicited by
ketamine, largely erasing any doubts on the antidepres-
sant actions of this compound. The pronounced and
extremely rapid antidepressant effect of ketamine con-
trasted with classical monoamine-based pharmacother-
apy, which might take until four weeks to present the
therapeutic effect.

Mechanisms Underlying the Fast-Acting Antidepressant
Effect of Ketamine

The mechanisms of action by which ketamine exerts its
rapid effects have been the subject of interest by many
research groups, which have prospectively shown that the
molecular targets for ketamine’s effects go beyond the
antagonism of NMDA receptors.36 Notably, ketamine’s
rapid action seems to be triggered by antagonism of
NMDA receptors in GABAergic interneurons, prevent-
ing the inhibitory action of this system on glutamatergic
tonus.37 In turn, glutamatergic neurons release glutamate
in the synaptic cleft, which preferentially activates AMPA
(alpha-amino-3-hydroxy-methyl-5-4-isoxazole propionic
acid) receptors. Subsequently, AMPA receptors stimula-
tion promotes a transient sodium influx that depolarizes
the cell and activates the voltage-dependent calcium
channels (VDCC).10,37 The calcium entry by VDCC pro-
motes exocytosis of synaptic vesicles containing the
brain-derived neurotrophic factor (BDNF) in the synap-
tic cleft, which in turn, activates tropomyosin receptor
kinase B (TrkB).10 Upon activation, TrkB stimulates
phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(Akt), which is followed by several events that culminate
on the mechanistic target of rapamycin (mTOR)
activation.8,9,11,38–40

mTOR regulates the initial steps for translation of pro-
teins involved in the formation of new dendritic spines
and synaptogenesis. Particularly, mTOR phosphorylates
and activates 70-kDa ribosomal protein S6 kinase
(p70S6K) and also phosphorylates and inactivates the
eukaryotic initiation factor 4E-binding protein (4E-BP)
facilitating translation initiation.41,42 Among the proteins
that have been functionally linked to the activation of
mTOR signaling, stand out postsynaptic density pro-
tein-95 kDa (PSD-95), AMPA receptor subunit 1
(GluA1), and synapsin, which are required for the forma-
tion, maturation, and function of new synapses.8,9 Given
this background, the mTOR-mediated signaling pathway
underpins the mechanism of action of fast-acting anti-
depressants responses. The pharmacological mechanisms
that underlie the fast-acting antidepressant effect of keta-
mine are depicted in Figure 1.

Importantly, a completely different class of glutamate-
based rapid-acting antidepressant agents, including

NMDA receptor antagonists (CP-101,606/Traxoprodil,
MK-0657/Rislenemdaz), glycine-binding site ligands
(GLYX-13/Rapastinel), metabotropic glutamate receptor
modulators (AZD2066), and other glutamatergic modu-
lators (Riluzole) could have convergent effects on pro-
synaptogenesis signaling pathway, like ketamine.43

The Potential Role of Endogenous Neuromodulators
as Fast-Acting Antidepressants

Considering the limitation of widespread clinical use of
ketamine, the search of compounds that might share
similar mechanisms of action to ketamine emerges as a
promising therapeutic strategy. Regarding this issue, our
research group has focused on the investigation of the
possible role of endogenous glutamatergic neuromodula-
tors for fast antidepressant responses, namely agmatine,
creatine, guanosine, and ascorbic acid.

Agmatine

Agmatine, an endogenous polyamine, is synthesized from
L-arginine in a reaction catalyzed by the enzyme arginine
decarboxylase and is catabolized by the enzyme agmati-
nase that converts agmatine into urea and putrescine.44

Agmatine is an intermediary in the biosynthesis of poly-
amines, a pathway also related to the synthesis of import-
ant neurotransmitters, such as glutamate and GABA.
Agmatine is widely distributed in mammalian tissues.45

In the CNS, it is especially present in the cytoplasm in a
network of neurons in the rostral brainstem and fore-
brain.46 Noteworthy, agmatine is postulated to be a neu-
romodulator47 that is taken up by presynaptic axon
terminals, stored in synaptic vesicles (even as with other
neurotransmitters such glutamate), and released upon
membrane depolarization,48–50 similar to classical neuro-
transmitters. Despite these features, no well-characterized
receptor for agmatine was reported yet. The neuroprotec-
tive effects of agmatine were shown in a mouse 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of
Parkinson’s disease51,52 and in cultured cerebellar granule
cells and hippocampal cells submitted to glutamate and/
or NMDA-induced neurotoxicity53,54 and cortico-
sterone.55 Agmatine also provides neuroprotective effects
in a rat model of Alzheimer’s disease induced by b-amy-
loid peptide (Ab fragment 25-35)56 and protected against
memory impairment induced by streptozotocin57,58 and
lipopolysaccharide (LPS).59 The mechanims underlying
these neuroprotective effects of agmatine include antiex-
citotoxic, antioxidant, antiapoptotic, and pro-survival
properties,51–59 which may be relevant for the ability of
agmatine to afford protection against neurodegenerative
and psychiatric diseases.

Notably, increased agmatine concentrations are evi-
dent in the serum of MDD patients60 and reduced
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concentrations of agmatine were shown in the cerebral
cortex of suicides,61 suggesting a role of this neuromodu-
lator in the pathophysiology of MDD. In line with this
finding, a clinical study showed the antidepressant effect
of agmatine, but this study was carried out with only
three patients.62 Our research group and others have pro-
vided clear evidence that this compound has an antide-
pressant-like effect.63–75 Zomkowski et al. showed the
antidepressant-like effects of agmatine in behavioral
tests predictive of antidepressant activity in mice, the
forced swim test (FST) and tail suspension test (TST).63

Subsequent studies reinforced the antidepressant-like
effect of agmatine64–68 involving interaction with nitrer-
gic,63,69 serotonergic,65 and opioidergic systems.66 In add-
ition, the antidepressant-like effect elicited by the
subchronic treatment with agmatine is dependent on the
phosphorylation of protein kinase A (PKA), Akt, glyco-
gen synthase kinase 3b (GSK-3b), and extracellular

signal-regulated kinase (ERK1/2), with the subsequent
activation of cyclic-AMP responsive-element binding
protein (CREB), and transcription of BDNF.70 The anti-
depressant-like response elicited by agmatine following
its subchronic administration was also associated with
synaptic proteins expression as well as the maintenance
of the astrocytes and microglia integrity.71

The antidepressant-like effect of agmatine appears to
involve inhibition of NMDA receptors,69 since agmatine
was able to enhance the antidepressant potency of the
NMDA receptor antagonist MK-801 for up to 100
fold.72 Subsequent studies investigated whether this com-
pound could present fast-acting antidepressant response.
Regarding this issue, Neis et al. demonstrated that the
antidepressant-like effect of agmatine in the TST is
dependent on the activation of AMPA and TrkB recep-
tors, PI3K/mTOR signaling, and upregulation of synap-
tic proteins, in a way similar to ketamine.73 Moreover,

Figure 1. The proposed mechanism of action underlying the fast and sustained antidepressant effects of ketamine. It is postulated that

ketamine acts antagonizing NMDAR in GABAergic interneurons (a), thereby decreasing inhibitory action of this system on glutamatergic

tonus (b). Thus, glutamatergic neurons release glutamate-containing vesicles in the synaptic cleft, which preferentially activates AMPAR,

since NMDAR is antagonized by ketamine (c). Upon activation, AMPAR induces a transient sodium influx that depolarizes the cell and

activates VDCC, which induces exocytosis of BDNF-containing vesicles. Released BDNF, in turn, activates TrkB receptors. Upon acti-

vation, TrkB stimulates signaling pathways, particularly PI3K/Akt/mTOR-mediated pathway. This signaling pathway culminates in the syn-

thesis of synaptic proteins such as synapsin, PSD-95 (which anchors AMPAR), and AMPAR subunit 1 (GluA1), which are inserted to the cell

membrane, contributing to synaptogenesis and rapid antidepressant effect of ketamine (d). 4E-BP: eukaryotic initiation factor 4E-binding

protein; Akt: protein kinase B; AMPAR: alpha-amino-3-hydroxy-methyl-5-4-isoxazole propionic acid receptor; BDNF: brain-derived

neurotrophic factor; GluA1: AMPA receptor subunit 1; GSK-3b: glycogen synthase kinase 3b; mTOR: mechanistic target of rapamycin;

NMDAR: N-methyl-D-aspartate receptor; p70S6K: 70 kDa ribosomal protein S6 kinase; PI3K: phosphatidylinositol 3-kinase; PSD-95:

postsynaptic density protein-95 kDa; TrkB: tropomyosin receptor kinase B; VDCC: voltage-dependent calcium channels. Figure designed

using images from Servier Medical Art and Mind the Graph.
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the acute administration of agmatine at a very low dose
by oral route was able to reverse the behavioral alter-
ations induced by chronic unpredictable mild stress74

and by chronic administration of corticosterone75

in mice, suggesting that this compound may have
fast-acting antidepressant properties. It is important to
mention that these stress-induced models of depression
are sensitive only to chronic, but not acute administration
of conventional antidepressants. However, a single keta-
mine administration has been reported to be effective in
these models of depression.9,35 Reinforcing the notion
that agmatine would have properties similar to ketamine,
a single administration of agmatine or ketamine counter-
acted the depressive-like phenotype of CREB-regulated
transcription coactivator 1 (Crtc1) knockout mice in the
FST, suggesting that agmatine has a rapid antidepres-
sant-like effect.76 In HT22 hippocampal cell line, the
combination of subthreshold concentrations of agmatine
and ketamine produced cytoprotective effects against cor-
ticosterone-induced cell death by a mechanism dependent
on Akt and mTOR/p70S6 kinase signaling pathway acti-
vation and increased expression of synaptic proteins.55

Altogether, these findings suggest that agmatine may
act as a ketamine-like compound, and further studies
are important to investigate whether agmatine is able to
afford rapid antidepressant effects in depressive patients.
It is of particular interest considering that agmatine may
be used even chronically at high doses without producing
overt signs of toxicity.77,78

Creatine

Creatine, a supplement frequently used for ergogenic pur-
pose, is widely distributed in mammalian tissues and has
the potential to treat or mitigate a broad range of CNS
diseases.79 The creatine stores are found mainly in skel-
etal muscle, although substantial concentrations are also
found in the brain.80 Peripherally, the synthesis of this
compound occurs initially in kidneys, from the amino
acids glycine and L-arginine that undergo a reaction cat-
alyzed by the enzyme L-arginine glycine amidinotransfer-
ase, resulting in ornithine and guanidinoacetate.80

Subsequently, guanidinoacetate is transported to the
liver where a methyl group from S-adenosyl-L-methio-
nine is transferred to guanidinoacetate, forming creatine
in a reaction catalyzed by guanidinoacetate-methyltrans-
ferase.80,81 However, creatine is also synthesized in the
CNS.82 Noteworthy, creatine has been postulated to act
as a neuromodulator synthesized and taken up by central
neurons and released in an action-potential dependent
manner, modulating various neurotransmitter systems
and signaling pathways.35,79,83–86 Notably, the neuropro-
tective effect of creatine was demonstrated by several lines
of evidence, particularly in Parkinson’s disease model
induced by 6-hydroxydopamine and MPPþ,87,88 in

neurotoxicity induced by hyperammonemia,89 as well as
in glutamate-induced excitotoxicity and Alzheimer’s dis-
ease model induced by b-amyloid peptide.90

Furthermore, a growing body of clinical studies have
also shown alterations in creatine levels in the brain of
patients that exhibit depressive symptoms,91–93 suggesting
that this neuromodulator could exert an important role in
the pathophysiology of MDD.

Remarkably, several preclinical studies reported the
antidepressant-like effect of creatine in mice subjected
to TST and FST.35,85,86,94–97 This response is dependent
on the modulation of dopaminergic,94 serotonergic,96 and
noradrenergic systems 98 and also on the activation
of PKA, protein kinase C (PKC), and mitogen-
activated protein kinases (MAPKs).86 Moreover, the
coadministration of subeffective doses of creatine and
NMDA antagonists MK-801 or ketamine elicited an anti-
depressant-like response in mice, suggesting a possible
modulation of glutamatergic system.95 The antidepres-
sant effect of creatine on b-amyloid-treated mice was
also demonstrated, a response associated with GSK-3b/
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
pathway.99

In view of the results which show a similar effect
between creatine and ketamine,95,97 subsequent studies
investigated whether creatine could be able to stimulate
Akt/mTOR-mediated signaling pathway. Notably, creat-
ine was able to increase Akt and mTOR phosphorylation
in the hippocampus of mice.85 Reinforcing the notion
that creatine modulates PI3K/Akt/mTOR signaling, the
antidepressant-like effect of creatine in mice submitted to
TST was abolished by PI3K and mTOR inhibitors.35,85

Interestingly, a single creatine administration was able to
reverse corticosterone-induced depressive-like behavior,
as well as increased mTOR and p70S6K phosphorylation,
ultimately leading to increase on PSD-95 immunocontent
in the hippocampus.35 These effects were comparable to
those results previously reported in the prefrontal cortex
of rats administered with ketamine.8,9 This evidence sug-
gests that creatine could share with ketamine the ability
to promote a fast antidepressant-like response. However,
the antidepressant-like effect of creatine in the TST was
not dependent on AMPA receptor activation, as opposed
to ketamine.10,95

No evidence until now reports the ability of creatine to
enhance the number and function of dendritic spines, an
event that has been shown to be crucial for the rapid
antidepressant responses. Therefore, future studies are
necessary to ascertain the similarities between creatine
and ketamine. Noteworthy, several clinical studies have
also demonstrated the beneficial effects of creatine in
patients with MDD.100–105 Particularly, Lyoo et al.
showed an improvement in depressive symptoms in 52
patients with MDD that received creatine combined
with escitalopram for eight weeks, as early as week 2 of
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treatment.104 These findings were later reinforced by
another study performed by Hellem et al., which
showed that 14 patients with MDD in an eight-week
open-label trial of daily creatine treatment presented a
significant reduction in depressive symptomatology as
early as week 2 when compared to baseline scores.105

These studies suggest that creatine could present a
faster antidepressant effect when compared to conven-
tional antidepressants, but it remains to be established
whether creatine could be able to afford a rapid-onset
antidepressant response.

Guanosine

Guanosine is a guanine-based purine that has been
recently proposed to be not only an intracellular signaling
component but also an extracellular signaling molecule,
which regulates important functions in the CNS.106,107 In
such a way, the guanosinergic system was postulated as a
system in which guanosine could be the molecule with
main biological activity.106,108,109 These assumptions
were supported by the fact that guanosine is released in
the brain under physiological conditions and even more
during pathological events, triggering widespread actions
in several brain regions.110 The main source of guanosine
comes from astrocytes and neurons, which release
nucleotides into the extracellular space that are rapidly
catabolized by ecto-50-nucleotidases forming this nucleo-
side.109,111 Notably, while extracellular adenine-based
purines are rapidly metabolized following an insult,
guanosine concentration increases progressively, suggest-
ing that it may be an endogenous neuroprotective
agent.110

Indeed, a vast number of reports have shown the neu-
roprotective effect of guanosine against several injuries,
including ischemia,112–119 sepsis-induced cognitive impair-
ment,120 ammonia intoxication,121 hepatic encephalop-
athy,122 cytotoxicity induced by MPPþ and
6-hydroxydopamine,123,124 glutamate,125 azide-induced
oxidative damage,126 methylmercury,127 and LPS-induced
inflammation.128 Furthermore, the neuroprotective effect
of guanosine was also demonstrated in animal models of
Alzheimer’s 129 and Parkinson’s disease.130 The mechan-
isms that underlie the neuroprotective effects of guanosine
are associated with its ability to attenuate neuroinflamma-
tion and oxidative stress as well as to stimulate glutamate
uptake.124,125,131–133 Moreover, guanosine is supposed to
exert its neuroprotective effects by synchronizing distinct
signaling pathways such as PI3K/Akt andMAPKs signal-
ing.114,125,134 The neurotrophic effects of guanosine were
also reported by several lines of evidence, which have
demonstrated that this nucleoside is able to induce prolif-
eration and differentiation, as well as stimulate the neurite
arborization and outgrowth.111,135–137 These effects may
be underpinned by the guanosine’s ability to promote

synthesis and release of neurotrophic factors such as
nerve growth factor (NGF), transforming growth factor
beta (TGF-b), fibroblast growth factor 2 (FGF-2), and
BDNF.135–142 Despite the abovementioned studies, no
receptor for guanosine was characterized until
now.143–145 However, guanosine is recognized as a gluta-
matergic neuromodulator.146

Noteworthy, plasma levels of guanosine were reduced
in patients with MDD, suggesting that this nucleoside
could play a role in the pathophysiology of MDD.147

Accordingly, our research group demonstrated that
guanosine produces an antidepressant-like effect in mice
submitted to TST and FST.137,148,149 Of note, the PI3K/
Akt signaling pathway and its downstream target mTOR
seem to be required for the behavioral response of guano-
sine.148 In view of these findings, one may suppose that
the mechanisms underlying the antidepressant-like
response of guanosine are, at least in part, similar to
those displayed by ketamine, which includes neuro-
trophic properties, the modulation of glutamatergic
transmission, and the ability to stimulate the PI3K/Akt
and mTOR-mediated signaling pathways. Noteworthy,
reinforcing the notion that guanosine could share the
mechanism of action of ketamine, a previous study
reported that a single administration of a subeffective
dose of guanosine combined with a subeffective dose of
ketamine produced an antidepressant-like effect in the
TST.148 In addition, a recent study reported the augmen-
tation effect of ketamine by guanosine in the novelty-
suppressed feeding test by a mechanism dependent on
mTOR signaling pathway.150 Given this scenario, further
studies are crucial to understand whether guanosine
shares with ketamine a common mechanism of action
and could present a fast-acting antidepressant effect.

Ascorbic Acid

Ascorbic acid, also known as vitamin C, is a water-solu-
ble vitamin that occurs physiologically as the ascorbate
anion. It exerts antioxidant activity and participates as a
coenzyme in the production of proteins such as collagen,
as well as in the synthesis of norepinephrine, serotonin,
and carnitine.151 This compound is synthetized in the
majority of mammals, but humans are not able to
synthetize it due to the absence of L-gulono-g-lactone
oxidase, a key enzyme for ascorbate biosynthesis.
Therefore, humans should obtain ascorbic acid from
foods and dietary supplements.152

Besides its function as a vitamin, ascorbic acid is a
neuromodulator that modulates the glutamatergic and
dopaminergic systems.153 The first indication that ascor-
bic acid may exert an antidepressant effect was a case
report published in 1980 that showed a reduction in the
severity of depressive symptoms in a child with chronic
hepatitis and under adrenocorticotropic hormone

6 Chronic Stress



therapy that received high doses of ascorbic acid.154 Some
subsequent clinical studies reinforce its potential as an
antidepressant agent. Brody et al. reported that ascorbic
acid was effective in decreasing scores on Beck
Depression Inventories in healthy young adults.155

In addition, lower depressive symptoms were observed
in an elderly population on high dietary intake of vitamin
C.156 Pediatric patients treated for six months with fluox-
etine and ascorbic acid presented a significant decrease in
depressive symptoms when compared to the fluoxetine
plus placebo group, further suggesting that ascorbic
acid may afford beneficial effects on mood.157 In line
with this study, the administration of ascorbic acid with
antidepressants decreased depression scores in 22
patients.158 Preclinical studies have also supported the
assumption that ascorbic acid may be effective as an anti-
depressant agent. The first preclinical study that showed
that ascorbic acid might elicit antidepressant-like effects
was published in 2009 by our research group. The admin-
istration of ascorbic acid to mice caused an antidepres-
sant-like effect in TST by a mechanism dependent on the
monoaminergic systems.158 In addition, a synergistic
antidepressant-like effect was found when ascorbic acid
was administered in combination with conventional anti-
depressants.159 Subsequent studies from our group indi-
cated several targets for the antidepressant-like effects of
ascorbic acid: (a) inhibition of NMDA receptors and the
L-arginine-NO-cyclic guanosine 3,5-monophosphate
pathway;160 (b) inhibition of potassium channels;161 (c)
activation of phosphatidylinositol-3 kinase (PI3K) and
mTOR signaling pathway, inhibition of GSK-3b, and
induction of heme oxygenase-1;162 (d) modulation of
GABAA and GABAB receptors;163 (e) activation of the
opioid system.164 Moreover, the administration of ascor-
bic acid elicited antidepressant-like effects in mice
subjected to several models of depression, namely
chronic unpredictable stress,165 acute restraint stress,166

and administration of the proinflammatory cytokine
TNF-a.167 Considering that the antidepressant-like
effect of ascorbic acid is associated with the modulation
of mTOR signaling pathway,162 the possibility of ascor-
bic acid exerts a fast antidepressant-like effect in a way
similar to ketamine deserves further investigation.
Therefore, the characterization of the antidepressant
behavioral response provided by ascorbic acid and its
ability to modulate hippocampal synaptic plasticity is
under investigation in our laboratory.

Conclusions and Future Directions

Although ketamine is able to produce fast-onset
responses following a single administration even to
severely depressed individuals, its side effects and the pos-
sibility of neurotoxicity upon chronic administration
have led to the investigation of novel fast-acting

antidepressant agents. Our research group has focused
on the investigation of endogenous mood modulators
that may act as ketamine-like compounds. We provide
evidence from preclinical studies that the endogenous glu-
tamatergic neuromodulators agmatine and creatine have
antidepressant behavioral profile similar to ketamine,
besides presenting the ability to elicit antidepressant
response by activating mTOR signaling pathway and/or
acutely increasing synaptic proteins and BDNF levels in
the hippocampus (creatine and agmatine) and prefrontal
cortex (agmatine). Moreover, there is evidence under way
in our laboratory indicating that guanosine and ascorbic
acid also have the potential to afford antidepressant
responses similar to ketamine. Considering that all of
these compounds are safe even upon chronic use and
exert these effects at very low doses, we consider that
they are promising compounds to be tested in clinical
studies. A particular interesting approach would be the
investigation of the augmentation effect of low doses of
ketamine by these compounds in order to provide effica-
cious fast-acting antidepressant response with lesser side
effects.
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Souza DO, Quincozes-Santos A. Guanosine inhibits
LPS-induced pro-inflammatory response and oxidative

stress in hippocampal astrocytes through the heme oxyge-
nase-1 pathway. Purinergic Signal. 2015; 11(4): 571–580.

Camargo and Rodrigues 11



129. Lanznaster D, Mack JM, Coelho V, et al. Guanosine

prevents anhedonic-like behavior and impairment in

hippocampal glutamate transport following amyloid-b1–
40 administration in mice. Mol Neurobiol. 2017; 54:

5482–5496.
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Fernández-Dueñas V. Neuromodulatory effects of gua-

nine-based purines in health and disease. Front Cell
Neurosci. 2018; 12: 1–14.

147. Ali-Sisto T, Tolmunen T, Toffol E, et al. Purine metabol-

ism is dysregulated in patients with major depressive dis-
order. Psychoneuroendocrinology. 2016; 70: 25–32.

148. Bettio LEB, Cunha MP, Budni J, et al. Guanosine pro-
duces an antidepressant-like effect through the modulation

of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR
pathways. Behav Brain Res. 2012; 234(2): 137–148.

149. Bettio LEB, Freitas AE, Neis VB, et al. Guanosine pre-

vents behavioral alterations in the forced swimming test
and hippocampal oxidative damage induced by acute
restraint stress. Pharmacol Biochem Behav. 2014; 127:

7–14.
150. Camargo A, Pazini FL, Rosa JM, et al. Augmentation

effect of ketamine by guanosine in the novelty-suppressed

feeding test is dependent on mTOR signaling pathway.
J Psychiatr Res. 2019; 115: 103–112.

151. Rice ME. Ascorbate regulation and its neuroprotective
role in the brain. Trends Neurosci. 2000; 23(5): 209–216.

152. Moretti M, Fraga DB, Rodrigues ALS. Ascorbic acid to
manage psychiatric disorders. CNS Drugs. 2017; 31(7):
571–583.

153. Rebec G V, Pierce C. A vitamin as neuromodulator: ascor-
bate release into the extracellular fluid of the brain regu-
lates dopaminergic and glutamatergic transmission. Prog

Neurobiol.. 1994; 43(6): 537–565.
154. Cocchi P, Silenzi M, Calabri G, Salvi G. Medical treat-

ment of the ductus arteriosus. Pediatrics. 1980; 65(4):
862–863.

155. Brody S. High-dose ascorbic acid increases intercourse fre-
quency and improves mood: a randomized controlled clin-
ical trial. Biol Psychiatry. 2002; 52(4): 371–374.

156. Oishi J, Doi H, Kawakami N. Nutrition and depressive
symptoms in community-dwelling elderly persons in
Japan. Acta Med Okayama. 2009; 63(1): 9–17.

157. Amr M, El-Mogy A, Shams T, Vieira K, Lakhan S.
Efficacy of vitamin C as an adjunct to fluoxetine therapy
in pediatric major depressive disorder. Clin Nutr. 2013;

33–50.
158. Aburawi SM, Ghambirlou FA, Attumi AA, Altubuly RA,

Kara AA. Effect of ascorbic acid on mental depression
drug therapy: clinical study. J Psychol Psychother. 2014;

4(1): 1–8.
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