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Abstract: (1) Background: Cathepsin K has been found overexpressed in several malignant tumors.
However, there is little information regarding the involvement of Cathepsin K in non-small cell lung
cancer (NSCLC). (2) Methods: Cathepsin K expression was tested in human NSCLC cell lines A549
and human embryo lung fibroblast MRC-5 cells using Western blot and immunofluorescence assay.
Cathepsin K was transiently overexpressed or knocked down using transfection with a recombinant
plasmid and siRNA, respectively, to test the effects on cell proliferation, migration, invasion, and on
the mammalian target of rapamycin (mTOR) signaling pathway. (3) Results: Expression of Cathepsin
K was increased significantly in A549 cells and diffused within the cytoplasm compared to the
MRC-5 cells used as control. Cathepsin K overexpression promoted the proliferation, migration,
and invasion of A549 cells, accompanied by mTOR activation. Cathepsin K knockdown reversed the
above malignant behavior and inhibited the mTOR signaling activation, suggesting that Cathepsin K
may promote the progression of NSCLC by activating the mTOR signaling pathway. (4) Conclusion:
Cathepsin K may potentially represent a viable drug target for NSCLC treatment.
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1. Introduction

Non-small cell lung cancer (NSCLC) is the leading cause of cancer death among men and women
worldwide, with an incidence rate of 1.3 million cases per year [1]. Since NSCLC remains asymptomatic
during early stages, about 80% of patients are already in metastatic stages when they are diagnosed,
and their 5-year survival rates are below 15% [2]. Despite recent progress in the development of
novel medications and immunotherapies in treating NSCLC, the therapeutic efficacies still remain
unsatisfactory [3]. Therefore, finding new therapeutic targets for the treatment of NSCLC has become
a prioritized task [4].

Cathepsin K is a type of lysosomal cysteine protease which belongs to the papain-like cysteine
peptidase family; other members include Cathepsin B, Cathepsin D and Cathepsin L etc. Physiologically,
Cathepsin K functions in mediating cellular protein turnover, collagen degradation, and remodeling
of the extracellular matrix, which plays an important role in pulmonary fibrosis [5–8]. Deficiency
of Cathepsin K can lead to severe bone abnormalities, as it is the main peptidase involved in bone
remodeling in osteoclasts [9,10]. In addition, increased expression and activity of Cathepsin K have been
reported in patients diagnosed with breast cancer [11], bone cancer [12], prostate cancer [13], and many
other types of epithelial-derived cell cancers [14–16]. Similar to the dysregulated Cathepsin B expression
in the tumor microenvironment inducing tumor progression [17], Cathepsin K over-expression is
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associated with cancer metastatic disease, indicating its potential diagnostic and prognostic value.
Distinct expression patterns of Cathepsin K have been identified in lung cancer cells and stromal
cells, which provide further supporting evidence for this protease’s significant prognostic value [18].
However, the specific role and mechanism of Cathepsin K in NSCLC is still unknown.

In this study, we revealed the effect of Cathepsin K expression on NSCLC cells in terms of cell
proliferation, migration, and invasion in vitro. In order to understand the mechanisms, we also
investigated the mammalian target of rapamycin (mTOR) signaling pathway. The mTOR signaling
pathway plays an important role in maintaining cell growth, proliferation, motility, and survival [19].
Upregulation of the mTOR pathway has also been reported in a large number of NSCLC tumors,
with increased p-mTOR expression in up to 90% of patients with adenocarcinoma, 60% of patients with
large cell carcinoma, and 40% of patients with squamous cell carcinoma [20–22]. mTOR activation
may also be associated with poor prognosis in early NSCLC [23,24]. Thus, mTOR inhibitors have
been widely studied and employed clinically in order to suppress tumor growth and sensitize cells to
anticancer drugs. Previous studies have demonstrated that inhibition of Cathepsin K can significantly
reduced the phosphorylation of mTOR at S2448 in Caki cells [25]. Therefore, Cathepsin K may mediate
activation of the mTOR signaling pathway in NSCLC. Our findings indicate that Cathepsin K has the
potential in developing as a therapeutic target for NSCLC.

2. Results

2.1. Cathepsin K Was Highly Expressed in A549 Cells and Diffused in the Cytoplasm

Endogenous expression of Cathepsin K was detected in human embryonic lung fibroblasts
MRC-5 and NSCLC cells A549 using a Western blot (WB) analysis and immunofluorescence (IF) assay.
As shown in Figure 1a,b of WB results, compared to MRC-5 cells, the expression levels of Cathepsin K
in A549 cells were significantly increased. An IF assay revealed that Cathepsin K was slightly expressed
in MRC-5 cells, while Cathepsin K in A549 cells was largely expressed and diffused in the cytoplasm
(Figure 1c), the cell fluorescence intensity was significantly increased (Figure 1d).
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Figure 1. Detection of the expression and location of Cathepsin K in cells. (a) Western blot (WB) 
analysis for Cathepsin K expression in MRC-5, A549 cells. Representative gel blots of Cathepsin K 

Figure 1. Detection of the expression and location of Cathepsin K in cells. (a) Western blot (WB)
analysis for Cathepsin K expression in MRC-5, A549 cells. Representative gel blots of Cathepsin K and
Tubulin using specific antibodies. (b) Cathepsin K/Tubulin; (c) Cathepsin K immunofluorescence (IF)
staining in MRC-5 and A549 cells. (d) The cell fluorescence intensity was calculated using Image J
software (mean ± SEM, n ≥ 3, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).



Molecules 2020, 25, 4136 3 of 12

2.2. Cathepsin K Overexpression and Silence Models Were Successfully Reconstructed In Vitro

In order to observe the phenotypic variations mediated by Cathepsin K, it was transiently
overexpressed or knocked down using transfection with a recombinant plasmid and siRNA into A549
cells respectively. As shown in Figure 2a, Cathepsin K mRNA expression levels were significantly
increased in the Cathepsin K overexpression cells (CTSK-OE) compared to control A549 cells. The protein
levels of Cathepsin K were also increased 1.5 times compared to A549 cells, and increased 1.6 times
compared to the vector group (Figure 2b,c). Three Cathepsin K siRNA sequences were constructed for
transfection, and the optimal sequence was selected according to its silencing efficiency. The results
revealed that both siRNA 2# and siRNA 3# can effectively and markedly silence Cathepsin K expression
(Figure 2d,e). The 3# sequence was selected to construct the Cathepsin K knock down (CTSK-KD) model.
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Figure 2. Construction of the Cathepsin K overexpression and knockdown models in vitro. (a) qRT-PCR
analysis for CTSK expression in cells. CTSK/GAPDH; (b) WB analysis for Cathepsin K expression in
cells. Representative gel blots of Cathepsin K and Tubulin using specific antibodies. (c) Cathepsin
K/Tubulin; (d) WB analysis for Cathepsin K expression in cells. Representative gel blots of Cathepsin
K and Tubulin using specific antibodies. (e) Cathepsin K/Tubulin (mean ± SEM, n ≥ 3, * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001).

2.3. CTSK-OE Promoted the Proliferation, Migration and Invasion and CTSK-KD Inhibited the Proliferation,
Migration, and Invasion of A549 Cells

In order to understand whether CTSK-OE and CTSK-KD could have a significant effect on
the proliferation, migration, and invasiveness of A549 cells, cell proliferation, cell scratch repair,
and Transwell assays were conducted in A549 cells as shown in Figure 3. CTSK-OE significantly
promoted the proliferation of A549 cells from the time point 48 onward (Figure 3a), significantly
promoting cell migration and invasion (Figure 3b,c). In contrast, CTSK-KD inhibited the proliferation
of A549 cells from the time point 72 onward (Figure 3a), significantly inhibiting cell migration and
invasion (Figure 3b,c).
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Figure 3. Detection of cell behavior in vitro. (a) Cell Counting Kit-8 (CCK-8) analysis for A549 cell
proliferation. (b) Cell scratch repair analysis for A549 cell migration. (c) Invasion experiment analysis
for A549 cell invasion (mean ± SEM, n ≥ 3, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).

2.4. CTSK-OE Promoted While CTSK-KD Inhibited the Activation of the mTOR Signaling in A549 Cells.

In order to understand the mechanism of Cathepsin K in NSCLC, we detected mTOR and p-mTOR
expression. The results are shown in Figure 4a. With a change in Cathepsin K expression levels
(Figure 4b), CTSK-OE significantly increased level of p-mTOR and p-mTOR/mTOR, which promoted
over-activation of the mTOR signaling pathway (Figure 4c,d). In contrast, CTSK-KD significantly
decreased levels of p-mTOR and p-mTOR/mTOR, which inhibited activation of the mTOR signaling
pathway (Figure 4c,d). No significant differences were found in the mTOR/Tubulin ratio among the
groups (Figure 4e).
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3. Discussion

In addition to normal physiological functions [26–28], Cathepsin K also exhibits deleterious effects
on the body, as evidenced by its role in the progression of a variety of tumors. Over the past few years,
accumulated data have shown overexpression of Cathepsin K in multiple cancer types, indicating its
role in tumor progression and its potential diagnostic and prognostic values. For example, strong
expression of Cathepsin K has been observed in primary melanoma and melanoma metastases [29].
Colorectal cancer is associated with high LPS secretion and overexpression of Cathepsin K [30]. In order
to study the expression of Cathepsin K in NSCLC, human NSCLC cell lines A549 were selected in
this experiment, and human embryo lung fibroblast MRC-5 cells were used as controls. WB and IF
assays showed that the expression level of Cathepsin K in A549 was higher than that in MRC-5, which
is consistent with the conclusion that Cathepsin K is highly expressed in cancer tissues and cells in the
literature. Compared with MRC-5 cells in which Cathepsin K was slightly expressed in cells, Cathepsin
K was largely expressed in A549 cells and diffused into the cytoplasm. Cathepsin K is isolated into
lysosomes through the endosome, and it can also be secreted into the other compartments of the cell
and extracellular environment [31,32], which is essential for its role in promoting the development
of cancer cells in tumors. It is worth noting that Cathepsin K seems to also be distributed in the
nucleus of MRC-5 cells. In general, the pathway for Cathepsin proteins entering the nucleus without
nuclear localization sequence (NLS) has been a controversial issue. A recent study demonstrated
that Cathepsin proteins could be “chaperoned” into the nucleus from a cytoplasmic source following
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possible leakages from the lysosome [33]. The mechanism of Cathepsin positioning to the nucleus and
its role in the nucleus are also matters for further exploration.

Proteases play important roles in cancer initiation, development and metastasis. Cathepsin
K–shRNA transfection has been demonstrated to downregulate Cathepsin K, inhibiting the proliferation
and metastasis of breast cancer cells [34]. In squamous cell carcinoma, mesenchymal fibroblasts
expressing Cathepsin K are secreted by tumor cells through interleukin-1 stimulation and are associated
with tumor aggressiveness [35]. In vitro, Cathepsin K knockdown has been shown to inhibit migration
and invasiveness of the OV-2008 cell line in epithelial ovarian cancer [36]. In order to explore the
effects of Cathepsin K on the proliferation, migration, and invasion of NSCLC, this experiment used a
transfection method to introduce a Cathepsin K recombinant plasmid and CTSK-siRNA into A549
cells to construct CTSK-OE and CTSK-KD experimental models. This research employed a two-way
crossover study in order to investigate the role of Cathepsin K in A549 cells. In CCK-8 detection at
48 h, the results showed that cell proliferation in the CTSK-OE was significantly increased. At 72 h,
CTSK-KD significantly decreased in the cell proliferation. From the time course prospective, it is likely
because siRNA displays characteristics that are distinct from the recombinant plasmid [37,38], it plays a
role at a longer time point in the experiment compared to the recombinant plasmid. This phenomenon
was not observed in cell migration and invasion experiments, which might be due to the researchers’
selection of a specific time point for cellular detection.

In the cell scratch repair experiment, considering the damage of the transfection reagent to the
cells, 1% fetal bovine serum was added to the culture medium. The cell proliferation cycle is generally
24 h in length. In order to exclude the effect of serum on migration experiments, the time point of
24 h was selected for the detection. In the same manner that the invasion experiment was conducted,
no serum was present in the upper chamber of Transwell, but the medium in the lower chamber
contained a serum concentration of 20%. The large concentration gradient between the upper and
lower chambers resulted in a tendency for the A549 cells to be preferentially located in the lower
chamber. The time point at 24 h was selected in order to avoid the potential proliferation of cells
after penetration of the polycarbonate membrane, a factor that could influence the accuracy of the
experiment. The results of the migration and invasion experiments were consistent with the results of
the cell proliferation experiments. CTSK-OE significantly enhanced the migration and invasion ability
of A549 cells. In contrast, the migration and invasion ability of CTSK-KD was significantly reduced.
This is consistent with the conclusion that Cathepsin K is highly expressed during tumor invasion and
metastasis [39] and has a stimulating effect on the aggressive phenotype of various types of cancer.
Soond et al. [40] reported that the findings of use of utilizes combined chemotherapeutic treatment
such as with Tocilizumab or Rituximab inhibited signaling transduction pathways which up-regulate
the intracellular Cathepsins look very encouraging for targeting cancer. In the gastric metastasis model,
the use of the pharmaceutical agent Odanacatib significantly inhibited the metastases of cancer cells,
suggesting that Cathepsin K inhibition may be employed as a new therapeutic strategy to prevent
tumor metastasis [41–43].

In addition to its well-known role in extracellular matrix degradation and remodeling, Cathepsin
K may mediate activation of the mTOR signaling pathway. mTOR promotes anabolism and protein
synthesis by phosphorylating its substrates S6 and EIF4E1 [44–46], as shown in Figure 5. It can further
activate downstream products of the eIF4 complex to promote tumor development, regulate the cell
cycle, and inhibit autophagy and apoptosis [19]. Seo et al. [25] demonstrated that inhibition of mTOR
enhanced the chemosensitivity of cancer cells. They also revealed that treatment with mTOR inhibitors
reduced tumor size and increased apoptosis in a xenograft model. Evimus, an inhibitor of mTOR,
selectively inhibits mTOR signaling. It has been comprehensively evaluated in several phase I trials of
previously treated advanced NSCLC [47].
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tumor development, regulate the cell cycle, and inhibit autophagy and apoptosis.

In this experiment, CTSK-OE significantly increased levels of p-mTOR and p-mTOR/mTOR,
which promoted over-activation of the mTOR signaling pathway. In contrast, CTSK-KD significantly
decreased levels of p-mTOR and p-mTOR/mTOR, which inhibited activation of the mTOR signaling
pathway. Previous studies have demonstrated that inhibition of Cathepsin K can induce proteasomal
degradation of proteins associated with regulatory mechanisms on the target of rapamycin [25].
This conclusion is inconsistent with our experiment, which suggests that Cathepsin K may play a role
in NSCLC through regulation of the mTOR signaling pathway. However, the mechanism of action by
which Cathepsin K promotes the proliferation, migration, invasion, and other malignant behavior of
NSCLC cells is unclear. Potential mediators involved in the effects of Cathepsin K could include a
certain molecule’s unique and powerful hydrolytic activity or its role in the mTOR signaling pathway.
In addition, whether the changes of Cathepsin K in NSCLC cells are related to the levels of p-mTOR
remains unclear. Therefore, it is necessary to supplement the Cathepsin K activity detection and mTOR
signaling pathway inhibitor experiments in further research.

In summary, our results demonstrated that Cathepsin K was overexpressed in NSCLC cells
and permeated the cytoplasm. Through the detection of cell biological functions, it was found that
increased expression of Cathepsin K promoted the proliferation, migration, invasion, and activation of
the mTOR signaling pathway of NSCLC cells, while silencing Cathepsin K expression reversed the
above behavior. These findings suggest that Cathepsin K may potentially represent a new therapeutic
target for NSCLC.

4. Materials and Methods

4.1. Cell Culture and Transfection

The MRC-5 and A549 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM)
(Sangon Biotech, Shanghai, China) supplemented with 10% fetal bovine serum (FBS) (ExCell Bio, Beijing,
China) and cultured in 5% CO2 at 37 ◦C. The A549 cells were stably upregulated and downregulated
for Cathepsin K expression using the Cathepsin K plasmid and siRNA (Genepharma, Shanghai, China),
respectively. DNA transfection was performed using Lipofectamine-3000 (Thermo Fisher, Waltham, MA,
USA), and siRNA was transfected at a final concentration of 50 nM using Lipofectamin-3000.

4.2. qRT-PCR

Total RNA was isolated using RNAiso Plus (TaKaRa, Kusatsu-shi, Japan), and RNAs were
quantified using a NanoDropTM 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
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USA). Synthesis of cDNA and reverse transcription was performed using 1 µg of total RNA in a
25 µL system following the instructions of a FastQuant RT Kit (Tiangen, Beijing, China). CTSK
and GAPDH primers for qPCR were designed by PrimerPremier5 software. The sequences were
CTSK-F: 5’-CCTTGAGGCTTCTCTTGG-3’ CTSK-R: 5’-AGGGTGTCATTACTGCGG-3’; GAPDH-F:
5’-AGAAGGCTGGGGCTCATTTG-3’ GAPDH-F: 5’-AGGGGCCATCCACAGTCTTC-3’. Quantitative
real-time PCR was performed for CTSK and GAPDH (housekeeping gene) using a C1000 Touch Thermal
Cycler CFX96TM Real-Time System (Bio-Rad, Shanghai, China) per the Universal SYBR Green qPCR
Supermix (UE, Suzhou, China) instructions. Real-time PCR was triplicated for each cDNA sample.

4.3. Western Blot Analysis

Total protein was isolated using radio immunoprecipitation assay (RIPA) lysate (strong) (Solarbio,
Beijing, China), and the whole process was performed on ice. Proteins were quantified using a
Microplate reader (Molecular Devices, Silicon Valley, CA, USA) following the instructions of a
bicinchoninic acid (BCA) protein quantification kit (Solarbio, Beijing, China). Protein samples were
then separated onto SDS-polyacrylamide gels and transferred electrophoretically to polyvinylidene
fluoride (PVDF) membranes. The membranes were blocked with 5% milk and incubated overnight
at 4 ◦C with anti-CathepsinK (1:1000; ab19027), anti-mTOR (1:1000; CST2983), anti-p-mTOR (1:1000;
CST5536), anti-GAPDH (1:10,000; Proteintech10494-1-p), and anti-Tubulin (1:1000; CST2144). Blots
were incubated with a horseradish peroxidase (HRP)-conjugated secondary antibody (1:3000; CST7074).
Antigens were detected using a luminescence method. Band densities were determined using Image
Lab software (version 5.1, Bio-Rad).

4.4. Immunofluorescence Assays

The cells were incubated successively for fixation and permeation with 4% paraformaldehyde
(Leagene Biotechnology, Anhui, China) and 0.1% TritonX-100 (Leagene Biotechnology, Anhui, China).
After successively incubating the cells with the configured PBST (phosphate buffer saline (PBS)
(Sangon Biotech, Shanghai, China) + 0.1% Tween 20 + 1% BSA + 22.52 mg/mL Glycine) to block the
non-specific binding of the antibody, the slides were rinsed and incubated with the appropriate primary
antibody for Cathepsin K (1:100) overnight at 4 ◦C. The following day, the slides used for IF staining
were incubated with fluorescein-conjugated goat anti-rabbit IgG and subsequently stained with nuclear
dye 4′,6-diamidino-2-phenylindole (DAPI). Finally, the slides were then examined and imaged using
an Olympus fluorescence microscope (fv3000), and the fluorescence intensity was calculated using
Image J software (version 1.48v). In this experiment, 3 images were collected in each group, and each
image outlines 10 cells for fluorescence intensity analysis.

4.5. Proliferation Assays

A Cell Counting Kit (APE×BIO, Houston, TX, USA) was used to evaluate the variation in cell
proliferation, which is based on the dehydrogenase activity detected in viable cells. The formazan dye
generated by dehydrogenases absorbs light at a wavelength of 450 nm. The amount of formazan dye
present in cells is directly proportional to the number of living cells. In brief, 100 µL of cell suspension
(1 × 103) was incubated in 96-well culture plates, and 10 µL of CCK-8 solution was added at the time
set by the experiment. Cells were incubated at 37 ◦C for 2 h. Absorbance was analyzed at 450 nm using
a microplate reader.

4.6. Migration Assays

A migration assay was used to detect the variation in cell migration. A549 cells were plated
in 6-well plates at a certain amount (1 × 106) and allowed to form a confluent monolayer for 24 h.
The monolayer was scratched with a sterile pipette tip (10 µL), followed by a wash with PBS to remove
floating and detached cells. The cells were then imaged (at time 0 h and 24 h) by fluorescent inversion
fluorescence microscopy (Olympus, Tokyo, Japan). Image J software was used to measure the scratch
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area and length of each image at 0 h and 24 h. According to the formula area/length, calculate the
scratch width of the two periods and make the difference of the corresponding image, and the scratch
width difference/corresponding initial width is the respective migration of each group.

4.7. Invasion Assays

The invasion assay was performed using a Transwell 24-well dish with a pore size of 8 µm
(Costar, NY, USA). Mix the serum-free DMEM medium and Matrigel (Corning, Corning, NY, USA) at a
ratio of 6:1 on ice, and added 60 µL to the Transwell chamber. 100 µL of DMEM serum-free medium
cell suspension (5 × 104) was placed in the upper chamber, and 500 µL of DMEM medium containing
20% serum was placed in the lower chamber. The cells were incubated for 24 h at 37 ◦C in 5% CO2,
then fixed in 4% methanol and stained with 0.1% crystal violet. Cells on the upper side of the filters
were removed with cotton-tipped swabs and the filters were then washed with PBS. Cells on the
underside of the filters were examined and counted under a microscope.

4.8. Statistical Analysis

Results were representative of at least three independent experiments, and all values were
expressed as mean ± SEM. Statistical significance (p < 0.05) for each variable was estimated by an
unpaired t-test (two-tailed) or a one-way analysis of variance (ANOVA) followed by a Tukey’s post
hoc analysis.
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