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Abstract 

Background:  The dynamic functional connectivity (dFC) has been used successfully 
to investigate the dysfunction of Alzheimer’s disease (AD) patients. The reconfiguration 
intensity of nodal dFC, which means the degree of alteration between FCs at different 
time scales, could provide additional information for understanding the reconfigura-
tion of brain connectivity.

Results:  In this paper, we introduced a feature named time distance nodal connec-
tivity diversity (tdNCD), and then evaluated the network reconfiguration intensity in 
every specific brain region in AD using a large multicenter dataset (N = 809 from 7 
independent sites). Our results showed that the dysfunction involved in three sub-
networks in AD, including the default mode network (DMN), the subcortical network 
(SCN), and the cerebellum network (CBN). The nodal tdNCD inside the DMN increased 
in AD compared to normal controls, and the nodal dynamic FC of the SCN and the 
CBN decreased in AD. Additionally, the classification analysis showed that the clas-
sification performance was better when combined tdNCD and FC to classify AD from 
normal control (ACC = 81%, SEN = 83.4%, SPE = 80.6%, and F1-score = 79.4%) than that 
only using FC (ACC = 78.2%, SEN = 76.2%, SPE = 76.5%, and F1-score = 77.5%) with a 
leave-one-site-out cross-validation. Besides, the performance of the three classes clas-
sification was improved from 50% (only using FC) to 53.3% (combined FC and tdNCD) 
(macro F1-score accuracy from 46.8 to 48.9%). More importantly, the classification 
model showed significant clinically predictive correlations (two classes classification: 
R = −0.38, P < 0.001; three classes classification: R = −0.404, P < 0.001). More impor-
tantly, several commonly used machine learning models confirmed that the tdNCD 
would provide additional information for classifying AD from normal controls.
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Conclusions:  The present study demonstrated dynamic reconfiguration of nodal FC 
abnormities in AD. The tdNCD highlights the potential for further understanding core 
mechanisms of brain dysfunction in AD. Evaluating the tdNCD FC provides a promising 
way to understand AD processes better and investigate novel diagnostic brain imaging 
biomarkers for AD.

Keywords:  Time distance nodal connectivity diversity, Dynamic functional 
connectivity, Network reconfiguration, Multicenter, Alzheimer’s disease

Background
Alzheimer’s Disease (AD) is one of the most common neurodegenerative diseases with 
impaired multi-functions, including cognition decline, impaired memory, behavioral 
disorders, and emotional changes [1, 2]. As a complex adaptive system, the AD brain 
shows dysfunctions when it integrates diverse cognitive processes into a coherent whole 
as a function of changing across various time scales [3–6]. Furthermore, considering the 
brain dynamics, these abnormalities of functional integration in AD are associated with 
the aberrant transitions between different active states [7]. Hence, understanding the 
AD-associated impaired brain alteration pattern in different time scales would be very 
important for understanding the mechanism of cognitive declines in AD [8].

Functional connectivity (FC) is defined as the temporal correlation of neuronal activity 
in anatomically isolated regions of the brain, which can be used to explain the synchro-
nizations between spatially remote areas of the brain [9, 10]. FC represents the correla-
tion between time series obtained in many ways, such as functional magnetic resonance 
imaging (fMRI). The brain dynamically reconfigures its functional organization to sup-
port the common cognitive ability of the brain, of which FC is one of the most common 
measures of the brain’s active organization[11, 12]. The concept of static FC assumes the 
spatial and temporal stationarity of functional synchronization when a subject is lying 
in the scanner for around 6–10 min [13, 14]. However, this assumption ignored the fast 
conversion between different mental states [15], which had different effects on FC [16]. 
It is well accepted that the brain dynamically reconfigures to support the information 
transformation in the daily cognitive task. Previous studies also demonstrated that the 
ability impairment is associated with the brain dynamic reconfigures, in other words, the 
transition between different dynamic FC (dFC) states rather than the statical model [17, 
18]. Thus, the dFC allowed us to investigate the brain as a dynamic functional network 
to capture the different brain states and/or the associated impaired activities [19–21]. 
Quantitatively depicting the abnormal dynamic functional reconfigures and how they 
lead to dementia or specific cognitive impairment is essential for better understanding 
the abnormalities of dFC in AD [22]. One way is to investigate the brain network dynam-
ics by calculating independent components of dFC and defining a series of brain states. 
And the transitions between different brain states were used to assess whether or not 
brain activity is impaired in certain diseases [23–29].

Although dynamic FC has been proposed and widely used to analyze the reconfigura-
tion pattern of the dynamic functional network in AD [17, 18, 30], the strength of the 
dynamic network configuration of rs-fMRI has not been well investigated yet. Thus, 
quantitatively depicting the abnormal dynamic functional reconfigures and how they 
lead to dementia or specific cognitive impairment is essential for better understanding 
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the FC’s abnormality in AD. Hence, the main aim of the present study is to investigate 
whether there are abnormal nodal FC reconfigurations in some regions at some specific 
frequencies and the clinical relevance of that abnormality in AD.

In this study, we introduced the time distance nodal connectivity diversity (tdNCD) to 
quantify the strength of nodal FC reconfiguration at different time scales and compared 
the changes tdNCD in AD for each site [12]. Then, meta-analyses were performed to 
combine data from the individual scanners and test for differences in tdNCD between 
AD patients and the normal controls (NCs) (Fig.  1). Additionally, we used four layers 
fully connected neural network (FC-net) to investigate the classification performance of 
the tdNCD (Fig. 2). Our results indicate that AD patients are characterized by aberrant 
tdNCD in several core networks, such as the default mode network. This provides a new 
perspective to understand the neuropathological mechanism underlying AD and may be 
a useful imaging biomarker for identifying AD.

Fig. 1  Schematic pipeline for computing tdNCD for each subject. a The fMRI images( Each fMRI had 170 
time points). b The mean time series (264 × 170) which was calculated based on the Power’s atlas. The sliding 
window technique was performed to calculate dFC. c The dFC matrix (25 × 264 × 264). d The dNCD was 
obtained from the dFC according to the formula (2). e The tdNCD was calculated from the mean of dNCD at 
each time distant according to the formula (3)

Fig. 2  The strategy of the train and test framework for these classifiers. One dataset was chosen as the 
testing set in the outer loop, and the other six were used to optimize the hyperparameters and train the 
models. If the classifier needs to select the hyperparameter (HP), we took two steps to train the model to 
determine the optimal HPs. Specifically, there are two HPs (iteration times of input data and learning rate 
of the Adam optimizer) for FCnet. Meanwhile, we used the leave-one-site-out strategy to validate the 
robustness of the models
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Results
Demographic and neuropsychological characteristics

There were no significant differences in the sex of the NC, MCI, and AD subjects totally 
(P = 0.658, Chi-squared test). But the age of the MCI and AD subjects exhibited signifi-
cantly higher than those of the NC subjects (P = 0.011, one-way ANOVA). Moreover, 
the subjects of the MCI and AD groups showed significantly lower scores on the MMSE 
than those of the NC group (P < 0.001, one-way ANOVA) (Table 1). The fMRI scanner 
and image-acquisition protocol information in Table 2.

Group difference between NC and AD

The tdNCD significantly changes in the default mode network (DMN), the SCN, and 
the cerebellum network (CBN) at different time distances in AD groups compared with 
NC (P < 0.05, Bonferroni correction with N = 24) (Fig. 3). Specifically, tdNCD was higher 
in the DMN (the inferior parietal lobule, precuneus, parieto-occipital sulcus, superior 
frontal gyrus, middle temporal gyrus, etc.) in AD than NC. Meanwhile, the tdNCD was 

Table 1  Demographic and neuropsychological data of participants. Chi-squared tests were used for 
gender comparisons; one-way ANOVA was performed for age and MMSE comparisons

NC MCI AD p

N (809) 257 257 295 –

Sex(M/F) 153/104 143/114 172/123 0.658

Age 66.93 ± 6.83 68.56 ± 8.91 68.89 ±8.27 0.011

MMSE 28.52 ± 1.64 25.14 ± 3.39 16.56 ± 6.02  < 0.001

Table 2  The fMRI scanner and image-acquisition protocol information of the in-house dataset

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7

Field of 
strength (T)

3.0 3.0 3.0 3.0 3.0 3.0 3.0

Brand Siemens 
Skyra

GE Signa 
HDx

Siemens Trio 
Tim

Siemens 
Verio

Siemens Trio 
Tim

Siemens Trio 
Tim

Siemens 
Skyra

Number of 
head coil 
channels

20 8 20 8 12 8 20

Protocol 
name

EPI EPI EPI EPI EPI EPI EPI

Repetition 
time (s)

2 2 2 2 2 2 2

Echo time 
(ms)

30 30 25 30 40 30 30

Flip angle 90 90 90 90 90 90 90

Field of view 220 × 220 220 × 220 240 × 240 220 × 220 256 × 256 220 × 220 220 × 220

Matrix 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64

Slice 
number /
thickness 
(gap)

36 / 3 (0.9) 30 / 3 (1) 30 / 3 (1) 36 / 3 (0.99) 28 / 4 (1) 32 / 3 (0.99) 36 / 3 (0.9)

Scan dura-
tion (s)

480 400 360 360 478 360 480
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lower in the SCN (the thalamus, basal ganglia, inferior temporal gyrus, orbital gyrus, 
inferior occipital gyrus) and the CBN (area of the cerebellum) in AD than in the NC 
(Fig. 3a). Group differences of FC between NC and AD were analyzed using the meta-
analysis as in our previous study [31]. After Bonferroni correction with N = 264, the 
number of significantly different FC between one ROI and the other ROIs is shown in 
Fig. 3a. And if the number of significant FC of one ROI was more than zero, the ROI 
was considered to be significantly different. In contrast to the FC, the tdNCD provides 
more information about the impaired functional connectivity in AD. For example, one 
region in the dorsal parieto-occipital sulcus mainly showed the changes in AD at the 
long-time distances (170 s-240 s). In contrast, another area at the lateral superior frontal 
gyrus showed significant differences in AD at the short time distance (0–20 s) (Fig. 3).

Additionally, the value of tdNCD increased with the short time distance (time 
distance < 100  s) and remained relatively stable at the long-time distance (time dis-
tance > 100  s) (Fig.  4). The tdNCD with a short time distance represented network 
configuration flexibility, and the tdNCD with a long-time distance meant the tendency 
to lose network stability. Although tdNCD with long time distance was calculated by 
fewer data, the uniform difference obtained by many subjects after meta-analysis can 
reflect the network reconfiguration.

Classification based on FC and tdNCD

The classification results showed that the tdNCD has a contribution to improving 
the effect of AD identification from NC (Accuracy: from 78.2% to 81%, P = 0.028; 
Sensitivity: from 76.2 to 83.4%, P = 0.043; Specificity: from 80.6 to 76.5%, P = 0.198; 
F1-score: from 77.5% to 79.4%, P = 0.086) (Table  3). Our results showed significant 
negative correlations between the individual decision scores and cognitive ability 
(measured by MMSE) in the AD and MCI subjects (R = −0.38, P < 0.001), which was 
improved than that only using FC (R = −0.361, P < 0.001) (Fig. 5d).

Fig. 3  Results of differences FC or tdNCD between AD and NC with meta-analysis. a The number of the 
abnormal FCs (Bonferroni correction, N = 264). The bar length means the number of significantly different FCs 
between one ROI and the other ROIs. b The distribution of the altered tdNCD in AD. The p-value was obtained 
by meta-analysis in 7 sites. The significant threshold of the p-value is 0.0021 (= 0.05/24, Bonferroni correction)
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Besides, we conducted a similar pipeline to analyze the classification performance 
for NC, MCI, and AD individuals. The results showed that there was a significant 
improvement in accuracy (from 50% to 53.3, P = 0.01) and macro F1-score (from 47.2 
to 49.1%, P = 0.034) when tdNCD was added to the classifier (Table  4). The output 
of the three-class classification model was a 1 × 3 vector. The three numbers repre-
sented the probability of belonging to the NC, MCI, or AD group, respectively. A sig-
nificant correlation between prediction score and MMSE score was also obtained in 

Fig. 4  Results of differences analysis based on the tdNCD. a The time distance associated altered patterns of 
the tdNCD (AD/NC) in three representative networks. The gray line represents that the tdNCD (AD/NC) is not 
significant at the specific time distance of the related ROI. b Scatter plots of the ROIs. c Boxplots of the time 
distance associated patterns of the tdNCD in three represent ROIs in the AD and NC groups. The error bar 
represents the standard deviation

Table 3  The results of two classes classification

*Means prediction results have significant improvement when tdNCD was added (p < 0.05, paired-sample t-test)

Classifier Features ACC (%) SEN (%) SPE (%) F1-score (%)

FCnet sFC 78.2 76.2 80.6 77.5

sFC + tdNCD 81* 83.4 76.5* 79.4*

SVM sFC 82.3 85.6 76.6 83.2

sFC + tdNCD 84.2 86.2 81.5* 85.2*

KNN sFC 77.9 69.6 85.8 76.2

sFC + tdNCD 78.4 73.5* 83.9 78.4

LR sFC 82.3 82.5 81.8 82.9

sFC + tdNCD 82.1 81.1 81.5 82.1

LDA sFC 77.0 79.6 72.7 78.6

sFC + tdNCD 80.2* 84.4* 73.8 81.9*
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Fig. 5  Results of classification analysis by using five classifiers with different input features. a The accuracy 
of these two-class classification models. b The accuracy of these three-class classification models. c The 
R-values of correlation between the decision scores associated with the AD group from these classification 
models. The R-values located in the top right were from the two-class classification models. The R-values on 
the left bottom were from the three-class classification models. d The correlation between subjects’ MMSE 
and decision scores from a two-class classifier. e The correlation between subjects’ MMSE and decision scores 
from a three-class classifier

Table 4  The results of three classes classification

*Means prediction results have significant improvement when tdNCD was added (p < 0.05, paired-sample t-test)

Classifier features ACC (%) SEN (%) SPE (%) F1-score (%)

FCnet sFC 50 50.6 75.3 46.8

sFC + tdNCD 53.3* 52.0 76.0 48.9*

SVM sFC 54.2 54.3 77.1 50.7

sFC + tdNCD 56.3* 56.1 78.1 53.4*

KNN sFC 51.8 51.8 75.9 48.8

sFC + tdNCD 47.9 47.9 73.9 45.7

LR sFC 52.4 52.4 76.2 50.3

sFC + tdNCD 55.1* 55.1* 77.5* 52.5

LDA sFC 43.8 43.8 71.9 42.7

sFC + tdNCD 48.1* 48.1* 74.0* 45.8*



Page 8 of 15Du et al. BMC Bioinformatics          (2022) 23:280 

the 3-class classification model (R = −0.404, P < 0.001), which was improved than that 
only using FC (R = −0.332, P < 0.001) (Fig. 5e).

The classification results are robust for different classification models, whether in 
the two-class task (Table 3) or the three-class tasks (Table 4). Generally, the combi-
nation of tdNCD and sFC/dFC could improve the classification performance rather 
than only based on sFC/dFC. Furthermore, the decision value of the testing datasets 
showed high consistency among different pairs of classifiers (Fig. 5c).

Figure 6 shows the tdNCD of nodes that showed a consistent significant difference 
between AD and NC based on two atlas, there was located in the superior frontal 
gyrus, the temporal gyrus, the parietooccipital sulcus, the precuneus, the thalamus, 
the cerebellum, the basal ganglia based on Power Atlas, and in the superior frontal 
gyrus, the temporal gyrus, the inferior parietal lobule, the precuneus, the thalamus, 
the cerebellum, the parahippocampal gyrus, the posterior cingulate gyrus based on 
Brainnerome Atlas. Besides, the decision value of the testing data based on Power 
Atlas was significantly correlated with that based on Brainnetome Atlas, whether in 
the two-class task (R = 0.786, P < 0.001) or in the three-class task (R = 0.792, P < 0.001). 
Therefore, the result can be repeated under the different brain atlases or parcellation 
schemes.

Fig. 6  The results of the replicability experiment by using the BN Atlas. a The Power atlas [51]. b The 
Brainnetome (BN) Atlas [63]. c The results of significantly different ROIs mapping to the whole brain by using 
the same process introduced in this paper. d The correlation between the decision scores associated with 
the AD group from the two-class classification model using the Power Atlas and the two-class classification 
model using the BN atlas. e The correlation between the decision scores associated with the AD group from 
the three-class classification model using the Power Atlas and the three-class classification model using the 
BN atlas
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Discussion
The present study provided a novel method to represent the change of nodal dFC 
at different time scales in AD, suggesting that the connectivity and the dynamics of 
activity altered in several brain networks in AD. Furthermore, the tdNCD provides 
benefits for classifying AD from normal controls. Moreover, the individuals’ decision 
scores of the classification significantly correlated with cognitive impairment in the 
patients’ groups which means the individual variation in the severity of these abnor-
malities predicts the severity of cognitive impairment. These findings emphasize the 
importance of nodal FC reconfiguration and the potential of tdNCD to provide a 
robust imaging signature of AD.

The sFC is an essential biomarker for studying the mechanism of various neurodegen-
erative diseases [6]. And there have been numerous research efforts using FC to explain 
the impairments of the brain in AD. Specifically, convergent evidence suggested that the 
AD patients showed a pattern of widespread dysconnectivity in the brain [32–34]. Our 
previous study has found that brain activity was reduced in the DMN and increased in 
the SCN in AD patients [31, 35]. And the strength of brain activity in these networks 
was significantly associated with the impairments decline [31]. The DMN will be acti-
vated when we pay no attention to the external environment [36]. Previous studies have 
demonstrated that the aberrant FCs in AD patients were related to the pathophysiol-
ogy of AD. For example, the abnormal FC in the DMN was linked with the deposition 
of the amyloid-beta (Aβ), and is further associated with spatial and autobiographical 
memory[36].

Recently, several studies have shown that the states of dFC were highly alterable, and 
the AD patients tended to stay in low inter-network interactions [6, 17, 18]. The present 
study found that the dFC increased in the DMN and reduced in the SCN in AD patients. 
This is supported by the evidence that AD patients are associated with disrupted func-
tional connectivity in the DMN. The tdNCD represented the reconfiguration intensity 
of the dFC network. The increase of tdNCD in the DMN exhibited disrupted DMN 
integrity [37], which induced the impaired ability to integrate and share information in 
AD [38]. On the other hand, a decrease of the tdNCD in the SCN and CBN indicated 
enhanced inner stability in these networks [37, 39]. These changes involved some hub 
regions, which played an essential role in distinct interconnecting areas and integrat-
ing brain function [40–42]. And the impairments may lead to the abnormal increase of 
tdNCD in the DMN. On the other hand, the accumulation of Aβ in the SCN and CBN 
[43, 44] may be related to the decrease of FCs in the different regions, the compensatory 
decrease of inner FCs, and the tdNCD decrease in these regions.

As discussed in several previous studies [31, 45–49], cross-site validation is crucial 
for optimizing valid biomarkers and is particularly important for translational medi-
cine. Hence, the classification analysis with independent site cross-validations to pre-
dict diagnostic status provides shreds of evidence that tdNCD can provide additional 
information as imaging biomarkers for AD. However, tdNCD itself does not have a good 
performance for classification. The remarkably reduced classification performance in the 
MCI group might be due to the data heterogeneity between different sites. These het-
erogeneities may come from the various scanning devices or the diagnostic criteria for 
early MCI. Furthermore, the increase in the correlations between the decision scores 
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and clinical scores indicated the ability to use dynamic brain activity to track disease 
progression [31].

There were some limitations to this study. Firstly, the window size from the sliding 
window technique was used to calculate dFC, hampering our efforts to analyze the nodal 
dFC at a short time distance. Secondly, the analysis of nodal dFC was just at the net-
work level, and it was not precise enough. Thirdly, variations in the acquisition methods 
and cross-sectional examination of neuropsychological performance precludes us from 
making firm conclusions about group differences. Fourthly, the MCADI dataset does not 
have pathological measures, like Abeta and Tau; it might result in a few misdiagnose in 
MCI.

Conclusion
The present study provides a simple way to explore the stable abnormality of dFC in AD. 
The results showed that the tdNCD can be used to analyze the stability of dFC in specific 
brain regions and contains additional information for understanding the alteration of 
brain activity in AD. Furthermore, investigating the stability of the dynamic connectivity 
at different time scales can provide comprehensive insights into the functional recon-
figuration, advancing our knowledge of cognitive decline in AD.

Material and method
Datasets

The present study is an extended investigation of our previous results, and all analyses 
were conducted in an in-house Multi-Center Alzheimer’s Disease (MCAD) dataset. This 
dataset includes 809 individuals (AD = 295, mild cognitive impairment (MCI) = 257, 
NC = 257) with resting-state fMRI were acquired from 7 different MRI scanners. In 
addition, we provided demographic and neuropsychological information in Table 1, and 
the data can be found elsewhere in our previous study [31]. Finally, we used the Mini-
Mental State Exam (MMSE) score to measure subjects’ cognitive capacity.

Image preprocessing and dynamic functional connectivity matrix calculation

All fMRI images were obtained from 3.0 T MR scanners. The shortest scan duration was 
360 s with repetition time (TR) = 2 s. Thus, we used the first 360 s of all fMRIs in this 
paper. The first 10 images were discarded to allow for magnetization equilibrium, we 
got the fMRIs with 170 time points. As described in our previous study [31], the resting-
state fMRI (rs-fMRI) scans were preprocessed using the Brainnetome Toolkit (http://​
brant.​brain​netome.​org) [50] with the following steps (1) slice timing correction; (2) rea-
lignment to the first volume; (3) spatial normalization to Montreal Neurological Insti-
tute (MNI) space at 2 mm × 2 mm × 2 mm; (4) regression of nuisance signals, including 
linear trends, six motion parameters, and their first-order differences, and signals rep-
resenting white matter and cerebrospinal fluid; (5) temporal bandpass filtering (0.01–
0.08 Hz) to reduce high-frequency noise. Detailed descriptions can be found elsewhere 
in our previous study [31]. After these preprocessing steps, one 264(ROIs) × 170(time 
points, TR = 2 s) matrix was obtained for each subject. Then, dFC matrices were calcu-
lated based on 264 predefined regions of interest (ROIs) across the entire brain [51] as 
follows:

http://brant.brainnetome.org
http://brant.brainnetome.org
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where W represents the window size (= 100  s), TSmi,i+W  represents the time series 
between timepoint i and timepoint i +W  in region m , corr TSmi,i+W ,TSni,i+W  represents 
the Pearson’s correlation coefficient between TSmi,i+W  and TSni,i+W  , dFCm,n

i  represents the 
dFC between region m and region n at timepoint i.

Nodal connectivity diversity of dynamic functional connectivity

The NCD was usually used in mathematics and signal processing and has been used to 
describe the distance between connection profiles of a node in two mental states (e.g., 
resting or performing tasks [28]). In that study [12], the NCD is defined as:

where FCn
i  represents an n-th row of FC matrix in mental state i, corr

(

FCn
i , FC

n
j

)

 rep-

resents the Pearson’s correlation coefficient between FCn
i  and FCn

j .
We proposed a dynamic NCD (dNCD) index to represent the change of the dFC from 

one to another timepoint. The dNCD is calculated as:

where dFCn
i  represents an n-th row of FC matrix in timepoint i, corr

(

dFCn
i , dFC

n
j

)

 

represents the Pearson’s correlation coefficient between dFCn
i  and dFCn

j  . As we know 
that the brain network dynamic alteration is relatively stable in a temporally coordinated 
manner. With this, the time distance NCD (tdNCD) is defined as:

where dNCDn
i,i+d represents n-th ROI of dNCD between timepoint i and timepoint 

i + d , T represents total time-distance.
The pipeline of calculating tdNCD is shown in Fig. 5. Specifically, each ROI had 170 

time points. We calculated the mean values in each ROI defined by Power’s atlas from 
these fMRIs, and obtained the time series (264(number of ROIs) × 170(Time points)) 
after preprocessing. The sliding window technique (window size: 100  s, window step: 
10 s) was used to calculate the dFC [52–54] from these time series. Next, we calculated 
the dNCD according to formula (2) from dFC and obtained the tdNCD according to for-
mula (3). For example, in one subject’s tdNCD matrix, point (x, t) represents the mean of 
dNCDs that have t time distance in ROI x (Fig. 5).

Group‑level statistical analysis for tdNCD

We used a two-sample two-sided t-test to verify the inter-group differences of tdNCD 
between NC and AD at each site. After that, a meta-analysis was used to reduce the 
impact of site differences. As  suggested  by  the  previous  studies [31, 55], the  Liptak-
Stouffer  z-score  was  used  to  combine  p-values obtained by the two-sample two-sided 
t-test from the different sites, which has optimal power for combining probabilities in 
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meta-analyses [55–57]. Specifically,, the pi-values for each dataset were transformed 
into zi-scores using the inverse standard normal distribution, that is:

where ϕ is the standard normal cumulative distribution function. Then the combined 
z-score was then computed using the Liptak-Stouffer formula:

where wi is the square root of the sample size of dataset i , and k is the number of data-
sets (here, k = 7).

Under the null hypothesis, the z-scores follow the standard normal distribution. 
Therefore, by converting the z-scores to p-values with

Specifically, we repeated 24 times at one ROI to analyze whether this ROI was sig-
nificant. The Bonferroni correction was used to correct multiple comparisons across the 
24-time distances (Bonferroni correction, N = 24). We also perform the same calculation 
for FC to compare the difference between the statistical analysis results about static FC 
(sFC) and tdNCD (Bonferroni correction, N = 264).

Classification based on FC and tdNCD

In previous studies, the neural network has been successfully used to analyze the fea-
tures obtained from fMRI [58–60], because of its higher efficiency for high dimensional 
complex features [61, 62]. And, the primary aim of this study is to explore whether the 
performance could be improved by combining the tdNCD and sFC than that only based 
on sFC. Therefore, we chose a simple 4-layers fully connected neural network (FCnet) 
as the classifier to analyze the classification performance of tdNCD. A two-sided two-
sample t-test was used to test the significant difference between the performance of the 
classification model based on the combination of sFC with tdNCD and only based on 
sFC, as well as based on the dFC + tdNCD and only based on dFC. Additionally, to test 
whether the results are robust for the different classification models, we also performed 
the classification analysis with the other four traditional classifiers (SVM, K-nearest 
neighbor (KNN), Logistic Regression (LR), and Linear Discriminant Analysis (LDA)). 
Additionally, considering the number of these features is much larger than the number 
of subjects, a two-sample t-test was used to select the potentially efficient features in the 
training dataset. The appropriate threshold was chosen to keep the number of selected 
features and the number of subjects in the same order of magnitude (threshold P = 0.001 
(sFC), threshold P = 0.00001 (dFC), threshold P = 0.05 (tdNCD)).

The classification performance was evaluated using accuracy (ACC), sensitivity 
(SEN), specificity (SPE), and F1-score. If the classifier needs to select the hyperpa-
rameter (HP), we took two steps to train the model to determine the optimal HPs. 
Specifically, there are two HPs (iteration times of input data and learning rate of the 
Adam optimizer) for FCnet. Meanwhile, we used the leave-one-site-out strategy to 
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validate the robustness of the models [31, 45, 48] (Fig. 6). One dataset was chosen as 
the testing set, and the other six were used to optimize the hyperparameters and train 
the model in the outer loop. Five datasets were chosen from the six datasets as the 
training set in the inner loop, and the other served as validation data to find the opti-
mal HPs. The performance of the classification model was determined in the testing 
dataset (Fig. 6).

We used the above strategy to test the performance of tdNCD in both of the two 
classes classification (NC and AD) and the three classes classification (NC, MCI, and 
AD). To best the generalizability of these analyzes, we have performed the whole 
analysis based on the BN Atlas [63].
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