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Abstract

During development of the vertebrate body axis, Hox genes are transcribed sequentially, in both time and space, following
their relative positions within their genomic clusters. Analyses of animal genomes support the idea that Hox gene clustering
is essential for coordinating the various times of gene activations. However, the eventual collinear ordering of the gene
specific transcript domains in space does not always require genomic clustering. We analyzed these complex regulatory
relationships by using mutant alleles at the mouse HoxD locus, including one that splits the cluster into two pieces. We
show that both positive and negative regulatory influences, located on either side of the cluster, control an early phase of
collinear expression in the trunk. Interestingly, this early phase does not systematically impact upon the subsequent
expression patterns along the main body axis, indicating that the mechanism underlying temporal collinearity is distinct
from those acting during the second phase. We discuss the potential functions and evolutionary origins of these
mechanisms, as well as their relationship with similar processes at work during limb development.
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Introduction

Hox genes play essential roles in patterning during the

development of metazoans. In many species, they are found

clustered in the genome, such as in vertebrates, which contain four

Hox gene clusters (HoxA to HoxD), due to the additional two rounds

of genome amplification that accompanied their emergence from

early chordates. These genes are required to confer regional

identities along the rostral to caudal body axis, a task that mostly

depends upon particular combinations of HOX proteins found at

a given anterior-posterior level, since genes of all four clusters are

expressed in largely overlapping domains [1,2]. In mouse,

combined mutations produce drastic effects on the specification

of extended body regions, as exemplified by the inactivation of

genes belonging to the paralogy group 10, which triggered the

appearance of ectopic ribs along the lumbar and sacral regions [3].

Therefore, a precise spatial distribution of these transcription

factors must be orchestrated so as to ensure proper specification.

These regionalized expression domains are in part controlled at

a transcriptional level, by using an intrinsic property of the gene

clusters, conserved from insects to vertebrates and referred to as

spatial collinearity [4–7]: the order of genes along the chromosome

correlates with their successive anterior limits of expression along

the body axis. Vertebrates display yet another type of collinearity

whereby the relative timing of Hox gene activation during

development follows the gene sequence, such that genes lying at

one extremity of a cluster are activated earlier and more rostrally

than genes located near the other extremity [8,9]. Murine Hoxd

genes thus become activated in the most posterior part of the

embryo between late embryonic day 7.75 (E7.75) for Hoxd1 and

early E9 for Hoxd13. This temporal progression was proposed to

be a molecular clock (the ‘Hox clock’) controlling the proper timing

of axial specification by coordinating the rostral-caudal positions of

the various expression boundaries [10]. While this view has found

some support in studies of early limb patterning, where a strong

correlation exists between the onset of Hox gene expression in the

incipient limb bud and the extent of expression along the anterior

to posterior axis [11], the situation in the developing major body

axis appeared more complex.

First, it was noticed early on [12,13] that Hox transgenes could

be expressed with rather faithful anterior boundaries, yet not

necessarily with the exact expression timing. Secondly, targeted

Hox cluster modifications in vivo, which changed the timing of

activation, induced patterning problems even without modification

of the late expression boundaries [14]. Finally, spatial collinearity

is still observed, to some extent, in animals where Hox genes are

not clustered such as the larvacean Oikopleura [15]. Altogether,

these observations suggest that, while gene clustering may be an

absolute requirement for implementing the temporal sequence of

activation (see [10,16,17]), important aspects of spatial regulation

do not require tight clustering.

So far, the relationships between the time of Hox gene activation

and their expression territories have been best documented in

developing limbs (e.g. [11,18]), i.e. in structures which do not
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obligatorily implement the same regulatory mechanisms than

those at work in the developing trunk, to activate this gene family

(see [19,20]). In this work, we assess the importance of genomic

clustering for the temporal and spatial collinear regulations of Hox

genes during the development of the major body axis. We use

mutant mice where the HoxD cluster is split into two independent

sub-clusters, as well as a collection of deletion and duplication

alleles. We show that temporal activation relies upon a balance

between a repressive activity, mediated via the centromeric

neighborhood of the cluster, and an activating effect mediated

by the telomeric region. Remarkably, however, modifications in

this early time sequence are not systematically translated into

concurrent alterations in the subsequent spatial distribution of

transcripts, which mostly depends upon local, interspersed

regulatory elements. Consequently, temporal and spatial collinear

controls appear to be mechanistically uncoupled.

Results

Interruption of Temporal Collinearity
We evaluated whether the integrity of a Hox gene cluster is

essential for temporal collinearity during early trunk development,

by using a targeted inversion that splits the HoxD cluster into two

smaller, independent gene clusters [21]. One of the inversion

breakpoints was located between Hoxd10 and Hoxd11, and the

other at the Itga6 (integrin alpha 6) locus, about 3 megabases (Mb)

centromeric to HoxD. The inversion separates the most ‘posterior’

part of the cluster (Hoxd11, Hoxd12 and Hoxd13) along with the

adjacent 59 region, from the rest (Hoxd10 to Hoxd1), thus allowing

to evaluate the importance of regulatory influences associated with

either the telomeric (Figure 1A, yellow) or the centromeric

(Figure 1A, purple) neighborhoods of the cluster.

We first looked at the early expression of Hoxd11 and Hoxd10,

those genes immediately flanking the breakpoint. At E9, Hoxd11 is

normally transcribed in the most posterior aspect of the embryo,

around the remnants of the primitive streak, as well as in adjacent

mesoderm [22]. In situ hybridizations on mutant embryos carrying

only an inverted cluster showed no detectable Hoxd11 transcripts

at this stage (Figure 1B). We examined progressively later

developmental stages and, until 12.5 days, saw no transcription

of Hoxd11 in the trunk of mutant embryos (Figure 1B, lower

panel). This effect was certainly more dramatic than the delay

observed upon the loss of region VIII alone, a small DNA region

that is deleted in one of the parental strains used for the inversion

[14,21]. Hoxd11, however, was expectedly expressed in the distal

limb domain and the genital bud. These two domains were

previously shown to depend upon late acting, global regulatory

sequences lying centromeric to the cluster that kept the same

relative position with Hoxd11 in the inverted configuration [23,24].

We then looked at both Hoxd12 and Hoxd13 and dramatic

reductions in mRNA levels were scored (Figure 1C and D),

suggesting that a long-range enhancer sequence, located on the

telomeric side of the gene cluster, was required for the activation of

these posterior Hoxd genes in the major body axis. Consequently,

animals homozygous for the inversion lacked the functions of the

three most posterior genes and expectedly displayed an anterior

transformations of the sacral region (Figure S1A, B), thereby

phenocopying the combined loss of function mutations of these

three genes in cis [25,26]. In contrast, and consistent with the

observed gene expression in the developing distal limb, digits

remained unchanged in this inversion.

Repressive Effect from the Centromeric Side
Interestingly, however, this down-regulation of posterior Hoxd

gene transcription could not be entirely explained by moving

genes away from a potential activating sequence, for transgenic

analyses of both the Hoxd11 and Hoxd12 loci had identified local

cis-acting elements capable to elicit expression in the trunk when

integrated randomly in the genome [27,28]. These elements are

present in the sub-cluster containing Hoxd13, Hoxd12 and Hoxd11

and their inability to function in the context of a split cluster thus

suggested a negative effect exerted by the centromeric neighbor-

hood over these transcription units. The analysis of Hoxd10 and

Hoxd9 expression in the same mutant stock, at early stages, showed

premature or elevated expression, respectively, consistent with

these genes escaping such a repressive effect, due to their presence

within the other sub-cluster, i.e. three Mb further apart (Figure 1E,

F). Although this up-regulation was only transient, some mutant

animals displayed clear skeletal abnormalities located at body

levels much more anterior than the late expression boundaries of

the corresponding genes (Figure S1C, D). The appearance of

similar abnormal phenotypes after a transient gain of function was

previously observed for the same gene, yet in a different genetic

context [29]. Altogether, these data suggested the existence of a

regulatory balance between a positive regulation, located telomeric

to the cluster, and a repression, coming from the centromeric side,

both acting on several genes and at a distance, to properly activate

the HoxD cluster in the developing trunk.

Transgene Scanning of the Activation Process
We challenged this view by looking at the timing of activation, in

vivo, of a Hoxd11/lacZ reporter transgene positioned at various

places along the gene cluster via successive loxP-dependent

deletions (Figure 2). Following the above-mentioned hypothesis,

the repressive effect per se exerted on the transgene should not be

modified in such configurations, since only the relative distance to

the activating sequence is progressively reduced. When placed

within the Evx2-Hoxd13 intergenic region, the transgene did not

produce any signal at an early stage (Figure 2A, upper panel).

Likewise, when a small deletion brought the transgene at the

position of Hoxd11, no signal was scored (Figure 2B, upper panel).

However, lacZ activity was detected whenever the transgene was

placed further towards the telomeric extremity of the cluster,

(Figure 2C and D, upper panels), well before the expected

transcriptional onset for Hoxd11 under normal conditions. Because

the largest deletion had removed the entire cluster, leaving behind

Author Summary

Hox genes encode proteins that control embryonic
development along the head-to-tail axis. These genes are
clustered in one site on the chromosome and their
respective positions within the cluster determine their
time and place of activation. Here, by using a large set of
targeted mutations disturbing the integrity of the gene
cluster, we show that the spatial organization of expres-
sion domains does not directly depend upon the timing of
activation as was previously suggested. This uncoupling
between space and time in the regulation of these Hox
genes coincides with the existence of two major phases of
regulation. The first is time-dependent and involves global
regulatory influences, located outside the gene cluster,
whereas the second relies upon more local regulatory
elements, likely interspersed between the genes, inside the
cluster. These results provide the bases for future analyses
of collinear mechanisms and indicate that different types
of collinearities are not necessarily related, neither in
function, nor in their evolutionary histories.

Collinear Regulations of Hox Genes
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Figure 1. A split HoxD cluster reveals both positive and negative regulations for early expression in the developing trunk. (A) The
inversion divides the HoxD cluster into two sub-clusters. In the wild type configuration, the cluster is under the mixed regulatory influences coming
from either the centromeric (purple), or the telomeric (yellow) sides. After targeted inversion (bottom line), 3 Mb separate the centromeric part of the
cluster from the remaining ‘anterior’ part. Hoxd11, Hoxd12 and Hoxd13 are now under the influence of the centromeric neighborhood only (purple),
whereas Hoxd1 to Hoxd10 are associated with the telomeric region (yellow). Red triangles depict loxP sites. (B–F) Each panel is accompanied by a
scheme of the respective sub-cluster, and the gene analyzed is shown in red. (B–D) Wild type (left) and mutant (Inv; right) embryos hybridized with
Hoxd11, Hoxd12 and Hoxd13 probes. In mutant embryos, Hoxd11 expression is completely lost from the trunk (B, upper panel), whereas the
developing limb and genitalia show the expected wild type pattern at E12.5 (B, lower panel). Similar effects are scored for both Hoxd12 (C) and
Hoxd13 (D) at E11.5, showing expression in both limb and genital buds, but no detectable signal in the primary body axis. (E, F) Wild type (left) and
mutant (right) embryos hybridized for Hoxd10 and Hoxd9, which are located in the other sub-cluster. At E8, both Hoxd10 and Hoxd9 show elevated
expression in the developing trunk.
doi:10.1371/journal.pgen.1000398.g001

Collinear Regulations of Hox Genes
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the Hoxd11/LacZ reporter transgene only, we concluded that at

least part of the activation mechanism was located outside the

complex (Figure 2D). Subsequently, however, all transgene

relocations allowed for robust expression (Figure 2, lower panels),

showing that the lack of early transcription was not caused by an

inability to activate the transgene in a given context. Rather, it

reflected a delay in the activation process.

Deletion and Duplication Analyses
We next looked at the impact of various deletions upon the

activation timing of endogenous Hoxd genes located 59 to the

breakpoints, i.e. genes brought closer to the telomeric end of the

cluster. In E8 to E9 embryos, a developmental window during

which the most posterior Hoxd genes are normally silent, we

systematically detected their premature transcription in the deleted

configurations (Figure 3A–I). For example, any deletion which

would bring Hoxd13 closer to the 39 end of the cluster led to its

premature activation, regardless whether it was next to the

breakpoint (Figure 3A, B) or further apart (Figure 3C, D). Similar

effects were observed for Hoxd11 (Figure 3E–H) and for Hoxd10

(Figure 3I).

We then used two alleles carrying internal duplications and

looked at the expression timing of those genes lying centromeric to

the duplicated DNA segments. Three genes placed in such relative

positions were analyzed and displayed a distinct delay in their

transcriptional activation (Figure 3J–L). For example, the cis-

duplication of the Hoxd8 to Hoxd10 DNA segment postponed

activation of both Hoxd11 (Figure 3K) and Hoxd13 (Figure 3J).

Here again, as for premature activations, several adjacent genes

responded in a coherent manner to this regulatory re-allocation,

suggesting the existence of a global, rather than local, mechanism

of activation. Altogether, the relative position of a Hox gene within

the HoxD cluster seems to largely determine its transcriptional

timing in the primary body axis; the closer to the telomeric

extremity, the earlier a gene was expressed in the developing

trunk.

Spatial versus Temporal Collinearities in the Trunk
To assess the relationships between the time of gene activation

and the subsequent distribution of transcript in space, we re-visited

the dynamics of Hoxd expression territories along the major body

axis. The first transcripts were scored at the basis of the allantois,

at the most posterior aspect of the gastrulating embryo (e.g.

Figure 3A). Soon after, transcripts appeared in various mesoderm

derivatives and in the neural plate, in a precise sequence that was

best determined for Hoxd10 to Hoxd13. In mesoderm, transcripts

were first detected as two distinct lateral lines, matching the lateral

plate mesoderm, rather than in PSM or in the neural plate.

Positive cells were found from about the level of the joining of the

splanchnopleural and somatopleural layers of the lateral plate

mesoderm (Figure 4; arrowheads), slightly ventral to the

intermediate (nephric) mesoderm whenever the section was rostral

enough to identify this latter structure (not shown). Subsequently,

however, expression of these posterior Hoxd genes was clearly

observed within paraxial mesoderm, still in the presomitic areas, as

well as in the adjacent spinal cord (Figure 4).

We investigated whether this generic progression in gene

activation was conserved when the timing of activation was

changed or, alternatively, if the mutant genomic context would

modify tissue specificity along with the time variation. The general

tendency is exemplified by the case of Del(8-10), where premature

activation of Hoxd11 was detected in the mesoderm of the body

Figure 2. Transgene scanning of the HoxD cluster. (A–D) Expression patterns of the same Hoxd11/lacZ transgene after deletion of various DNA
segments located telomeric from its insertion site. From left to right (schemes on the top): TgH[d11/lac], Del(11-13), Del(4-13) and Del(1-13). At E8.5
(top panels), only Del(4-13) and Del(1-13) (A–D) embryos show beta-gal expression in mesoderm derivatives. At E9.5 (lower panels), however, all
configurations show staining in the primary body axis. Similar time dynamics are observed for transgene activation during limb outgrowth, such that
only the Del(4-13) and Del(1-13) embryos are expressed in limb buds at E9.5 (C,D).
doi:10.1371/journal.pgen.1000398.g002

Collinear Regulations of Hox Genes
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wall, yet not in the most dorsal cells (Figure 4). As for the wild type

situation (but here in younger embryos), mesodermal expression

was initially scored ventral to the pre-somitic mesoderm, whereas

no transcripts were detected in neuro-epithelial cells. Subsequent-

ly, when Hoxd11 appeared in the wild type embryo (Figure 4E), the

mutant embryo, at a similar body level, was already positive for

these transcripts in lateral plate mesoderm, in pre-somitic

mesoderm as well as in the closing neural tube (Figure 4F). We

concluded that premature Hoxd gene activation along the major

body axis did not induce indiscriminate ectopic gene expression.

Instead, premature activations followed the expected sequence in

the detection of signals, within the various embryonic layers.

In marked contrast, no coherent impact on transcript

distribution could be scored in our mutants, when analyzed at

later stages. For example, the expression of both Hoxd9 and

Hoxd11 was largely anteriorized, whenever the adjacent DNA was

deleted up to the Hoxd4 locus (Figure 5B, F). This was usually not

the case for those genes located at more centromeric positions:

while Hoxd9 was clearly anteriorized in the Del(i-8) when placed

near Hoxd4 (Figure 5B), Hoxd10 showed a wild type expression

pattern in the same deletion (Figure 5C and data not shown),

indicating that whatever the nature of the underlying mechanism

is, it may act locally rather than at a global level. Two deletions

sharing the same telomeric breakpoint confirmed this observation:

Figure 3. Expression onset in the trunk depends on the respective distance to the telomeric extremity. Mutant configurations are
depicted on the top, with Evx2 in black and the analyzed gene in red. Wild type embryos are always shown on the left of each panel, next to a
representative mutant embryo, on the right. (A–I) E8 to E9 embryos hybridized either with a Hoxd13 (A–D), a Hoxd11 (E–H) or a Hoxd10 (I) probe. In
some cases, the gene tested is not directly neighboring the breakpoint, but lies further in 59 (C, D, H and I). For all deletion alleles, expression is up-
regulated in the mutant embryos, as compared to age-matched controls. The onset of expression was scored near the most posterior aspect of the
embryo (e.g. Hoxd13 in A). (K–M) Analysis of two duplication alleles, Dup(i-10) (J, K) and Dup(i-9) (L). E8.5 to E9 control (left) and mutant (right)
embryos were hybridized with either Hoxd13 (K), Hoxd11 (L) or Hoxd10 (M) probe and, in all three cases, signal accumulation was evident in control
embryos, whereas undetectable in mutant specimens, indicating a delay in transcriptional activation for those genes that were relocated away from
the telomeric end of the cluster.
doi:10.1371/journal.pgen.1000398.g003

Collinear Regulations of Hox Genes
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firstly, Hoxd11 was expressed too anteriorly in Del(i-10) mutant

embryos, the ectopic domains recapitulating Hoxd4 specific

domains (Figure 5F).

Secondly, a shorter deletion leaving in place a gene-free DNA

fragment (Del(8-10)) did not elicit the same response, even though

the relative position of Hoxd11 towards the telomeric part the

cluster was as in the Del(i-10) allele (Figure 5E). In this case, the

intergenic DNA fragment located between Hoxd8 and Hoxd4,

present in Del(8-10) but removed from Del(i-10), likely isolated

Hoxd11 from enhancers located around Hoxd4. Interestingly, these

two deleted alleles displayed similar timing of premature

activations (see Figure 3E and F). Therefore, while the effect of

changing a gene’s position upon its timing of activation was highly

predictable, its subsequent spatial expression domain was

impossible to anticipate. This observation was echoed by other

alleles where neighboring gene expression was drastically reduced,

if not abrogated. For example, the combined deletion of Hoxd9 to

Hoxd12 led to the disappearance of Hoxd13 expression in the tail

and tailbud (Figure 5; compare G to I). However, when the extent

of the deletion was slightly decreased, some expression was

recovered (Figure 5H). More importantly, no anterior gain of

expression was scored for either configuration, despite premature

activation at earlier stages (compare to Figure 3A, B). Altogether,

these spatial reallocations of transcript domains could be best

explained by local, context-dependent modifications due to the

effects of various breakpoints upon nearby-located enhancer

Figure 4. Premature activation of posterior Hoxd genes follows the wild type progression in tissue specificity. (A, D, G) Schemes of
embryonic stages shown in the right panels. The orientations of section(s) are indicated by dashed line. Progression of the Hoxd11 expression pattern,
either in wild type (B, E, H), or in Del(8-10) mutant embryos (C, F, I). After initial activation at the posterior tip, expression is first scored as two lateral
lines, within lateral plate mesoderm only, starting at about the dorso-ventral level of the junction between the future splanchnopleure and
somatopleure (E, arrowhead). Subsequently, the gene becomes activated more dorsally, in paraxial mesoderm as well as in the neural tube (H). The
same temporal sequence of tissue specificity is maintained for Del(8-10) mutant embryos, even though it was advanced in time (C, F, I). At E8.5
expression is indeed already apparent in mutant lateral plate mesoderm, whereas the wild type embryo is still devoid of any Hoxd11 transcripts
(compare C to B). Half a day later, expression has expanded into paraxial mesoderm and the neural tube in mutant embryos (F), while in wild type
specimen transcripts just appear in lateral plate mesoderm (E). Both wild type and mutant embryos show the same Hoxd11 expression pattern at E9.5,
with lateral plate mesoderm, paraxial mesoderm and the neural tube all scoring positive (H, I). Bar is 50 mm. ne, neurectoderm; pm, paraxial
mesoderm; lpm, lateral plate mesoderm.
doi:10.1371/journal.pgen.1000398.g004

Collinear Regulations of Hox Genes
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Figure 5. Spatial collinearity is independent of the timing of transcriptional onset. Hoxd gene expression patterns in a set of nested
deletions. Schemes are as for Figure 3. (A–C) E10.5 wild type (A) and Del(i-8) mutant (B, C) embryos hybridized with a Hoxd9 (A, B) or a Hoxd10 (C)
probe. Hoxd9, the gene neighboring the breakpoint shows both up-regulation and anteriorization in the neural tube (arrow) and the paraxial
mesoderm (arrowhead) (B), whereas Hoxd10, located one transcription unit further away, follows its wild type expression patterns (C), unlike what
was detected for the timing of activation. (D–F) E12.5 wild type (D) and mutant (E, F) embryos hybridized with a Hoxd11 probe. Del(8-10) embryos
have decreased Hoxd11 expression levels in both the trunk and limbs, yet show largely wild type spatial distribution (E). Del(i-10) embryos display
dramatic anterior gains of expression for Hoxd11 in the neural tube (arrow), mesoderm derivatives (arrowhead) and branchial arch derivatives
(asterisk) (F), caused by deleting the intergenic region ‘‘i’’ (in blue in schemes D, E). (G–I) E11.5 wild type (G) and mutant (H, I) embryos hybridized with
a Hoxd13 probe. While a down-regulation of Hoxd13 is observed in the trunk of Del(9-12) embryos (I), no obvious difference with respect to wild type
embryos is scored for Del(10-12) (H).
doi:10.1371/journal.pgen.1000398.g005

Collinear Regulations of Hox Genes
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sequences, rather than as direct consequences of the modified

timing of activation.

Centromeric Repression on the Deletion Alleles
We also analyzed the expression dynamics of genes lying

telomeric of various breakpoints in our deleted stocks. After

deletions, these genes occupied relative positions closer to the

‘repressive influence’ emanating from the centromeric neighbor-

hood, whereas their positions with regard to the telomeric side of

the cluster remained unchanged. In E8 to E9.5 embryos, genes

brought closer to the centromeric extremity via a deletion were

consistently down-regulated, as exemplified by Hoxd3, Hoxd4 and

Hoxd9 (Figure 6A–H). The same effect was scored for genes lying

further away from the breakpoint, such as Hoxd3 in the Del(i-10)

and Del(8-9) (Figure 6B, C). Repression from the centromeric side

contributed to this phenomenon, as transgenic approaches could

exclude the deletion of distant promoters as the sole causative

factor. Such transgenic analyses have defined local regulatory

elements, as well as promoters, driving spatially correct expression

for Hoxd4 [30,31]. Although these remained undisturbed, a clear

down-regulation of Hoxd4 was noticed (Figure 6A). Likewise, the

observed weakening in Hoxd9 transcription (Figure 6H, L) recalled

Figure 6. Attenuated transcription for Hox genes moved towards the centromeric end of the cluster. Expression patterns of Hoxd3,
Hoxd4 and Hoxd9 in embryos carrying deletions in 59 of these genes. Schemes and colors are as for Figure 3. (A–H) wild type (left) and mutant (right)
embryos at E8–E9. Genes brought closer to the centromeric end of the cluster following a deletion systematically show reduced expression during
early embryogenesis. A similar robust down regulation is observed in the mesoderm of Del(8-9) embryos for both Hoxd4 (A) and Hoxd3 (C), whereas
expression persists in the anterior neural tube. In Del(i-10) mutant embryos (B, F) the signal for both Hoxd4 (F) and Hoxd3 (B) is decreased in the
mesoderm as well as in the neural tube. Expression of the posterior gene Hoxd9 disappears in pre-somitic mesoderm upon relocation closer to the
centromeric side of the cluster (H). (I–L) Dorsal views of bisected and reconstituted pictures of wild type (left half) and mutant (right half) embryos at
E11.5. Arrowheads demarcate anterior expression limits in the mesoderm. The same mutant alleles as in (E–H) are shown at a later developmental
stage. Unlike for early embryos, no coordinated changes are observed. Expression of Hoxd4 is posteriorized in the mesoderm of both Del(i-8) (I) and
Del(i-10) (J). Changes in expression levels are observed for Hoxd3 in Del(4-9) (K) and Hoxd9 in Del(10-12) (L), yet both genes retain their wild type
anterior expression boundary.
doi:10.1371/journal.pgen.1000398.g006

Collinear Regulations of Hox Genes
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an earlier observation whereby a Hoxd9/LacZ transgene was

down-regulated when transposed into the Evx2 to Hoxd13

intergenic region [32].

Although we observed a clear posteriorization for Hoxd4 in the

mesoderm at later stages that became more pronounced the

closer the gene was brought to the centromeric extremity

(Figure 6I, J; arrowheads), other genes retained their anterior-

posterior expression boundaries, yet changing their level of

expression: in Del(9-4) mutant embryos, Hoxd3 showed a slight

but consistent increase of expression (Figure 6K), whereas a

deletion sharing the same 39 breakpoint (Del(11-4)) induced a

decrease for the same gene (data not shown). Also, Hoxd9 was

down-regulated in the trunk when moved next to Hoxd13

(Figure 6L). Expression analysis of genes located in 39 of the

breakpoints at these later stages thus did not reveal any coherent

tendency. Rather, the diversity of the observed modifications

pointed to independent, local regulatory reallocations, similar to

what happened to Hoxd genes lying in 59 of the respective

breakpoints. Therefore, gene position with respect to either the

centromeric, or telomeric extremities of the Hoxd gene cluster did

not substantially affect spatial collinearity, in contrast to our

observations regarding temporal collinearity.

Discussion

Does Time Fix Space?
Ever since collinearity was reported in vertebrates, pointing to a

functional conservation between the way arthropods and verte-

brates organize their body plans [4,6], both the underlying

molecular mechanisms and the nature of the associated evolu-

tionary constraints have been discussed (see [16,17,33]). Differ-

ences in developmental strategies between diptera and vertebrates

made it unlikely that the same genetic cascade would act upstream

the Hox gene family. In search for an alternative mechanism, the

observation of temporal collinearity, in vertebrates, suggested the

timing of Hox gene activation as an important parameter in

establishing the positions of the future transcript domains.

However, while vertebrate Hox genes need to be clustered to

properly achieve temporal control, clustering is not essential in all

cases where spatial collinearity is observed (e.g. [15]). Here, we

further challenged the causal link between temporal and spatial

collinearities during trunk elongation in the mouse and we

conclude that the final collinear distribution of Hoxd gene

expression domains along the developing body axis is not strictly

the function of their timing of activation during early develop-

ment.

Our approach reveals a correspondence between the location of

a gene relative to both extremities of the cluster and its timing of

transcription, whereby proximity to the telomeric end is translated

into precocity of activation. Accordingly, the onset of gene

activation is likely controlled by a timing mechanism originating

in the telomeric neighborhood of the HoxD cluster. Since this early

mechanism seems to be shared by developing limb buds [11], we

confirm the suggestion that it was co-opted from the trunk to

tetrapod limb. However, unlike in developing limbs, we failed to

see a coherent impact of our engineered heterochronies on the

spatial distribution of transcripts along the anterior-posterior axis

at later stages. At these stages, transcript distributions mostly

depend upon local regulations, interspersed within the gene

cluster, in marked contrast with the early events observed by using

the same mutant strains, implying that different mechanisms exist

for the early temporal and late spatial collinear processes in the

trunk (Figure 7).

Two Phases of Hox Gene Regulation in the Major Body
Axis

These mechanistic differences support the existence of at least

two distinct phases in the activation of Hox genes during axial

development [8]; first a time-sequenced activation along the

primitive streak and the node, controlled by globally acting

opposite regulatory influences, followed by a second wave of

activation controlled by local cues in tissues derived from these

cells such as the various mesoderm derivatives and the

neurectoderm. A biphasic activation [34,35] could also explain

why some early defects associated with temporal perturbations

were transient and not carried along to later stages of development

[32], as they only affect the early phase.

The mechanism involved in the late phase of activation may

involve local effects such as enhancer sharing and/or competition

[36], which could be easily disturbed in our genetic configura-

tions leading to unpredictable outcomes. Regarding the early

temporal activation, while global regulatory influences may rely

upon remote enhancer sequences (e.g. [24]), they could as well

involve, or be combined with-, processes such as chromatin

modifications or chromosome looping [37]. For instance, the

premature activations described in our set of deletions might

reflect the successive removal of sequences, which evolved within

the cluster to secure proper repression. While we do not rule out

such a possibility, we think it can hardly account for some

previously published results. In particular, a full inversion of the

HoxD cluster lead to the premature activation of the inverted

‘posterior’ genes, even though, internally, the gene cluster

remained untouched [38].

Functions of Collinear Regulations
The respective functional contribution of each phase of

activation to the primary body axis is unclear. In the mouse

embryo, while the necessity to establish correct expression

boundaries has been largely documented through various genetic

approaches, the function of the early temporal sequence of

activation is less explicit. Because this temporal process has been

thus far associated only with animals where (an) integral Hox gene

cluster(s) is (are) present, it may be one of the major constraints

that kept Hox genes together. The analyses of additional animal

species will be informative in this respect.

Both instructive and restrictive contexts can be considered (non-

exclusively) when looking for the ‘raison d’être’ of temporal

collinearity. In the former, a need exists for a precise time-

sequence in the transcriptional activation of these genes and

important direct functional outputs of this process may occur,

perhaps at a time and in a cellular population that have so far

escaped our analyses. An example of such an early mechanism is

the observed delay in ingression, during gastrulation, of epiblast

cells containing abnormal combinations of HOX proteins [39].

Alternatively, temporal collinearity simply illustrates the necessity,

for the developing embryo, not to activate the most posterior Hox

gene(s) too early, a situation detrimental to embryonic develop-

ment. This is suggested both by the early lethality associated with

the inversion of the complete HoxD cluster, Hoxd13 becoming

activated at the expected time for Hoxd1 [38], and by the

premature expression of Hoxd10 and Hoxd9 in the split cluster (this

work). Whichever mechanism evolved to prevent the most

posterior gene(s) to be expressed too early may have incidentally

generated a graded timescale for those genes located in between

and hence this series of genes is transcribed following their

genomic order, without any particular functional relevance in

itself.

Collinear Regulations of Hox Genes
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Fossil Regulations
The question as to which type of collinearity evolved first, i.e.

whether the time-sequence preceded the spatial organization of

the expression domains, or vice versa [40,41] is concerned with the

segmental status of the ancestral animal where this genetic system

was implemented. If this animal indeed had a meristic organiza-

tion, as a result of a time-sequenced addition of segments, it makes

sense that temporal collinearity was already at work there and was

then used as a ground for evolving spatial collinearity. In this case,

particular collinear Hox expression domains found in animals

having lost this developmental time sequence, such as in diptera,

may have been progressively taken over by different regulatory

mechanisms, disconnecting space from time (such as gap genes).

The evidence is compelling, however, that even animals

containing an atomized Hox gene cluster still show reminiscences

of spatial collinearity, suggesting that the timing mechanism was

built on the top of an already constrained gene cluster. Altogether,

we consider it unlikely that an animal species will ever be found,

which contains a broken Hox gene cluster, develops following a

simultaneous segmentation process and implements temporal

collinearity. Accordingly, any species displaying a clear time

sequence in the ontogeny of its metameric aspect should have an

intact Hox cluster, associated with a transcriptional time-sequence.

Also, it should not be taken for granted that the ancestral Hox gene

collinear function will still be found in extant animal species.

Different collinear mechanisms can co-exist with one another and

the implementation of a collinear regulation may have paved the

way for its replacement by a more efficient strategy. For example,

a mere distance effect to a remote enhancer could set up a time

sequence in the appearance of transcripts encoded by contiguous

genes, a situation selected due to a particular adaptive value. Once

in place, this genomic topology may facilitate the evolution of yet a

different progressive regulation, for example the spreading of

chromatin modifications. Over time, the accumulation of such

secondary mechanisms could take over the initial constraint for

these genes to remain clustered, making it possible for an ancestral

mechanism to turn into a fossil regulation and disappear from this

particular phylogenetic branch.

Figure 7. A two-phases model for the establishment of temporal and spatial collinearities of Hoxd genes in the trunk. Distinct
mechanisms underlie the two collinear processes in the trunk. (A) In an early phase, a time-sequenced activation occurs, resulting from a balance
between a repressive influence coming from the telomeric neighborhood (red), on the one hand, and a positive influence originating from the
telomeric side (green), on the other hand. Initial activation starts from the telomeric side to subsequently expand over the entire length of the cluster
in a 39 to 59 sequence. The gene’s relative position within the cluster determines its timing of activation, in a distance-dependent manner. Active
genes are shown with a black arrow, whereas silent genes are labeled with a red X. Approximate developmental stages are schematized on the right
hand side with expression domains of the last activated genes highlighted in blue. (B) Subsequently (late phase), spatial transcript distribution along
the anterior-posterior axis (as well as tissue-specificity) is determined by local regulatory elements, operating once the initial activation has occurred.
Activating (green arrows) and repressive (red bars) elements can be shared by neighboring genes in a wild type situation. These elements can
ectopically activate genes when relocated adjacent to them. The schematized E12.5 embryo on the right shows anterior (light blue) to posterior (dark
blue) gene transcript distribution in both the neural tube and the paraxial mesoderm.
doi:10.1371/journal.pgen.1000398.g007
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Materials and Methods

Mouse Strains and Crosses
The mutant strains used in this study, except for the Del(4-9)

allele, were described previously: The inversion allele Inv(Itga6-

HoxDrVIII) was obtained by sequential targeted recombination

(STRING; [21]). The targeted Hoxd11-lacZ transgene TgH[d11/

lac] and the associated Del(11-13), Del(4-13) and Del(1-13) were

produced using loxP/Cre mediated site-specific recombination in

ES cells [25,32,42,43]. The remaining set of deletion and

duplication alleles were all produced in vivo using targeted meiotic

recombination (TAMERE; [44]: Del(1-10) [38]; Del(i-9), Del(8-

10), Del(9-10), Del(10) [45]; Del(i-8), Del(i-10), Del(9-12), Del(10-

12), Dup(i-9), Dup(i-10) [11]. The Del(4-9) allele was obtained by

TAMERE, using as parental lines the Del(4-13) and L5, the latter

strain carrying a single loxP sites between Hoxd10 and Hoxd9 [45].

Crosses were generally carried out using animals heterozygous for

the respective alleles. For those crosses involving duplication

alleles, the mother was heterozygous for a chromosome deficient

for the gene to be analyzed such that +/Del embryos were used as

control and Dup/Del as experimental embryos.

These experiments are in agreement with the Swiss law

concerning animal protection. They are subject to an official

authorization delivered by representative of the government.

Genotyping
Genotyping was performed on isolated yolk sac DNA using

either simplex or duplex PCR protocols. Mutant and control

embryos were marked before performing WISH for subsequent

identification. Embryos younger than E10 were re-typed after

WISH, using standard DNA extraction procedures [46].

In Situ Hybridization and Histology
Noon on the day of the vaginal plug was considered as E0.5.

Embryos were dissected in PBS and fixed from 4 h to overnight in

4% PFA. Whole mount in situ hybridization (WISH) was

performed according to standard protocols, with both mutant

and control embryos processed in the same well to maintain

identical conditions throughout the procedure. Probes were as

before: Hoxd3 [47], Hoxd4 [48], Hoxd8 [49], Hoxd9 [50], Hoxd10

and Hoxd11 [51], Hoxd12 [22], Hoxd13 [52]. Whole mount

detection of beta-galactosidase reporter activity was carried out as

described [53]. Embryos were dissected in PBS and fixed shortly in

2% PFA for 59 to 159. For histology, embryos after WISH were

cryoprotected in 30% sucrose and embedded in OCT compound.

Sectioning was performed on a Leica CM1850 cryostat at 12–

16 mm.

Supporting Information

Figure S1 Phenotypic alterations in the axial skeleton of mice

with a split HoxD cluster. Newborn animals were processed and

stained for bone (alizarin red) and cartilage tissues (alcian blue). (A)

Incidence of different lumbar vertebral formulae in wild-type,

heterozygous and homozygous mutant animals. L5/6 and L6/7

indicate unilateral transformations of the first sacral vertebrae. (B)

Complete transformation of the first sacral vertebra into a lumbar

identity (S1.L7) in a homozygous mutant (right), as compared to

the L6 formula observed in wild-type specimen (left) (C)

Misalignment of the first rib to the sternum (#) and fusions of

sternebrae four and five (*) in a homozygous mutant. (D) Seventh

cervical vertebrae (C7) of heterozygous and homozygous animals

showing ectopic bony material protruding from the transverse

processes (arrowheads).

Found at: doi:10.1371/journal.pgen.1000398.s001 (1.45 MB TIF)
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