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Abstract

Aim of the study: Hepatocyte transplantation has been discussed as an alternative to liver transplantation in 
selected cases of acute and chronic liver failure and metabolic diseases. Immediately after infusion of hepatocytes, 
hypoxia-related cell injury is inevitable. N-acetylcysteine (NAC) has been suggested to attenuate hypoxic damage. 
This study’s objective was to evaluate NAC’s protective effect in a model of hypoxia-related hepatocyte injury.

Material and methods: HepG2 cells were used as a model for hepatocytes and were cultured under standard-
ized hypoxia or normoxia for 24 hours with or without NAC. Growth kinetics were monitored using trypan blue 
staining. The activation of apoptotic pathways was measured using quantitative real-time PCR for Bcl-2/Bax and 
p53. The proportions of vital, apoptotic and necrotic cells were verified by fluorescence activated cell sorting 
using annexin V-labelling. The expression of hypoxia inducible factor 1 (HIF-1) was measured indirectly using its 
downstream target vascular endothelial growth factor A (VEGF-A).

Results: After NAC, cell proliferation increased under both hypoxia and normoxia by 528% and 320%  
(p < 0.05), while VEGF-A expression decreased under normoxia by 67% and 37% (p < 0.05). Compared to cells 
treated without NAC under hypoxia, the Bcl-2/Bax ratio increased significantly in cells treated with NAC. This 
finding was confirmed by an increased number of vital cells in FACS analysis.

Conclusions: NAC protects hepatocytes from hypoxic injury and ultimately activates anti-apoptotic pathways.
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lead to decreased function and viability. Furthermore, 
cells from split livers or reduced-size liver procedures 
can be used [4]. Other sources of hepatocytes have 
been explored, but to date the differentiation of mes-
enchymal stromal cells (MSC), embryonic stem cells 
(ES) and induced pluripotent stem cells (iPS) to he-
patocytes has only been used in in vitro models [5-10].

Groth et al. treated hyperbilirubinemia in glucu-
ronyltransferase-deficient rats by intraportal trans-
plantation of hepatocytes [11]. Besides intraportal ap-
plication of hepatocytes, the spleen, peritoneum and 
the renal capsule have been investigated as potential 
sites for HT [12]. In 1998, a 10-year-old girl with Cri-
gler-Najjar syndrome was treated by HT [13].

Introduction

In acute and chronic liver failure, liver transplanta-
tion (LT) is the only curative treatment available. Since 
there is a lack of donor organs, there is an ever-grow-
ing discrepancy between patients on the waiting list 
and the number of LTs performed, consequently lead-
ing to a high waiting-list mortality [1, 2].

Initially, hepatocyte transplantation (HT) was ex-
plored in animal studies. Since the 1960s there have been 
attempts to perform hepatocyte transplantation as an al-
ternative to LT and to use it as a bridging technique [3].

Cells isolated from rejected donor organs can be 
used for HT, but may be of poor quality, which can 



Clinical and Experimental Hepatology 4/2018

N-acetylcysteine protects hepatocytes

261

To achieve a clinically relevant effect, 2.8 × 107 to 
3.9 × 1010 cells have to be transplanted [1, 14, 15]. Due 
to the risk of thromboembolism and portal hyperten-
sion, the total number of cells that can be transplanted 
in a  single session is limited [16]. Moreover, the en-
graftment rates of transplanted hepatocytes are as low 
as 0% to 12%. In most reported cases, HT was not fully 
curative and patients had to be bridged towards LT [1].

An increased rate of viable and engrafted hepato-
cytes could be considered as a major improvement. At 
least in part, the underlying problem can be attribut-
ed to hypoxia during cell transplantation, but several 
other factors limit the amount of cells that integrate 
and function as hepatocytes after transplantation [17]. 
Cryopreservation of hepatocytes is a main contributor 
to decreased viability before cell transplantation and 
can impair hepatocyte function [18].

Another limiting factor is that only a small propor-
tion of cells is able to pass the endothelial lining as well 
as the fact that the portal venous blood is already de-
saturated and therefore sufficient oxygen supply can-
not be guaranteed [1, 19]. Since the number of avail-
able cells is limited, the viability of these cells needs to 
be optimized.

N-acetylcysteine (NAC) is a  well-known antioxi-
dative agent which protects multiple organs and cells 
from ischemic and other damage. Hepatoprotective, 
anti-inflammatory, immunomodulatory and kidney-
protective effects have been demonstrated [20-26]. 
Due to its chemical structure, it can act as a  gluta-
thione (GSH) precursor and substitute [27]. In acet-
aminophen-induced liver failure, the intravenous ap-
plication of NAC is the treatment of choice [28]. The 
protective effect is based on the promotion of hepatic 
GSH synthesis and reduced protein binding [29]. In 
a prospective, double blind trial with 173 patients with 
acute liver failure, patients were treated with NAC or 
a placebo [30]. Transplant-free survival increased from 
27% in controls to 40% in patients treated with NAC  
(p = 0.043). A recent randomized controlled trial found 
an attenuated increase in liver enzymes, lower serum 
CRP levels and a significantly decreased hospital stay 
after liver resection in cirrhotic patients after NAC 
[31]. In a recent retrospective analysis of patients with 
idiosyncratic liver injury after flupirtine, a  combined 
treatment with NAC and prednisolone was shown to 
decrease AST, ALT and INR levels [32]. Taken togeth-
er, there is considerable evidence from clinical data 
underlining the clinical efficacy and importance of 
NAC as a liver protective agent. 

At least in part, the hepatoprotective effect of NAC is 
related to GSH replenishment. Furthermore, NAC im-
proves mitochondrial energy metabolism through in-

duction of mitochondrial enzymes including increased 
levels of pyruvate dehydrogenase [29, 33, 34]. More-
over, NAC can inhibit NF-κB and pro-inflammatory 
cytokines such as interleukin-1 and tumour necrosis 
factors, which play a pivotal role in the regulation and 
induction of apoptosis [27, 35, 36]. In addition, NAC 
has a  positive impact on the microcirculatory blood 
flow and tissue oxygenation [37]. Some authors have 
hypothesized that NAC leads to an improved outcome 
in terms of decreased postoperative transaminases and 
improved liver function after LT [38].

In regard to HT, the physiological role of NAC has 
not been fully investigated yet [33]. Therefore, this 
study aims to evaluate the protective effect of NAC in 
a model of hypoxic HT.

Material and methods

Cell culture

Hep G2-cells were used as a model for human he-
patocytes and were cultured in normoxic and hypox-
ic conditions on 24-well plates. In each well, 80 × 105 
cells were used. Cells were cultured for 48 hours using 
high glucose DMEM (PAA Laboratories GmbH, Pas-
ching, Austria), supplemented with 10% FBS (PAA 
Laboratories GmbH, Pasching, Austria) and 10% pen-
icillin/streptomycin (Biochrom AG, Berlin, Germany) 
at 37°C in 5% CO2 humidified atmosphere. In a pilot 
study preceding the described experiments, ascending 
concentrations of NAC (0.1-10 mM) were used. An ef-
fect was detected when a concentration of 2 mM was 
used. With higher concentrations, there was no statis-
tically significant increase of the detected effect. Thus, 
a  concentration of 2 mM was employed for the ex-
periments presented here. After 48 hours, the culture 
medium was changed to DMEM supplemented with 
(groups 2 and 4) or without (groups 1 and 3) 2 mmol/l 
NAC (Carl Roth GmbH, Karlsruhe). Groups 1 (Norm) 
and 2 (NAC/norm) were cultured at standard condi-
tions in a humidified atmosphere at 37°C and 5% CO2. 
Groups 3 (Hypo) and 4 (NAC/hypo) were cultured 
using a modular incubator chamber (Billups-Rothen-
berg, Del Mar, USA) at 37°C in 5% O2 for 24 hours. In 
each group triplets were used for each assay.

Growth kinetics

To monitor growth kinetics trypan blue staining 
was used as described elsewhere [39]. Briefly, the cell 
solution was diluted using an equal volume of Trypan 
blue 0.5% (w/v) (Biochrom AG, Berlin, Germany) and 
10  µl were transferred to a  Neubauer improved cell 
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counting chamber and mean values and standard de-
viations were calculated.

Fluorescence activated cell sorting

To measure the proportion of vital, apoptotic and 
necrotic cells annexin V/propidium iodide labelling was 
performed and a FACSCalibur Cell Analyzer (Becton 
Dickinson, Heidelberg, Germany) was used. Cells were 
washed and incubated in FITC-annexin V (1 mg/ml) 
solution for 10 minutes. Subsequently, propidium io-
dide solution (1 mg/ml) was added. The assessment of 
cells was done using CellQuest Software (Becton and 
Dickinson, Heidelberg, Germany). 

Quantitative reverse transcriptase quantitative 
polymerase chain reaction

The mRNA expression of pro- and anti-apoptotic 
markers was analyzed using qRT-PCR. The expres-
sion of p53, Bax and Bcl-2 was measured. Moreover, 

VEGF-A expression was analysed to evaluate the cells’ 
reaction to conditions.

The RNeasy Mini Kit (Qiagen GmbH, Hilden, 
Germany) was used to isolate mRNA from the sam-
ples and the First Strand cDNA Synthesis Kit (Roche 
Diagnostic GmbH, Mannheim, Germany) was used 
for the transcription into cDNA. Quantitative PCR 
was done using the StepOne Real-Time PCR System 
(Applied Biosystems, Foster City, USA) with Power 
SYBR Green PCR Master Mix (Applied Biosystems, 
Warrington, UK). The analysis was done by the ΔΔCT 
method using the StepOne Software 2.1 (Applied Bio-
systems, Foster City, USA).

Custom primers were used for Bax, Bcl-2, p53 and 
VEGF-A. GAPDH was used as an endogenous control 
for Bax, BCL-2 and p53, and β-actin was used as an 
endogenous control for VEGF-A (Table 1).

Statistics

For descriptive presentation of data, mean val-
ues and standard error are used. Analysis of variance 
(ANOVA) was used for statistical testing and p < 0.05 
was considered statistically significant.

Results

Growth kinetics

Initially 80 × 105 cells were seeded in each well. 
After incubation for 72 hours in a humidified atmo-
sphere the cell count increased in all groups. While 
there was not a  significantly different cell count be-
tween normoxic (256 × 103 ±24 249) and hypoxic  
(260 × 103 ±77 382) conditions, NAC significantly in-
creased cell counts to 696 × 103 ±100 936 (p = 0.01) 
and 442 × 103 ±6928 (p = 0.05) under normoxic and 
hypoxic conditions (Fig. 1).

Fluorescence activated cell sorting

Under normoxic conditions, the proportion of vital 
cells increased from 82% to 94%, while the amount of 
necrotic and apoptotic cells decreased from 15% to 5% 
and from 3% to 1%. Under hypoxic conditions the num-
ber of vital cells decreased from 82% to 68% compared 
to normoxic conditions while the proportion of apoptot-
ic and necrotic cells increased from 3% to 5% and from 
15% to 27%. NAC increased the number of vital cells  
under hypoxic conditions from 68% to 80%. While there 
was no difference for apoptotic cells, the proportion of 
necrotic cells decreased from 27% to 15% (Fig. 2). 

Table 1. Primers used for qRT-PCR analysis

Name Primer

GAPDH forward ATGACTCTACCCACGGCAAG

GAPDH reverse GGAAGATGGTGATGGGTTTC

Bax forward GCAGATCATGAAGACAGGGG

Bax reverse ACACTCGCTCAGCTTCTTGG

Bcl-2 forward GAACATTTCGGTGACTTCCG

Bcl-2 reverse CCTGTTGATCATCCCTGGAG

p53 forward CCCAAGCAATGGATGATTTGA

p53 reverse GGCATTCTGGGAGCTTCATCT

β-actin forward GAAATCGTGCGTGACATTAAGG

β-actin reverse TCAGGCAGCTCGTAGCTTCT

VEGF-A forward CTTGCCTTGCTGCTCTACC

VEGF-A reverse CACACAGGATGGCTTGAAG

Norm	 NAC/norm	 Hypo	 NAC/hypo

Fig. 1. Cell proliferation. Number of cells after 72 hours. Norm: 256 × 103 
±24 249. NAC/norm: 696 × 103 ±100 936 (p = 0.01). Hypo: 260 × 103  
±77 382. NAC/hypo: 442 × 103 ±6928 (p = 0.05)
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Quantitative reverse transcriptase quantitative 
polymerase chain reaction

In NAC-treated cells under normoxia, the ex-
pression of the apoptotic markers decreased signifi-
cantly. Bax expression decreased by the factor 0.34 
(p = 0.0017), Bcl-2 expression decreased by 0.31  
(p = 0.0031) and p53 expression decreased by 0.58  
(p = 0.0094). There were no significant changes in the 
Bcl-2/Bax ratio. Under hypoxia, the expression of all 
markers increased significantly while the Bcl-2/Bax ra-
tio decreased significantly from 1 to 0.98 (p = 0.01) in 
comparison to normoxia. After the application of NAC 
all apoptotic markers increased significantly [Bax: 
4.06 (p = 0.0003); Bcl-2: 4.34 (p = 0.0007); p53: 2.57  

(p = 0.005)] and the Bcl-2/Bax ratio increased from 
0.98 to 0.99 (p = 0.003) (Fig. 3).

VEGF-A increased significantly under hypoxic con-
ditions compared to normoxic cell cultures by 726%  
(p = 0.00018). There was no further effect by NAC. Un-
der normoxic conditions, NAC reduced the expression 
of VEGF-A  time-dependently. After 24 hours the ex-
pression decreased to 0.67 (p = 0.04) and after 48 hours 
to 0.37 (p = 0.0017) (Fig. 4).

Discussion

In HT, hypoxia is unavoidable and may lead to 
poor cell engraftment and subsequent cell death. After 

Fig. 2. FACS. A) Proportion of necrotic, apoptotic and vital cells measured using annexin V labelling. Norm: vital cells: 82%; apoptotic cells: 3%; necrotic cells: 
15%. NAC/norm: vital cells: 94%; apoptotic cells: 1%; necrotic cells: 5%. Hypo: vital cells: 68%; apoptotic cells: 5%; necrotic cells: 27%. NAC/hypo: vital cells: 
82%; apoptotic cells: 3%; necrotic cells: 15%. B) Representative images of FACS analysis using annexin V (FL1-H) and PI (FL3-H) labelling for cells treated with 
or without NAC under normoxic and hypoxic conditions
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infusion of cells via the portal vein or into the spleen, 
cells engraft in the sinusoids and have to survive under 
hypoxic conditions [19]. While in vivo hypoxia may 
be as low as 0.1-1% oxygen, we chose to use a 5% ox-
ygen model for our in vitro experiments. In contrast 
to cell culture, in vivo oxygen transport cannot be 
linked exclusively to the level of oxygen, but to hemo-
globin-bound oxygen and diffusion in a three dimen-
sional structure. This can be considered to be a gen-
eral limitation of in vitro studies related to the effects 
of hypoxia. Since our study’s focus was not related to 
monitoring effects linked to the level of hypoxia but 
aimed at detecting an effect of NAC on hypoxia-related 
changes, we chose a moderate level of hypoxia. In this 
study, NAC has been evaluated as a possible support-
ive drug. There was a significant effect of NAC on cell 
proliferation under both normoxic and hypoxic con-
ditions.

An influence of NAC on apoptosis has already been 
shown. Oh et al. demonstrated an inhibitory effect of 
NAC on apoptosis in a  HepG2 model with cadmi-
um-induced apoptosis triggered by caspases 3, 8 and 

9 as well as Bax [40]. Interestingly, in this model the 
effect of NAC was independent of reactive oxygen spe-
cies (ROS) production. Using FACS analysis, our study 
confirmed an influence on the proportion of vital, 
apoptotic and necrotic cells. 

Under both hypoxic and normoxic conditions, 
NAC regulated the expression of all apoptotic mark-
ers. Notably, when supplementing NAC in hypoxic 
conditions the Bcl-2/Bax ratio increased compared to 
hypoxic controls without supplementation of NAC. 
A  similar effect in terms of an increased Bcl-2/Bax 
ratio was demonstrated by Wu et al. in myocardial 
cells in an animal heart failure model when doxoru-
bicin-induced apoptosis was reduced significantly af-
ter supplementation of NAC [41]. NAC seems to have 
more than just an antioxidative effect. Other authors 
have demonstrated a positive effect on the mitochon-
drial stability due to an influence on mitochondrial 
enzymes [29, 33, 34]. These observations are in accor-
dance with the effect that NAC has on expression of 
Bcl-2 and Bax, which are promoters of mitochondrial 
apoptosis [42].

Fig. 3. Activation of pro- and anti-apoptotic markers by PCR. A) Expression of Bax, Bcl-2 and p53. Norm: Expression under normoxic conditions as reference. 
NAC/norm: Bax: 0.34 (p = 0.0017); Bcl-2: 0.31 (p = 0.0031); p53: 0.58 (p = 0.0094). Hypo: Bax: 2.25 (p = 0.0034); Bcl-2: 1.95 (p = 0.0095); p53: 1.56  
(p = 0.02). NAC/hypo: Bax: 4.06 (p = 0.0003); Bcl-2: 4.34 (p = 0.0007); p53: 2.57 (p = 0.005). B: Bcl-2/Bax ratio. Norm: Bcl-2/Bax ratio under normoxic 
conditions as reference. NAC/norm: 0.999 (p = 0.83). Hypo: 0.982 (p = 0.01). NAC/hypo: 0.996 (p = 0.0025)
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VEGF-A, which is a downstream target marker of 
hypoxia inducible factor 1 (HIF-1), increases under hy-
poxic conditions. NAC blocks HIF-1 stabilization and 
therefore the activation of VEGF-A, which is activated 
by HIF-1 [43, 44]. In our study, no significant effect of 
VEGF-A was observed when NAC was added under 
hypoxic conditions. However, NAC time-dependently 
reduced VEGF-A expression significantly under nor-
moxic conditions, while cell proliferation and survival 
were independent of VEGF-A due to the application 
of NAC. It should be noted that VEGF-A is a cellular 
marker for hypoxic stress and a mediator for cell adap-
tation to a harmful environment [45]. Even if the cells 
were not exposed to real oxidative stress, it seems that 
NAC has a stronger influence on cell proliferation and 
apoptosis than VEGF-A. 

In conclusion, NAC significantly increases cell pro-
liferation while apoptosis is decreased. NAC could be 
a worthwhile addition to carrier solutions in HT since 
the cells needed are limited, may be of poor quality and 
may be exposed to desaturated portal venous blood. 

Nonetheless, further research is required in order 
to verify that NAC has beneficial effects on hepatocyte 
transplantation. 
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