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Endogenous Retrovirus in Drosophila melanogaster

Franck Touret,®P Frangois Guiguen,? Christophe Terzian®P

Retrovirus and Comparative Pathology, Institut National de la Recherche Agronomique, Université de Lyon, Unité Mixte de Recherche 754, Unité Mixte de Service 3444,
Lyon, France?; Ecole Pratique des Hautes Etudes, Paris, Franceb

ABSTRACT The endosymbiotic bacteria of the genus Wolbachia are present in most insects and are maternally transmitted
through the germline. Moreover, these intracellular bacteria exert antiviral activity against insect RNA viruses, as in Drosophila
melanogaster, which could explain the prevalence of Wolbachia bacteria in natural populations. Wolbachia is maternally trans-
mitted in D. melanogaster through a mechanism that involves distribution at the posterior pole of mature oocytes and then in-
corporation into the pole cells of the embryos. In parallel, maternal transmission of several endogenous retroviruses is well doc-
umented in D. melanogaster. Notably, gypsy retrovirus is expressed in permissive follicle cells and transferred to the oocyte and
then to the offspring by integrating into their genomes. Here, we show that the presence of Wolbachia wMel reduces the rate of

gypsy insertion into the ovo gene. However, the presence of Wolbachia does not modify the expression levels of gypsy RNA and
envelope glycoprotein from either permissive or restrictive ovaries. Moreover, Wolbachia affects the pattern of distribution of
the retroviral particles and the gypsy envelope protein in permissive follicle cells. Altogether, our results enlarge the knowledge
of the antiviral activity of Wolbachia to include reducing the maternal transmission of endogenous retroviruses in D. melano-

gaster.

IMPORTANCE Animals have established complex relationships with bacteria and viruses that spread horizontally among individ-
uals or are vertically transmitted, i.e., from parents to offspring. It is well established that members of the genus Wolbachia, ma-
ternally inherited symbiotic bacteria present mainly in arthropods, reduce the replication of several RNA viruses transmitted
horizontally. Here, we demonstrate for the first time that Wolbachia diminishes the maternal transmission of gypsy, an endoge-
nous retrovirus in Drosophila melanogaster. We hypothesize that gypsy cannot efficiently integrate into the germ cells of off-
spring during embryonic development in the presence of Wolbachia because both are competitors for localization to the poste-
rior pole of the egg. More generally, it would be of interest to analyze the influence of Wolbachia on vertically transmitted

exogenous viruses, such as some arboviruses.
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rokaryotic organisms are present in many eukaryotic species

and can establish symbiotic relationships with their hosts that
can range from detrimental to beneficial. In recent years, studies
have shown that insect-endosymbiotic bacteria replicate within
eukaryotic cells and are maternally transmitted. Among them, the
genus Wolbachia is present in all insect orders, and its within-
species propagation is optimized due to a biased efficient trans-
mission through infected female ovaries. Interestingly, it has been
shown that Wolbachia confers protection against several RNA vi-
ruses in insects (1-3), including arboviruses present in transmis-
sion vectors such as Aedes mosquitos, and so gives the opportunity
to improve arbovirus control in natural populations of vectors
(4). The cellular and evolutionary characteristics of Wolbachia
and its variants (wMel, wMelCS, and wMelPop) in Drosophila
species are well documented, thanks to the powerful genetic
model Drosophila melanogaster (5, 6). One important point con-
cerns the host mechanisms hijacked by Wolbachia for its maternal
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transmission: Wolbachia localizes at the posterior pole of mature
oocytes through an active mechanism that relies mostly on micro-
tubules and pole plasm (7, 8). This polarized concentration en-
sures that Wolbachia is incorporated into the pole cells of the
embryos, in order to be maternally transmitted. Wolbachia bacte-
ria from Drosophila melanogaster (wMel) also show a strong tro-
pism for the somatic stem-cell niche (SSCN) and are therefore
present in the somatic follicle cells covering the germline at the
early stage of oogenesis (9). Interestingly, horizontal transmission
of Wolbachia can also occur within and between Drosophila spe-
cies, and the results of experimental infections of D. melanogaster
by microinjection of Wolbachia-infected hemolymph demon-
strate the capacity of Wolbachia to enter the SSCN and, later, the
follicle cells surrounding the germline (10). Follicle cell-to-oocyte
transcytosis is not restricted to bacteria and cellular proteins; it has
been shown that several Drosophila endogenous retroviruses
(ERVs), including the gypsy retroelement, are maternally trans-
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FIG1 Characterization of Wolbachia in the N271 strain. (A) Schematic representation of Drosophila melanogaster ovaries, stages of oogenesis (germarium [g]
and stages S2 to S14), and enlarged view of S10 egg chamber. (B) Detection of Wolbachia by in situ hybridization. Blue, DAPI; red, rhodamine-labeled probe
against Wolbachia 16S DNA. Scale bars = 50 wm. Top, early-stage egg chambers infected with Wolbachia; bottom, stage 10 egg chamber. (C) Observation by
electron microscopy of Wolbachia (black arrows) in the cytoplasm of a follicle cell (FC) (left, scale bar = 1 wm) and at the posterior pole of the oocyte (Oo)
surrounded by follicle cells (right, scale bar = 0.5 wm). (D) Relative mtDNA COI cycle threshold values (Cr) after normalization with rp49. NS, no statistically
significant difference; wMel ™, tetracycline-treated flies; wMel ™, untreated flies. Horizontal bars represent medians.

mitted to the next generation. gypsy is an active endogenous ret-
rovirus present in several strains of Drosophila melanogaster. Its
7.5-kb genome contains three open reading frames similar to the
gag, pol, and env genes present in vertebrate retroviruses. The
gypsy RNAs and proteins are mainly expressed in the ovaries of
permissive females at stages 8 to 10 (11-13). Females are permis-
sive if they are defective for the production of specific P-element-
induced wimpy testis (Piwi)-interacting RNAs (piRNAs) that are
able to target gypsy RNAs (14—16). It was shown that these piRNAs
are encoded by the X-linked flamenco locus, which has two classes
of alleles, flam?” (permissive) and flamR (restrictive) (15, 17). The
integration of gypsy occurs only into the germline of flam®/flam®
females lacking gypsy piRNAs. gypsy, like other ERVs, is expressed
in the follicular cells of permissive females and integrates into the
nuclei of the offspring, suggesting that there is a transfer from
follicle cells to oocytes (11, 13, 18, 19). Moreover, it has been
demonstrated that the trafficking of the endogenous retrovirus
ZAM relies on the transport of vitellogenin (20). There is experi-
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mental evidence to indicate that the gypsy endogenous retrovirus
is also horizontally transmitted and then integrates into the chro-
mosomes of the offspring by virtue of a strong tropism to the
germline (18). Our results indicate that the frequency of gypsy
insertion-induced ovo mutants is decreased in the presence of
wMel, suggesting a new role for this endosymbiont in the control
of endogenous retroviruses.

RESULTS

The wMel variant is present in the gypsy-rich Drosophila mela-
nogaster strain N271. We investigated Wolbachia’s distribution
pattern in N271 permissive ovaries using fluorescence in situ hy-
bridization. Wolbachia was observed in the germarium and
mainly in the posterior pole of the stage 10 oocyte, as previously
described (Fig. 1A and B) (7, 9, 10). Ultrastructural electron mi-
croscopy (EM) analysis of permissive ovarian late egg chambers
enabled us to identify at the posterior pole of the oocyte several
wMel cells showing the typical morphology of Wolbachia, i.e., a
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FIG2 Ovaries of the progeny of an ovoP! reversion test and detection of gypsy insertion into ovo by PCR. (A) Ovaries from a sterile ovo”!/ovo* female, a revertant
ovo'/ovo™ female, and a wild-type ovo™/ovo™ female shown by phase-contrast microscopy (X 50 magnification). (B) PCR detection of gypsy insertion into ovo in
the two parental lines and samples of revertant F1 females. The schematic depicts the primers used (P1, P2, P3, and P4) and their localization in ovo and gypsy.

Large arrows show gypsy long terminal repeats (LTR).

three-layered envelope surrounding a matrix of moderate density
(Fig. 1C, right). We also distinguished several Wolbachia cells
within the cytoplasm of follicle cells (Fig. 1C, left). Altogether, our
data suggest that the N271 females contain a consistent level of
Wolbachia variant wMel bacteria in follicle cells and in the oocytes
of late-stage egg chambers. In order to compare genetically iden-
tical females with or without Wolbachia (denoted as wMel™ and
wMel~ females, respectively), we treated N271 individuals with
tetracycline as previously described (3). wMel was undetectable
either by PCR (see Fig. S1 in the supplemental material) or by in
situ hybridization in flies treated with tetracycline to be wMel ™
(Fig. 1B). Moreover, we estimated the levels of mitochondria in
wMel* (untreated) and wMel™ permissive females, as it was
shown that tetracycline increased the mitochondrial DNA
(mtDNA) density in flies raised for two generations on standard
medium after treatment (21). We performed quantitative PCR
(qPCR) on wMel™ and wMel~ permissive females after tetracy-
cline treatment, using primers specific for the cytochrome-c oxi-
dase subunit I (COI) gene. Our results indicate that the average
relative mtDNA threshold cycle (C;) values are not different for
wMel™ and wMel~ flies (Fig. 1D).

The gypsy insertion rate decreases in the presence of Wolba-
chia. The fact that Wolbachia and gypsy are both vertically trans-
mitted prompted us to test whether their mechanisms of trans-
mission may interfere with each other. To address this question,
we measured the rate of integration of gypsy into the genomes of
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offspring from permissive females in the presence or absence of
wMel. The ovo gene is a hot spot for gypsy integration (22) and can
be used as a readout for gypsy transposition (11, 13, 14, 22). To
estimate the rate of gypsy integration into ovo, permissive females
were crossed with X-linked mutant ovoP! males. As the ovoP! allele
is dominant, the ovoP!/ovo™ daughters are sterile, because ovarian
development does not occur (23). However, several daughters
with one functional ovary were observed due to gypsy insertion
into the ovoP! gene occurring after colonization of the gonads by
germ cells (Fig. 2A). Hence, the percentage of daughters with re-
stored fertility was positively related to the gypsy insertion rate.
The percentages of ovo reversions were estimated in daughters
from crosses between (i) wMel™ permissive females or (ii) wMel ™
permissive females with ovoP! males (Table 1). The results indi-
cated that the percentage of ovoP! reversion was significantly
higher in wMel ™~ than in wMel ™ females (P < 0.01) (Table 1). In
order to check that tetracycline-sensitive commensal bacteria
were not involved in this phenomenon, we restored the gut mi-
crobiota in wMel ™ permissive females (see Fig. SI in the supple-
mental material) and concluded that the gut microbiota had no
effect on the percentage of ovoP! reversion. Indeed, the percentage
of ovoP! reversion was significantly lower in the progeny of wMel *
permissive females than in the progeny of wMel ™ permissive fe-
males and wMel ~ permissive females with restored microbiota (P
< 0.05) (Table 1). There was no statistical difference between the
percentage of ovoP! reversion in the progeny of wMel ™ permissive
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TABLE 1 Frequency of reversion of ovoP! in the progeny of permissive and restrictive females crossed with ovoP! males®

Group Genotype of females Treatment Total no. of F1 females No. of fertile F1 females % ovoP! reversion
A Permissive wMel * 625 31 4.96
B Permissive wMel ™ 560 52 9.29
C Permissive wMel ™ plus microbiota 440 33 7.50
D Restrictive wMel* 617 3 0.49
E Restrictive wMel™ 578 2 0.35
F Restrictive wMel ™ plus microbiota 395 4 1.01

@ Females that were not treated (wMel ™) (groups A and D) or treated with tetracycline (wMel ™) (groups B and E) or treated to be wMel~ and then restored with the original N271
microbiota (groups C and F) were crossed with ovoP! males. Percentages in the last column represent fertile females divided by females present in the sample. Three independent
ovoP tests were performed for groups A, B, D, and E, and a single ovoP test was performed for groups C and F. The nonparametric Kruskall-Wallis test was first applied to test
homogeneity within experiments, and the results indicated that the mean values of the three ovo”’ reversion tests obtained for group A (4.42, 5.66, and 5.02) were lower than those
obtained for group B (9.46, 11.32, and 8.50) (P < 0.05). We then pooled the three replicates for each experiment and performed proportion tests in order to increase the statistical
power of our test. The percentage of ovoP! reversion was significantly lower in the progeny of wMel ™ permissive females than in the progeny of wMel ~ permissive females with or

without microbiota (group A versus B, P < 0.01; group A versus C, P < 0.05). There was no statistical difference between the results for the percentage of ovoP’ reversion in the
progeny of wMel ~ permissive females with or without microbiota (group B versus C, P > 0.05). There were no statistical differences between the percentages of ovoP! reversion
values in the progeny of the groups of restrictive females (group D versus E versus F, Bonferroni correction, P > 0.05).

females with or without microbiota (P > 0.05) (Table 1). As neg-
ative controls, we performed similar crosses using restrictive fe-
males in which the presence of fertile daughters might be due to
mitotic crossovers generating ovo™/ovo™ cells, as previously
shown (17). In this case, the presence of bacteria had no influence
on the very low percentage of ovoP! reversion estimates (P > 0.05)
(Table 1). In order to determine whether ovoP! reversion events
resulted from gypsy insertions (denoted as ovo" alleles), we per-
formed PCR on DNA samples of a pool of revertant ovaries using
primers specific for gypsy and ovo, respectively, in the two gypsy
orientations according to the method of Dej et al. (22). Indeed, we
obtained several PCR products in the wMel* and wMel ~ revertant
ovaries, meaning that multiple independent gypsy integrations
were responsible for the reversion. No positive signal for gypsy
insertion into ovo was observed in the two parental lines (Fig. 2B).
In conclusion, we demonstrated that the presence of Wolbachia
diminishes the rate of integration of gypsy, which indicates for the

first time cross talk between an endosymbiont and an ERV in
Drosophila.

Wolbachia does not modify gypsy expression levels. To assess
whether the differential gypsy insertion rate is due to modulation
of its expression induced by Wolbachia, we first performed quan-
titative reverse transcription PCR (qRT-PCR) to compare gypsy
RNA levels (11) between wMel* and wMel ™ flamenco permissive
and restrictive ovaries. We found that the relative gypsy RNA levels
did not differ significantly between wMel ™ and wMel ~ permissive
ovaries (Wilcoxon test, P = 0.439) (Fig. 3A), suggesting that
Wolbachia does not interfere with the RNA transcription machin-
ery. The gypsy RNA level was very low in restrictive ovaries, as
expected (11). The presence of Wolbachia did not significantly
modify the gypsy RNA level (Wilcoxon test, P = 0.093) (Fig. 3A),
which suggests that Wolbachia does not interfere with the repres-
sion mechanism induced by flamenco. The gypsy Env protein lev-
els were also monitored by Western blotting in permissive and
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FIG 3 Quantitative RT-PCR analysis and Western blot analysis of gypsy expression. (A) Relative C; values for gypsy levels after normalization with rp49; NS, no
statistically significant difference. Thin horizontal bars represent medians. (B) Expression levels of gypsy envelope protein in permissive and restrictive ovaries
with the presence or absence of wMel were analyzed using Western blotting. a-Tubulin protein was used as a loading control. The 50-kDa band revealed by the
Env antibody corresponds to the full-length envelope glycoprotein. Actual band sizes are indicated at the left.
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FIG 4 Immunostaining against gypsy envelope protein in permissive wMel™ and wMel ™ follicle cells and their respective restrictive counterparts (scale bar =
10 wm). Blue, DAPI; red, gypsy envelope. Top, schematic representation of a stage 10 egg chamber; the apical pole is boxed and corresponds to the region observed
in confocal microscopy. Oo, oocyte. gypsy Env patterns differ between permissive wMel™ and permissive wMel ™ follicle cells, whereas Env is not detected in

restrictive egg chambers whatever the Wolbachia status.

restrictive ovaries. The presence of Wolbachia did not modify the
Env protein level independently of the flamenco genotype, as
shown by the results in Fig. 3B. Altogether, our results indicate
that Wolbachia did not affect gypsy expression levels.

The wMel variant modifies the gypsy envelope distribution
pattern. Whole-mount permissive ovaries with the presence
(wMel™) or absence (wMel ™) of Wolbachia were immunostained
using an antibody raised against the gypsy Env protein (Fig. 4).
gypsy envelope glycoprotein (Env) is mainly detected in the follicle
cells of late egg chambers (stage 8 to 10) (11). In the permissive
wMel™ follicle cells surrounding the posterior pole of the oocyte,
gypsy Env displayed stick-shaped signals, as well as showing dot-
shaped signals polarized at the apical pole (Fig. 4, bottom left).
The wMel™ permissive ovaries exhibited a different pattern:
round gypsy Env staining was observed in the cytoplasm in a non-
polarized manner (Fig. 4, bottom right). Interestingly, we did not
observe any difference between wMel™ and wMel ~ restrictive egg
chambers, i.e., gypsy Env was nearly absent in follicle cells what-
ever the Wolbachia status, meaning that neither tetracycline treat-
ment nor the absence of wMel affected the flamenco restriction
(Fig. 4).

Wolbachia affects the distribution of intracytoplasmic gypsy
virus-like particles. As Wolbachia and gypsy are both maternally
transmitted, we hypothesized that Wolbachia could interfere with
gypsy within the oocyte and/or the follicle cells. To test this hy-
pothesis, we investigated the gypsy distribution pattern in the
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presence or absence of wMel. We identified intracytoplasmic par-
ticles of about 50 nm that were present in follicle cells of permis-
sive flies but absent in restrictive follicle cells (Fig. 5). We con-
firmed that these particles corresponded to gypsy by
immunoelectron microscopy (immuno-EM) using an antibody
raised against gypsy Env. We observed gold beads localized near
the virus-like particles present along the plasma membrane
(Fig. 5A). This observation fully agreed with the description of
gypsy particles obtained previously by Lecher et al. (12) and
strongly suggested that the particles were gypsy virus-like particles.
Then, the distribution patterns of these particles were compared
between wMel* and wMel~ permissive follicle cells. A major dif-
ference concerned the distribution of particles at the boundaries
between two follicle cells: particles were scattered regularly at both
sides of the junction between wMel™ follicle cells (Fig. 5C),
whereas they clustered asymmetrically, i.e., they were present in
one cell and absent in its neighbor cell, at the junction between
wMel™ follicle cells (Fig. 5D). We also noticed that the cell junc-
tions close to the particles were tightly sealed along a straight line
in wMel ™~ follicle cells, which was never observed in wMel™* follicle
cells (Fig. 5C). Moreover, we several times observed groups of
particles in the cytoplasm of follicle cells, but these groups were
systematically surrounded with a double membrane in wMel™
females (Fig. 5E) but not in wMel™ females (Fig. 5F). Altogether,
these observations indicate that the presence of wMel modifies the
distribution of gypsy virus-like particles in follicle cells.
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FIG 5 Distribution of gypsy virus-like particles in permissive fly stage 10 egg chambers in the presence or absence of Wolbachia. Images show immuno-EM
labeling (10-nm gold particles [black dots]) (A, B) of the gypsy envelope protein in stage 10 egg chambers from wMel ™~ permissive females (A), which is absent
from restrictive females (B), as expected, and electron microscopy observations of cytoplasmic 50-nm particles (black arrows) in permissive wMel~ (A, C, E) and
permissive wMel™ (D, F) follicle cells (FC) (scale bars = 0.2 um). Note the asymmetrical clustering of viral particles at the plasma membrane (PM) of two follicle
cells in panel D compared to their distribution in panel C and the double membrane surrounding viral particles in panel E compared to panel F.

DISCUSSION

In this study, we show an effect of Wolbachia in reducing the rate
of gypsy insertion into the ovo gene of the offspring of Drosophila
melanogaster females permissive for gypsy expression. While
Wolbachia is known to affect exogenous RNA virus replication, we
show for the first time that it could also affect endogenous retro-
viruses. Wolbachia was horizontally transferred to D. melanogaster

6 mBio mbio.asm.org

and then vertically transmitted (25). Like Wolbachia, gypsy has
probably entered the genome of D. melanogaster recently, after its
divergence from its sibling species, D. simulans (26). Colonization
of the oocyte via follicle cells is the strategy used by several ERVs
(11, 13, 20, 24). Toomey et al. have proposed that Wolbachia is
delivered to the oocyte directly from the stem cell niches or indi-
rectly through the somatic follicle cells (9). Conversely, it has been

September/October 2014 Volume 5 Issue 5 €01529-14


mbio.asm.org

gypsy Retrovirus and Wolbachia in Drosophila

FIG 6 A model for gypsy transfer to the germline in the presence (bottom) or absence (top) of Wolbachia. (A) gypsy viral particles (red dots) assemble in the
follicle cells and are transferred to the oocyte of a stage 10 egg chamber. (B) The gypsy particles that are localized posteriorly in the embryo are taken into the pole
cells when they bud. Wolbachia cells (green dots) decrease the rate of gypsy transfer at the posterior pole because they occupy the posterior part of the oocyte
and/or modify the gypsy assembly process, leading to fewer gypsy particles in the pole cells.

proposed that Spiroplasma poulsonii, a natural endosymbiont of
D. melanogaster, interacts with the host yolk machinery to pass
between follicle cells and enter the oocyte (27). The similarity
between the Wolbachia and gypsy transmission pathways
prompted us to ask whether Wolbachia could affect the dynamics
of gypsy transfer from follicle cells to the oocyte. Pélisson etal. (11)
and Lécher et al. (12) have previously described distributions of
gypsy Env and gypsy virus-like particles similar to those we ob-
served in this study for the wMel ™~ ovaries. Our results indicate
that the presence of Wolbachia in the oocyte and/or follicle cells
modifies the gypsy Env pattern of distribution and localization of
gypsy viral particles in follicle cells, which could ultimately reduce
the maternal transmission of gypsy. Immunofluorescence images
suggest that, in wMel™ permissive egg chambers, gypsy Env is
“stuck” near the junctions between follicle cells and at the apical
domain of the follicle cells. EM images indicate that the presence
of gypsy viral particles at the tightly sealed junctions between fol-
licle cells vanishes when wMel is present. The mechanism by
which Wolbachia alters the distribution of gypsy in follicle cells is
still unknown, and it could be worthwhile to further investigate
the interaction between Wolbachia, gypsy, and cellular proteins
involved in septate junctions. Another possibility worth investi-
gating is whether a reciprocal influence of gypsy on Wolbachia
maternal transmission could occur. We obtained data that indi-
cated that the levels of Wolbachia maternally deposited in 0- to 2-h
embryos are higher when the embryos are laid by permissive fe-
males than when they are laid by restrictive females (see Fig. S2 in
the supplemental material). This result, which needs to be inves-
tigated further, corroborates the presence of interplay between
gypsy and Wolbachia during maternal transmission. Our hypoth-
esis is that Wolbachia could modify gypsy localization at junctions
between follicle cells and at the apical domain, as it has previously
been shown that bacteria and viruses can interact with junctions
between epithelial cells (28-30). We therefore propose a model
which takes into account previously proposed gypsy and Wolba-
chia transmission models (8, 9, 13). Wolbachia and gypsy share the
same strategy, which is to localize at the posterior end of the oocyte
and be taken up into the pole cells of the embryos when they bud
(Fig. 6). In this model, Wolbachia exerts a repressive effect on the
maternal transmission of gypsy: it modifies gypsy assembly and
slows down follicle cell-to-oocyte transfer because of its presence
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in follicle cells and at the posterior pole of the oocyte, i.e., where
the transfer occurs.

It was shown that Wolbachia manipulates a host miRNA in
Aedes aegypti that decreases the expression of AdDnmt-2, a meth-
yltransferase gene that is upregulated by dengue virus (31). In
contrast, the small interfering RNA pathway seems not to be in-
volved in the antiviral activity of Wolbachia in Drosophila melano-
gaster (32). We show here that Wolbachia does not modify gypsy
RNA and protein expression levels in flamenco permissive and
restrictive ovaries, suggesting that Wolbachia does not interfere
with gypsy RNA and envelope levels in permissive ovaries or with
the Piwi-mediated repression of gypsy by flamenco acting in re-
strictive ovaries. While the precise mechanism has not been eluci-
dated, Wolbachia confers to the host a protective effect against
gypsy integration. The antiviral protective effect of Wolbachia has
been demonstrated for several exogenous viruses (33), and our
results enlarge the spectrum of action of Wolbachia to include
activity against endogenous retroviruses. The potential long-term
consequence of a reduction of the endogenous retrovirus integra-
tion rate would be to confer a selective advantage to Wolbachia,
increasing its frequency in natural populations. Furthermore,
Wolbachia makes gypsy less harmful to the host, which may also
contribute to the maintenance of gypsy and other retroelements
that use the same road to the germline in D. melanogaster. Finally,
it is notable that transovarial transmission has been demonstrated
for several arboviruses and parasites (34, 35), and it would be
worthwhile to investigate the effect of Wolbachia on their rates of
maternal transmission.

MATERIALS AND METHODS

Drosophila strains. Drosophila melanogaster strain N271 (14) was a gift
from A. Pélisson (CNRS, France). It contains several active gypsy copies
and a permissive flamenco allele (flam®). This strain segregates homozy-
gous permissive (flam®/flam?”) or restrictive (flam”/FM7) females for
gypsy expression. The ovoP! strain N376 has been previously described
(23). This strain is maintained by crossing females with attached X chro-
mosomes to ovoP? males. All flies were reared on standard corn medium at
25°C.

In order to remove Wolbachia, the flies were grown during three gen-
erations on standard agarose medium containing 0.25 mg/ml tetracycline
(Sigma-Aldrich). The strains were screened for the presence of Wolbachia
using the Wolbachia 16S primers F (5" TTGTAGCCTGCTATGGTAT
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AACT 3') and R (5" GAATAGGTATGATTTTCATGT 3'). We also used
the Wolbachia wsp primers F (5'-TGGTCCAATAAGTGATGAAGAAAC
3') and R (5" AAAAATTAAACGCTACTCCA 3’) for Wolbachia variant
determination as described previously (6). rp49 gene amplification was
used as a control for the PCR (36). Some Wolbachia-free flies were also
maintained on standard medium that was inoculated with commensal
bacteria (5). Bacterial universal 16S primers 27F (5" AGAGTTTGATCCT
GGCTCAG 3’) and 1492R (5" GGTTACCTTGTTACGACTT 3') were
used as described previously (37) to detect bacteria. Treated flies were
maintained on standard medium for at least three generations before
experiments were performed. Concerning the ovo® test (see below), the
crossing experiments were performed seven generations after treatment.

Fluorescence microscopy. Ovaries were processed and stained using
standard immunofluorescence techniques with antibodies (7). All flies
were 1.5 to 2 days old at the time of dissection. The antibodies used were
rabbit polyclonal antibody against gypsy envelope (anti-E78P antibody)
(38) and Alexa Fluor 633 mouse anti-rabbit antibody (Invitrogen). Sam-
ples were then rinsed in phosphate-buffered saline (PBS) and mounted on
a glass slide with the 4[prime],6-diamidino-2-phenylindole (DAPI)-
containing mounting medium Vectashield (Cliniscience). A dozen egg
chambers from three different immunostaining experiments were ob-
served for each condition.

For in situ hybridization with Wolbachia DNA probes, ovaries were
fixed for 20 min in 4% formaldehyde and heptane, postfixed for 10 min in
4% formaldehyde, and then washed once with PBS. Samples were incu-
bated for 16 h at 37°C in hybridization buffer [50% formamide, 5X SSC
(I1X SSC is 0.15 M NaCl plus 0.015 M sodium citrate), 200 mg-liter !
dextran sulfate, 250 mg-ml~! poly(A), 250 mg-ml~! salmon sperm DNA,
250 mg-ml~! tRNA, 0.1 M dithiothreitol (DTT), 0.5X Denhartdt’s solu-
tion] containing 10 ng of Wolbachia 16S DNA probes W2 (5" CTTCTGT
GAGTACCGTCATTATC 3") and Wol3 (5 TCCTCTATCCTCTTTCAA
TC3') that were 5'-end labeled with rhodamine (4). Samples were washed
twice in 1X SSC-10 mM DTT and twice in 0.5X SSC-10 mM DTT at
55°C for 15 min. Samples were then rinsed in PBS and mounted on a glass
slide with the DAPI-containing mounting medium Vectashield (Clini-
science). All ovaries were analyzed with an SP5 confocal microscope (Leica).

Electron microscopy. Ovaries from 1.5- to 2-day-old flies were dis-
sected in PBS and then fixed in 2% glutaraldehyde for 2 h at 4°C and
washed three times in 0.4 M saccharose—0.2 M sodium cacodylate-HCI,
pH 7.4, for 1 h at 4°C. Then, pieces were postfixed with 2% OsO4—-0.3 M
sodium cacodylate-HCI, pH 7.4, for 1 h at 4°C, dehydrated with an in-
creasing ethanol gradient (5 min in 30%, 50%, 70%, and 95%), and
treated three times for 10 min in absolute ethanol. Impregnation was
performed with equal parts of Epon A and Epon B plus DMP30 (1.7%).
Inclusion was obtained by polymerization at 60°C for 72 h.

Ultrathin sections (approximately 70 nm thick) were cut on a Reichert
ultracut E (Leica) ultramicrotome, mounted on 200-mesh copper grids
coated with 1:1,000 polylysine, stabilized for 1 day at room temperature,
and then treated for contrast with uranyl acetate and lead citrate. Sections
were examined with a Jeol JEM-1400 (Tokyo, Japan) transmission elec-
tron microscope equipped with an Orius 1000 camera and digital micro-
graph. Immuno-EM was performed as described previously (12).

Quantitative real-time PCR. Total RNA from dissected Drosophila
ovaries was isolated using Nucleospin RNA (Macherey-Nagel) following
the manufacturer’s protocol. Then, 1 ug of total RNA was reverse tran-
scribed using the Omniscript reverse transcription kit (Qiagen) with oli-
go(dT) primers (Invitrogen). Roche Universal Sybr green mix (Roche)
and StepOne Plus (Applied biosystem) were used for quantitative RT-
PCR to amplify a gypsy envelope fragment gene with gypsy primers F (5’ G
GCTCATTGCCGTTAAACAT 3’) and R (5" TCTTCCTTCTTTCGCTG
AGG 3'). The changes in cycle threshold (AC;) values were calculated
within the log-linear phase of the amplification curve with StepOne Plus
software, version 2.2.2 (Applied Biosystems). Quantification was normal-
ized to that of the mRNA encoding the endogenous ribosomal protein
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Rp49, which was amplified using the rp49 primers F (5 CGGATCGATA
TGCTAAGCTGT 3') and R (5" GCGCTTGTTCGATCCGTA 3'). Statis-
tical analyses were performed in R (http://www.R-project.org).

Quantitative PCR. For mitochondrial DNA density quantification,
total DNA was extracted from wMel ™~ and wMel* permissive N271 ova-
ries. Quantitative PCRs were performed with 30 ng of total DNA as de-
scribed previously (21), using the following primers specific for the Dro-
sophila melanogaster cytochrome-c oxidase subunit I (COI) gene: F (5’ G
CTCCTGATATAGCATTCCCACGA 3") and R (5" CATGAGCAATTCC
AGCGGATAAA 3'). Three independent DNA extractions were
performed for each condition, and quantitative PCR assays were done in
triplicate.

Wolbachia quantitative PCR was performed as previously described
(39). DNA from 30 0- to 2-h embryos from wMel* permissive or restric-
tive N271 females was extracted as described previously (21). Quantitative
PCR was done with 60 ng of total embryonic DNA. Three independent
DNA extractions were performed for each condition (permissive/restric-
tive), and quantitative PCR assays were done in triplicate.

Protein extraction and Western blot analysis. Ovaries from 25 flies
were dissected in cold PBS and then squashed in 50 ul of lysis buffer
(Thermo) with protease inhibitor (Roche). Protein extracts were mixed
with 2X Laemmli buffer (Sigma-Aldrich) and loaded on a 12% acryl-
amide gel. The same quantity of each sample was loaded twice in the same
gel. Protein was transferred to nitrocellulose membranes and used for
Western blot analysis as described previously (19). The membrane was cut
into two pieces containing exactly the same samples. One piece was incu-
bated with the rabbit polyclonal anti-gypsy envelope antibody E78P (38)
and the other with rabbit anti-a-tubulin antibody (Ab12546; Abcam),
and both were revealed by a horseradish peroxidase (HRP)-conjugated
secondary anti-rabbit antibody (A6154; Sigma-Aldrich) and SuperSignal
(Pierce), following the manufacturer’s instructions.

The ovoP reversion assay. The ovo? test is a genetic assay for gypsy
transposition that has been described previously (36). Briefly, the
X-linked ovo gene is involved in ovarian maturation, and the dominant-
negative mutation ovo”! results in sterile females with no functional ova-
ries. The ovo locus is a hot spot for gypsy insertion, and the insertion of
gypsy into the ovoP! allele (denoted as an ovo” allele) of a heterozygous
female prevents the production of the repressor OvoD1 protein. The ovo’/
ovo™t females are then fertile, and most of them carry only one ovary
because gypsy integration happens in a late stage of germline development.
The ovaries of five revertants were pooled, and the DNA was extracted
using the Nucleospin tissue XS kit (Macherey-Nagel). The presence of
gypsy in ovo was checked by PCR as described previously (24), using prim-
ers P1 (5" CAACATGACCGAGGACGGTCATAAAC 3"), P2 (5" CTCCC
GCTCTGCGGGCTTCTCTTT 3'),P3 (5" CTTTGCCGAAAATATGCAA
TG 3'), and P4 (5" CGGCTTTTTCAGCGGCTAACC 3') (Fig. 4).
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