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Driver fatigue has become an important factor to traffic accidents worldwide, and effective detection of driver fatigue has
major significance for public health. The purpose method employs entropy measures for feature extraction from a single
electroencephalogram (EEG) channel. Four types of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate
entropy (AE), and spectral entropy (PE), were deployed for the analysis of original EEG signal and compared by ten state-of-the-
art classifiers. Results indicate that optimal performance of single channel is achieved using a combination of channel CP4, feature
FE, and classifier Random Forest (RF). The highest accuracy can be up to 96.6%, which has been able to meet the needs of real
applications. The best combination of channel + features + classifier is subject-specific. In this work, the accuracy of FE as the
feature is far greater than the Acc of other features. The accuracy using classifier RF is the best, while that of classifier SVM with
linear kernel is the worst.The impact of channel selection on the Acc is larger.The performance of various channels is very different.

1. Introduction

Traffic accidents are more and more increasing, resulting in a
very large number of casualties. Safety driving is fundamental
to public health, and fatigue driving can be life threatening.
It is crucial and necessary to develop some technologies for
detecting driver fatigue [1–3]. There are many methods that
have been proposed in the past few years, such as vehicle driv-
ing parameters by using various sensors [4], driver behavior
characteristics by using video imaging techniques [5, 6],
driver physiological parameters by using acquisition and
analysis of electrocardiogram (ECG) [7], electrooculogram
(EOG) [8], electromyogram (EMG) [9], and EEG [10–12].
As a kind of direct indicator of the brain status, EEG is
considered as the “gold” method to identify driver fatigue.

EEG is an objective method for the evaluation of brain
state and function, which is often used in auxiliary diagnosis
of illness such as epilepsy and seizure. The advantages of
EEG are sensitivity for analysis and being relatively cheap
for acquisition. Various computational approaches based on
EEG signals have been developed for analyzing and detecting
driver fatigue.

Fu et al. [13] proposed a fatigue detection model based
on Hidden Markov Model and fused physiological and
contextual knowledge to assess probabilities of fatigue. They
achieved highest accuracy of 92.5% based on EEG signals
from two channels (O1 and O2) and other physiological sig-
nals. Li et al. [14] collected 16 channels of EEG data and com-
puted 12 types of energy parameters. The number of signifi-
cant electrodes is reduced using Kernel Principle Component
Analysis (KPCA). The experimental results from two chan-
nels (FP1 and O1) achieved the highest accuracy of 91.5%.
Wali et al. [15] used Discrete Wavelet Transforms to process
the EEG signal for fatigue detection and yielded the highest
accuracy of 85%. Using Fast Fourier Transform, Simon et
al. [16] proposed EEG alpha spindle measures for assessing
driver fatigue. Charbonnier et al. [17] made use of the Frobe-
nius distance between the EEG spatial covariance matrices
of 6 brain regions, and experimental results had shown that
the index based on the alpha band can accurately assess
fatigue. Apker et al. [18] predicted driver performance using
power spectral density and the linear regression, providing
a confidence estimate for the stable driving model. Haji-
noroozi et al.’s experimental results showed that channel-wise
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convolutional neural network achieved robust and improved
performance for detection of driver fatigue [19]. Zhao et al.
[20] studied an automatic measurement of driving mental
fatigue, using a KPCA-SVM classifier and their accuracy was
quite high, up to 98.7%. Kong et al. [21] analyzed EEG signals
by using Granger-Causality-based brain effective networks
and found a significant difference in terms of strength
of Granger-Causality in the frequency domain and some
changes were more significant over the frontal brain. Zhao et
al. [22] observed that coherencewas significantly increased in
the frontal, central, and temporal brain regions, as well as sig-
nificant increases in the clustering coefficient and the charac-
ter path length.

Recently, entropy has been broadly applied in the analysis
of EEG signals, considering the fact that it is a complex,
unstable, and nonlinear signal [23–28]. Xiong et al. combined
features of AE and SE with Support Vector Machine (SVM)
classifier to detect driver fatigue, achieving highest accuracy
of 91.3% at channel P3 [25]. Chai et al. present independent
component by entropy rate bound minimization analysis for
the source separate, autoregressive (AR) modeling for the
features extraction and Bayesian neural network for the clas-
sification algorithm.They achieved an accuracy of 88.2% and
the highest value of area under the receiver operating curve
(AUC) is 0.93 [26]. Zhang et al. extracted wavelet entropy and
SE of EEG and wavelet entropy of EOG and AE of EMG to
estimate the driving fatigue stages, and their accuracy was
quite high, which is about 96.5%–99.5%using artificial neural
network [27]. Kar et al. used five types of entropies, that is,
Shannon’s entropy, Rényi entropy of order 2, Rényi entropy
of order 3, Tsallis wavelet entropy, and Generalized Escort-
Tsallis entropy, along with alpha band relative energy for
estimation of fatigue level [28]. However, few studies have
been conducted for using optimal combination of entropy
methods and classifiers based on EEG to study driver fatigue
detection.

Multichannels EEG acquisition system, such as the 32-
channel EEG system used in my experiment, is relatively
complex equipment, which can only be available in laborato-
ries or hospitals. It requires well-trained technicians to locate
electrodes, since all the electrodes have to be placed in the
proper location. And it is time-consuming. All these reasons
are making the system difficult to apply in real life.Therefore,
a worthwhile EEG system with fewer channels or even one
channel for estimating driver fatigue has to be a portable
system that is cheaper, simpler, and easier to use.

Although many EEG-based methods have been proven
to detect driver fatigue, the optimal method has not yet
been determined. Furthermore, the EEG with more channels
usually restricts its application in the detection of driver
fatigue. Using the data from 12 subjects, the detection model
for driver fatigue was developed with a single channel. Four
types of entropies were deployed in this work: SE, FE, AE,
and PE. The classification procedure was implemented by
ten classifiers:K-Nearest Neighbors (KNN), SVMwith linear
kernel (LS), SVM with RBF kernel (RS), Gaussian Process
(GP), Decision Tree (DT), RF, Multilayer Perceptron (MLP),
AdaBoost (AB), GaussianNäıve Bayes (GNB), andQuadratic
Discriminant Analysis (QDA). The aims of the present study

Figure 1: Snapshot of the experimental setup.

are to determine the optimal combination of feature, classi-
fier, and channel that can be effective in portable application
with a single channel.

The rest of the paper is organized as follows: Section 2
describes the proposed methodology. Results and discussion
are reported in Section 3. Conclusion is reported in Section 4.

2. Materials and Methods

2.1. Subjects. Twelve university students (men, 19–24 years)
participated in this experiment. All the subjects were asked
to be out of any type of stimulus like alcohol, medicine, tea,
or coffee before and during the experiment. Before the exper-
iment, they practiced the driving task for several minutes to
become acquainted with the experimental procedures and
purposes. All experimental procedures were performed using
a static driving simulator in a software-controlled environ-
ment. This work was approved by Academic Ethics Commit-
tee of Jiangxi University of Technology.

2.2. Experiment. The experimental setup of the work is based
on our previous work. A sustained-attention driving task was
performed by each subject on a static driving simulator (The
ZY-31D car driving simulator, produced by Peking ZhongYu
Co., Ltd.) with a wide screen composed of three 24-inch
monitors shown as in Figure 1. On the screen, a customized
version of the Peking ZIGUANGJIYE software ZG-601 (Car
Driving Simulation Teaching System V9.2) was shown. The
driving environment selected for this study was a highway
with low traffic density and the driving task was started at
9 a.m. After the 5-minute practice session, each subject was
given a break of 10min away from the simulator and was
allowed to have unconstrained movement within the labora-
tory. Then they commenced their about 1-2 hours of driving
after a quick check of all instrumentation.

2.3. Data Recording and Preprocessing. First, when the sub-
jects had been driving for 20 minutes, the last 5-minute
recorded EEG signal was labeled as normal state; second,
when the continuous driving procedure lasted 60–120 min-
utes until the questionnaire results show the subject was in
driving fatigue, obeying Lee’s subjective fatigue scale and
Borg’s CR-10 scale [29, 30], the last 5-minute recorded EEG
signal was labeled as fatigue state. All channel data were ref-
erenced to two electrically linkedmastoids at A1 andA2, digi-
tized at 1000Hz from a 32-channel electrode cap (including
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Figure 2: Electrodes position according to International 10-20
System standards.

30 effective channels and 2 reference channels) based on the
International 10-20 System (Figure 2).

After the EEG signals acquisition, the main steps of data
preprocessing were carried out by the Scan 4.3 software of
Neuroscan.The raw signals were first filtered by a 50Hz notch
filter and a 0.15Hz to 45Hz band-pass filter was used.Then 5-
minute EEG signals from 30 channels were sectioned into 1-s
epochs, resulting in 300 epochs. With the 12 subjects, a total
of 3600 epochs of dataset were formed for the normal state
and another 3600 epochs for the fatigue state.

2.4. Feature Extraction. In recent years, various entropies
have been expanded in several different fields [31]. As the
nonlinear parameters can quantify the complexity of a time
series, it can be used to evaluate the nonlinear, unstable EEG
signals [32]. PE is calculated by applying the Shannon func-
tion to the normalized power spectrum, and the calculation
algorithm is as described in literature [33]. AE, proposed by
Pincus [34], is calculated in time domain without phase space
reconstruction of the signal. Similar to AE, SE is proposed
by Richman andMoorman [35].The calculation algorithm of
AE and SE is defined clearly as described in literature [36]. FE
can get stable results for different parameters and offers better
noise resistance, defined clearly as described in literature [37].

In the above four types of entropies, AE, SE, and FE have
parameters,𝑚 and 𝑟, which are the dimensions of phase space
and similarity tolerance, respectively. Generally, too larger
of 𝑟 will lead to a loss of useful information. However, if 𝑟
is underestimated, the sensitivity to noise will be increased
significantly. In the present study, 𝑚 = 2 while 𝑟 = 0.2 ∗ SD,
where SD denotes the standard deviation of the time series
according to literature [38].

For optimizing the detection quality, the features were
normalized for each subject by scaling between −1 and 1.

2.5. Classification. Since there is no uniform classification
method suitable for all subjects and all applications, usually

it may be useful to test multiple methods. In this work, I have
used ten classifiers, namely, KNN, LS, RS, GP, DT, RF, MLP,
AB, GNB, and QDA.They are briefly explained below.

2.5.1. KNN. Neighbors-based classification does not con-
struct a general model but simply compares instances of fea-
tures of the training data. KNN is a supervised learning tech-
nique where a new instance is classified based on the closest
training samples present in the feature space [39]. KNN imple-
ments learning based on the 𝑘-Nearest Neighbors of each
query point, where 𝑘 is 5 in this study.

2.5.2. SVM. In the case of nonlinear classification, kernels,
such as radial basis functions (RBF), are used to map the
data into a higher dimensional feature space in which a linear
separating hyperplane could be found [40]. When the num-
ber of samples is less than the number of features, nonlinear
learning methods do not significantly affect the results and it
may be better to simply use linear learning method. So SVM
with linear kernel (LS) and SVM with RBF kernel (RS) were
both chosen as the classifier in this work.

When training an SVMclassifierwith the RBF kernel, two
parameters must be considered: 𝑐 and 𝛾. A lower 𝑐makes the
decision surface smooth, while a higher 𝑐 aims at classifying
all training examples correctly. 𝛾 defines howmuch influence
a single training example has. In this study, 𝛾 = 2 and 𝑐 = 1.

2.5.3. GP. The GP Classifier implements Gaussian Processes
for classification purposes, more specifically for probabilistic
classification [41].

2.5.4. DT. DT is a nonparametric supervised learning
method used for classification [42]. DT creates a series of
binary decisions on the features which best distinguishes
classes. The maximum depth of the tree is 10 in this work.

2.5.5. RF. RF fits a number of Decision Tree classifiers on
various subdatasets and averages predicted accuracy [43].
In this work, the maximum depth of the tree is 10 and the
number of trees in the forest is 10.

2.5.6. MLP. MLP trains using gradient descent and the
gradients are calculated using Backpropagation (BP) [44].

2.5.7. AB. AB classifier begins by fitting a classifier on the
raw dataset and then fits additional copies of the classifier on
the same dataset where the weights of incorrectly classified
instances are adjusted [45].

2.5.8. GNB. Naive Bayes method is based on applying Bayes’
theorem with the “naive” assumption [46]. The likelihood in
GNB of the features is assumed to be Gaussian.

2.5.9. QDA. QDA searches for a linear combination of fea-
tures which statistically best distinguishes objects in different
classes from each other [47]. QDA classifier has a quadratic
decision boundary.

2.6. Performance Metrics. For developing a new detector and
estimating its potential application performance, it is very
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Table 1: Optimal combination for different subjects.

Subject Optimal combination Highest Acc AUC
1 FE + KNN 94.3% 0.976
2 FE + KNN 86.4% 0.929
3 FE + RF 93.4% 0.981
4 FE + RF 91.0% 0.969
5 FE + RF 92.6% 0.976
6 FE + RF 91.3% 0.974
7 FE + RF 91.4% 0.968
8 FE + RF 92.7% 0.981
9 FE + RF 94.4% 0.983
10 FE + RF 91.9% 0.975
11 FE + RF 90.5% 0.967
12 FE + RF 93.2% 0.979

important to examine properly the detection quality [48].
The leave-one-out (LOO) cross-validation approach is used
to assess the performance of the system for driver fatigue
detection. The total average accuracy based on some feature
and the classifier is the average of the accuracy of all single
channels based on the same feature and same classifier.

To provide an easier-to-understand method to measure
the detection quality, the well-known performance indicators
[43], including accuracy (Acc), sensitivity (Sn), and speci-
ficity (Sp), were described as follows:

Sn = TP
TP + FN

,

Sp = TN
TN + FP

,

Acc = TP + TN
TP + TN + FP + FN

,

(1)

where TP (true positive) denotes the number of the data
inputs that refer to fatigue state correctly classified as fatigue.
FP (false positive) is the number of data inputs that refer to
normal state classified as fatigue state. TN (true negative) is
number of the data inputs that refer to normal state correctly
classified as normal state. FN (false negative) is the data inputs
that refer to fatigue state classified as normal state.

AUC illustrates the performance of a binary classifier
system as its discrimination threshold is varied. It is created
by plotting the fraction of true positives out of the positives
(TPR = true positive rate) versus the fraction of false positives
out of the negatives (FPR = false positive rate), at various
threshold settings. TPR is also known as Sn, and FPR is one
minus the Sp.

3. Results and Discussion

3.1. Comparison of Performances of Different Subjects. As
shown in Figure 3 and Table 1, the best average accuracy is
produced in combination of FE+RF (where average accuracy
is 91.7%) and the worst average accuracy is produced in com-
bination of SE + LS (where average accuracy is 57.4%). It can
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Figure 3: Comparison of performances of four features and ten
classifiers. The left s vertical coordinate is for average accuracy (%)
for 12 subjects, while the right vertical coordinate is for average
AUC for 12 subjects. The horizontal coordinate is for classifier. 1–
10 represent KNN, LS, RS, GP, DT, RF, MLP, AB, GNB, and QDA,
respectively. ACC-SE, ACC-FE, ACC-AE, and ACC-PE represent
accuracy with features SE, FE, AE, and PE, respectively. AUC-SE,
AUC-FE, AUC-AE, and AUC-PE represent AUC with features SE,
FE, AE, and PE, respectively.

be found that the best accuracies of Subject 1 and Subject 2 all
occurred in the combination of FE + KNNwhile, for Subjects
3–12, best recognition rates all appear in the combination of
FE + RF. The worst recognition rate of Subject 1 appears in
combination of SE + LS, while, for Subjects 2, 5, 6, 7, 9, 11, and
12, it appears in the combination of PE + LS, and, for Subjects
3, 4, 8, and 10, it appears in the combination of PE + MLP.
For all 12 subjects, the highest accuracy is 94.4% for Subject 9
with the combination of FE + RF, and the worst recognition
rate (51.7%) also appeared in Subject 9 with the combination
of SE + LS. This is an interesting phenomenon. For the same
subject, using different methods, some subjects will have a
particularly larger difference, and some may be less.

As for the AUC, there are similar results.The best AUC is
produced in combination of FE + RF (where average AUC
is 0.969) and the worst average accuracy is produced in
combination of PE + LS (where average AUC is 0.584). For
all 12 subjects, the highest AUC (0.983) appears in Subject 9,
and the worst AUC (0.517) also appears in Subject 9. This is
very similar to ACC.

Different subjects have different brain characteristics, so
the EEG features are different. Different subjects using the
same feature extraction method or the same classifier may
have different performances. The result has two meanings,
one is that it is possible to choose a combination that is
subject-specific, which is different from the subjects using
different combination, thus improving the recognition rate
of each subject. Two is that subject-specific EEG feature can
be distinguished from different subjects for identification or
authentication of individual, that is, the EEG password or
biometrics [49, 50].
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Table 2: Comparison of mean accuracy (%) of combination of four features and ten classifiers.

Classifier Feature
SE FE AE PE Mean ± SD

AB 73.2 ± 4.4 84.2 ± 3.6 72.9 ± 5.5 65.3 ± 6.1 73.9 ± 8.4

DT 80.6 ± 3.3 89.7 ± 2.9 80.2 ± 4.2 72.7 ± 5.7 80.8 ± 7.3

GP 69.5 ± 5.4 81.7 ± 4.1 69.0 ± 6.4 62.8 ± 6.0 70.8 ± 8.8

LS 66.0 ± 5.0 79.3 ± 4.4 64.8 ± 6.4 57.3 ± 7.2 66.9 ± 9.9

GNB 67.5 ± 6.0 80.5 ± 4.3 66.8 ± 7.1 58.2 ± 7.1 68.3 ± 10.1

KNN 77.3 ± 4.4 85.8 ± 3.4 77.4 ± 5.0 71.5 ± 7.6 78.0 ± 7.4

MLP 67.7 ± 5.5 80.7 ± 4.3 67.0 ± 6.8 58.5 ± 7.2 68.4 ± 10.0

QDA 67.5 ± 6.0 80.5 ± 4.3 66.8 ± 7.1 59.3 ± 7.1 68.5 ± 9.8

RF 85.9 ± 3.1 91.8 ± 2.7 85.9 ± 3.3 79.1 ± 9.3 85.7 ± 7.0

RS 68.3 ± 5.7 81.2 ± 4.1 67.9 ± 6.8 59.2 ± 6.8 69.1 ± 9.8

Mean ± SD 72.3 ± 8.1 83.5 ± 5.6 71.9 ± 9.0 64.4 ± 10.1

Boldface indicates FE + RF is the optimal method.

Table 3: Comparison of mean AUC of combination of four features and ten classifiers.

Classifier Feature
SE FE AE PE Mean ± SD

AB 0.808 ± 0.044 0.904 ± 0.027 0.804 ± 0.053 0.720 ± 0.080 0.809 ± 0.085

DT 0.886 ± 0.033 0.946 ± 0.025 0.883 ± 0.038 0.817 ± 0.060 0.883 ± 0.061

GP 0.743 ± 0.059 0.865 ± 0.037 0.736 ± 0.069 0.667 ± 0.077 0.753 ± 0.095

LS 0.690 ± 0.053 0.825 ± 0.055 0.674 ± 0.068 0.584 ± 0.098 0.693 ± 0.111

GNB 0.726 ± 0.063 0.857 ± 0.036 0.720 ± 0.073 0.609 ± 0.090 0.728 ± 0.111

KNN 0.847 ± 0.044 0.921 ± 0.025 0.847 ± 0.050 0.775 ± 0.099 0.848 ± 0.080

MLP 0.716 ± 0.063 0.850 ± 0.040 0.709 ± 0.075 0.615 ± 0.092 0.722 ± 0.109

QDA 0.726 ± 0.063 0.857 ± 0.036 0.720 ± 0.073 0.622 ± 0.090 0.731 ± 0.108

RF 0.936 ± 0.031 0.969 ± 0.021 0.937 ± 0.031 0.874 ± 0.111 0.929 ± 0.070

RS 0.0728 ± 0.062 0.859 ± 0.036 0.721 ± 0.074 0.610 ± 0.087 0.729 ± 0.111

Mean ± SD 0.780 ± 0.095 0.885 ± 0.057 0.775 ± 0.104 0.689 ± 0.132

Boldface indicates FE + RF is the optimal method.

3.2. Comparison of Four Feature Methods. From the above
results, the combination of entropy and classifier improved
the classification performance. Because the main purpose of
my study is to find the optimal combination of feature and
classifier based on a single EEG channel, in order to evaluate
the performance influence on different entropy features, four
types of entropy feature methods and ten classifiers were
compared. Figure 3 shows the mean accuracy of generated
features obtained from the four entropy methods based on
EEG signals from all single channels of 12 subjects, using ten
classifiers. From Figure 3, I can conclude that the classifica-
tion accuracy of the combination of FE with any one of the
classifiers is better than combination of the other feature
methodswith any one of the classifiers.Hence FEwas selected
as best feature in this work as it is robust and efficient. The
detector of using FE + RF fusion method could present a
better performance and robustness.

As shown in Table 2, the average accuracy was compared
with 12 subjects based on different feature and classifier. The
average accuracy based on FE feature was 83.5%, while the
average accuracy based on PE feature was 64.4%.The highest

mean Acc appeared at the combination of FE + RF, reaching
91.8%, while theworstmeanAcc appeared at the combination
of PE + LS, achieving 57.3%. These results are in agreement
with the results of Section 3.1.

As shown in Table 3, the average AUC was compared
with 12 subjects based on different feature and classifier. The
averageAUCbased on FE featurewas 0.885, while the average
AUC based on PE feature was 0.689. The highest mean AUC
occurred at the combination of FE +RF, reaching 0.969, while
the worst meanAUC occurred at the combination of PE + LS,
achieving 0.584. These results are also in agreement with the
results of Section 3.1.

3.3. Comparison of TenClassifiers. Overall, sorting from large
to small of the average accuracy of ten classifiers based on
four features and 12 subjects is RF\DT\KNN\AB\GP\RS\
QDA\MLP\GNB\LS. The sort of mean AUC is the same.

For 12 subjects, I used 𝑘 = 1, 3, and 5 for KNN and found
that 𝑘 = 5 gave the best performance. It can be seen that KNN
achieves the highest accuracy with 94.3% and AUC of 0.976
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Table 4: Studies regarding driver fatigue detection using different types of entropy.

Research group Feature method EEG channels Highest accuracy
Li et al. [14] 12 types of energy parameters FP1 and O1 91.5%
Zhang et al. [27] Approximate entropy O1 and O2 96.5%
Khushaba et al. [51] Fuzzy entropy Fz, T8, and Oz 92.8%
Zhao et al. [52] Sample entropy F3 95.0%
This paper Fuzzy entropy CP4 96.6%

with FE feature. These accuracies are better than previous
studies.

3.4. Comparison of Channels. For channel comparison, the
performance of each channel is determined. In order to com-
pare the performance of each channel, with average of 12 sub-
jects, the four types of combinations were compared, includ-
ing combination of the best features and the best classifier (FE
+ RF), combination of the best feature + the worst classifier
(FE + LS), combination of theworst features and the best clas-
sifier (PE + RF), combination of the worst feature + classifier
(PE + LS). It can be seen that the highest Acc of single channel
is 96.6% at the combination of CP4 + FE +RF, which can fully
meet the requirements of mobile computing. The worst Acc
is only 55.2% at the combination of Cz + PE + LS.

It can be seen from Figure 4 that all channels of the four
combinations are sorted according to the Acc. The index is
not the same order in the four combinations. For example, the
best channel is CP4 at the combination of FE + RF, while the
best channel is T6 at the combination of FE + LS, and the best
channel is O1 at the combination of both PE + RF and PE +
LS, indicating channel selection is related to feature extracted
methods and classifier methods largely.

The result of AUC is very similar. The highest AUC of
single channel is 0.993 at the combination of CP4 + FE + RF,
while the worst AUC is only 0.545 at the combination of Cz
+ PE + LS.

In addition to the variation of different channels shown
as in Figure 4, we are concerned about which part of brain
regions these select channels locate over. So the selected
electrodes in each subject were mapped onto their corre-
sponding locations in the electrode cap. It can be seen that
the distribution of top channels is much more scattered.

The above results demonstrated the system using a single
channel could achieve very high accuracy in detecting driver
fatigue, while reducing the decisive number of electrodes
from 30 to 1. It is possible to use single channel for driver
fatigue detection. The highest recognition rate in this work
can be up to 96.6%, which is not the worst comparing with
other research results.

Sort of channel is not related to hemisphere, and there
is no significant correlation between brain areas. For each
subject, the best channel is not the same.

For different analysis targets, using different features may
have different impacts on the classification accuracy. In this
paper I selected four entropies for comparison purpose. Fig-
ure 1 indicates that, for the same data source, the classification
performances of the four entropies and ten classifiers are

notably different. In my experiment paradigm, the combina-
tion of feature FE and classifier RF has the highest accuracy
if single entropy is used as input. As see in Table 4, it is found
that the classification performance of the proposed method
was better than the other research using fewer channels of
EEG signals; it is expected that the combination of feature FE,
classifier RF, and channel CP4 can show better performance
for fatigue forecast. Although the present study is based on
the existing EEG data, the high performance of detection of
driving fatigue by using of FE-based classification indicated
well application on the real-time detection of driving fatigue.
To realize real-time detection of driving fatigue, I only needed
to record a single channel EEG signals when in fatigue state
and normal state and then trained FE-based classification.
Once the trained classification model is being saved, I could
achieve real-time detection of driving fatigue and try to avoid
traffic accidents through the alarm.

4. Conclusions

In this paper, an approach based on combination of four
entropy features and ten classifiers is proposed to detect
driver fatigue in an EEG-based system. Results also showed
that it is a promising system to detect driver fatigue, achieving
high success rates with only one electrode.The following was
found: (1) It is possible to use a single channel for driver
fatigue detection. The highest recognition rate in this work
can be up to 96.6%, which has been able to meet the needs
of real applications. (2) The best combination of channel +
features + classifier of different subjects is not the same; that is
to say, the best combination is subject-specific. (3)The impact
of feature on the accuracy and AUC is larger. In this work, the
Acc of FE as the feature is far greater than the Acc of PE as the
feature. (4)The impact of the classifier on the Acc and AUC is
larger. In this work, the Acc of classifier RF is the best, while
classifier LS is the worst. (5)The impact of channel selection
on the Acc and AUC is significant.

However, some limitations of this study are as follows: (1)
the sample size was relatively small. To extendmy research, in
the future, I will increase the number of subjects to improve
the validation of results and to classify more fatigue states
such as severe fatigue. (2) The parameters of classifier did
not carry out optimization, such as MLP and SVMwhich are
very sensitive to parameters. It is also possible that there are
no optimization parameters, so the performance for classifier
MLP and SVM is not good. (3) In this work, only four kinds
of entropy feature were compared, nomore feature extraction
methods, such as AR, wavelet, and spectrum.
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Figure 4: Comparison of all channels based on feature FE and classifier RF of 12 subjects. The left s vertical coordinate is for accuracy (%),
while the right vertical coordinate is for AUC. The horizontal coordinate is for channel.
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It is hoped that these findings may have the generalizabil-
ity to provide an effective approach for auxiliary diagnosis of
driver fatigue, in order to maintain public health and avoid
life threatening.
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