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ABSTRACT

Spatial omics is a rapidly evolving approach for ex-
ploring tissue microenvironment and cellular net-
works by integrating spatial knowledge with tran-
script or protein expression information. However,
there is a lack of databases for users to access and
analyze spatial omics data. To address this limitation,
we developed Aquila, a comprehensive platform for
managing and analyzing spatial omics data. Aquila
contains 107 datasets from 30 diseases, including
6500+ regions of interest, and 15.7 million cells. The
database covers studies from spatial transcriptome
and proteome analyses, 2D and 3D experiments, and
different technologies. Aquila provides visualization
of spatial omics data in multiple formats such as
spatial cell distribution, spatial expression and co-
localization of markers. Aquila also lets users per-
form many basic and advanced spatial analyses on
any dataset. In addition, users can submit their own
spatial omics data for visualization and analysis in
a safe and secure environment. Finally, Aquila can
be installed as an individual app on a desktop and
offers the RESTful API service for power users to ac-
cess the database. Overall, Aquila provides a detailed
insight into transcript and protein expression in tis-
sues from a spatial perspective. Aquila is available
at https://aquila.cheunglab.org.

INTRODUCTION

Highly complex biological processes, such as the develop-
ment of the neurological system or the progression of dis-
eases like diabetes and cancer, are extremely challenging to
study due to the heterogeneous cellular nature of tissues and
the complex interactions between cells. However, the spa-
tial distribution of cells within tissues is positively related

to their function and lineage trajectories (1,2). Thus, under-
standing the spatial organization of tissues and the evolu-
tionary relationship among cells is vital for capturing the
different steps of developmental processes and the complete
portrait of diseases. The rapid development and adoption
of spatial omics technologies recently have accelerated our
understanding of these essential processes.

Many spatial omics technologies have been developed
so far, with the majority geared toward interrogating the
spatial transcriptome of tissues (3). Spatial transcriptome
methods can be broadly divided into either sequencing-
or imaging-based techniques. Sequencing-based techniques
capture and preserve spatial gene expression information of
tissues by in situ hybridizing RNA transcripts onto spatially
immobilized arrays of indexed sequences. Visium is cur-
rently the most popular sequencing-based tool, although, at
present, this technology and similar technologies like Slide-
seq (4) and DBiT-seq (5) are not yet at single-cell resolu-
tion (6). In contrast, newer techniques such as spatial en-
hanced resolution omics sequencing (Stereo-seq) (7), Seq-
Scope (8) and sci-Space (9) are at single-cell or subcellu-
lar resolution. Imaging-based spatial transcriptome tech-
nologies include sequential fluorescence in situ hybridiza-
tion (seqFISH) (10), multiplexed error-robust fluorescence
in situ hybridization (MERFISH) (11) and spatially re-
solved transcript amplicon readout mapping (STARmap)
(12). These technologies require designing fluorescent-
labeled probes to hybridize with known RNA targets and
a super-resolution microscope to capture the fluorescent
signal.

Besides measuring transcript information, spatial omics
technologies can also detect the proteome of tissues
(13). Compared to spatial transcriptome technologies, the
throughput of spatial proteomic technologies is currently
limited due to the availability of fluorescent or metal-
conjugated antibodies required for detecting target pro-
teins. As with spatial transcriptome technologies, spatial
proteomic technologies can also be categorized into two
main groups. For example, cyclic immunofluorescence (14)
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and co-detection by indexing (15) are imaging-based tech-
niques that measure protein abundance by repeatedly stain-
ing tissues with three to five fluorescent-labeled antibodies
at a time. In comparison, imaging mass cytometry (IMC)
(16) and mass ion beam imaging (MIBI) (17) are mass
cytometry-based technologies that stain and quantify tis-
sues using a maximum of 40 metal-conjugated antibodies
at once.

Since spatial omics technologies produce a rich amount
of data, they have been widely adopted in the scien-
tific field, resulting in many exciting new findings. For
example, Stereo-seq has been applied extensively for the
spatial–temporal gene expression profiling of early embry-
onic stages at unprecedented resolution in mice (7), flies
(18) and zebrafish (19). In a multimodal study integrat-
ing scRNA-seq, Visium and MIBI, Khavari and colleagues
examined the spatial architecture of squamous cell carci-
noma, revealing a multifaceted immunosuppression mech-
anism, including the exhaustion of T cells (20). Recently,
IMC was used to map the spatial and temporal landscape
of the lung at subcellular resolution during the progression
of coronavirus disease 2019 (21). This study showed that
the abundance, hyperactivities, the interplay between differ-
ent inflammatory cells and structural changes contribute to
the poor immune response in the late stage of the disease
(21).

The recent precipitous expansion of spatial omics has
also produced many datasets, and the increase will con-
tinue as the technology matures and becomes more widely
accessible. A database that users can easily access, visual-
ize and use for analyzing different types of spatial omics
datasets is immensely beneficial for the scientific commu-
nity. Unfortunately, no databases currently provide users
with all these features in one complete package. At present,
SpatialDB (22) is the only spatial omics database avail-
able, but it hosts only 24 transcriptome datasets, lacks pro-
teomics data and does not support 3D datasets. SpatialDB
also does not offer users any type of spatial analysis. While
users can turn to software such as Giotto (23) and Squidpy
(24) to analyze their data, these programs are targeted to-
ward bioinformaticians with programming skills, which are
unsuitable for most biologists.

Thus, we developed Aquila, a combined spatial omics
database and analysis platform that supports all types of
spatial omics data, including transcriptome and proteome,
2D and 3D, and from different technologies (Figure 1A).
Aquila currently hosts 107 datasets from 15 technologies
with >15.7 million cells. Aquila provides users the visual-
ization of spatial omics data in multiple formats, such as
cell maps, expression maps and co-localization of mark-
ers (Figure 1B). Users can also easily retrieve any dataset
and run a repertoire of integrated analyses directly in the
same browser, including advanced spatial analyses that typ-
ically require coding skills (Figure 1C). Furthermore, users
can submit spatial omics data of their own to Aquila and
perform the same analyses as the datasets found in the
database. We address data privacy issues by storing all
user datasets locally without uploading them to the remote
server. Finally, Aquila can also be installed as an individ-
ual application on a desktop through the progressive web
application standard.

MATERIALS AND METHODS

Data collection and preprocessing

We manually searched for spatial omics-related keywords
using PubMed and Google Scholar to acquire publications
with relevant datasets. Only publicly available data were
collected. To handle the different types of spatial omics
data, they were stored in three parts: expression matrix (ma-
trix market format), spatial location and region of interest
(ROI) annotation information. For the expression matrix,
we filtered out genes or proteins expressed in <100 cells (or
spots) and cells (or spots) expressing <1 gene or protein.
Any negative expression values were replaced with a mini-
mum value of 0 to ensure all the expression values were non-
negative. Afterward, the expression matrix was log trans-
formed as log(1 + X). The spatial and annotation informa-
tion was left intact without any transformation. The pro-
cessing scripts were written in Python using Numpy (25),
Pandas (26) and Scanpy (27).

Determining the dimension of ROIs

Aquila uses the envelope of an ROI as its dimen-
sion, which is the maximum boundary of the ROI. For
a series of 2D points, the envelope is calculated as
[Min(x)Min(y)Max(x)Max(y)]. This equation is also ex-
tended to 3D data.

Mixing colors for co-localization of markers

Aquila uses the following algorithm to determine
mixed colors by combining two or more colors. Col-
ors are represented in RGB color space, with color A as
(R1, G1, B1) and color B as (R2, G2, B2), and the mixed
color result as (Rmix, Gmix, Bmix). For each channel, the

mixing value is calculated as Cmix =
√

(C2
1 + C2

2 )/2.

Co-expression analysis

Aquila uses Pearson correlation and Spearman correlation
to determine the relationship between the expression of any
genes or markers. Users can select 2–50 genes to perform
co-expression analysis. This analysis is implemented in Rust
for optimized computing pair correlation using (xi − x̄) and
(yi − ȳ) as the kernel for acceleration. Co-expression is cal-
culated as

r =
∑n

i=1(xi −x̄)(yi −ȳ)√∑n
i=1 (xi −x̄)2

√∑n
i=1 (yi −ȳ)2

.

Spearman correlation has an additional process in which
input vectors are ranked by Spearman ranking, and the
ranked vectors are then used for subsequent calculations.
Users do not need to provide any parameters for this anal-
ysis.

Cell distribution pattern analysis

The cell distribution pattern analysis examines whether cells
are distributed randomly, evenly or in a cluster. Aquila of-
fers users three methods to choose from, including the index
of dispersion (28), the Morisita index (29) and the Clarks–
Evans index (30). For all three methods, the null hypothesis
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Figure 1. Schematic design of Aquila. (A) Various types of spatial omics datasets accessible in Aquila. (B) Examples of ROI visualization (i.e. cell map,
expression map and co-localization of markers) in 2D and 3D. (C) A comprehensive list of spatial analyses with examples of results.
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is that points are in a completely random state (Poisson ran-
dom point process). Each method is tested against the null
hypothesis to determine which pattern cells are distributed
in an ROI.

The index of dispersion method uses a sampling window
to sample an ROI multiple times randomly. Each time, we
obtain the number of cells in a window. S2 is defined as the
variance and x̄ is the mean. The χ2-test is used to determine
significance. The index value is calculated as

I = s2

x̄
.

Since Aquila uses circles as sampling windows, users will
need to define the radius for the circle and the number of
sampling times. By default, Aquila uses one-tenth of the
minimum side of the ROI envelope as the radius and sam-
ples 1000 times. For each run, the results will be different
due to the difference between samplings.

The Morisita index method is based on quadratic statis-
tics that rasterize an ROI into a grid. The number of points
in a square is denoted as x. The χ2-test is used to determine
significance. The index value is calculated as

I = n

[ ∑
x2 − ∑

x

(
∑

x)2 − ∑
x

]
.

Users can define the dimension of the grid to control the
granularity of the rasterization process. The default setting
uses a 10 × 10 grid to rasterize the ROI.

The Clark–Evans index is a nonparametric statistical
method in which the distribution of cells is based on the
distance between neighboring points. Here, ρ is defined as
the density and n as the number of individuals.

D̄ =
∑n

i=1 di

n
,

E (D) = 1
2
√

ρ
,

SE (D) = 4 − π

4ρπ
,

R = D̄
E (D)

,

Z = D̄ − E (D)
SE (D)

.

The index of dispersion, the Morisita index and the
Clarks–Evans index are all implemented in Rust.

Ripley’s cell distribution analysis

Ripley’s K function (31) is a cell distribution pattern analy-
sis that works by calculating the average number of points
from different distance intervals. Users need to define the
number of intervals for the function. In Aquila, the K func-
tion and its variants G, F and L are made available by Point-
pats (v2.2.0) in the PySAL ecosystem (32).

Spatial entropy analysis

Aquila uses two entropy metrics to measure tissue hetero-
geneity, the Shannon entropy (33) and Leibovici entropy
(34). Shannon entropy is a classic method for evaluating
the chaos of a system. In contrast, Leibovici entropy con-
siders the contribution of spatial information to a system’s
entropy. It requires a distance parameter to determine the
range of co-occurring events. By default, the distance is one-
tenth of the minimum side of the ROI envelope. Shannon
entropy is calculated as

H (X) = −
∑

Pi log2 (Pi ) ,

where Pi is defined as the proportion of cell type i in the
ROI. Leibovici entropy is determined as

H(Z|d) =
Im∑

r=1

p(zr |d)log
(

1
p(zr |d)

)
,

where p(zr |d) is equal to the proportion of different co-
occurring events within the distance condition d. Spatial en-
tropy analysis is implemented in Rust.

Spatial variable gene analysis

The spatial expression pattern of a gene may or may not de-
pend on the spatial context. Aquila identifies spatial vari-
able genes using a GPU accelerated version of SpatialDE
(35,36). The current method for detecting spatial variable
genes in a regular ROI on a web server is inefficient and can
take more than a few minutes. Due to this limitation, users
can select no more than 50 genes per run.

Constructing neighboring networks

The results from the neighboring network analysis lay the
foundation for the following analyses: spatial community,
cell centrality, cell–cell interaction, spatial co-expression
and spatial autocorrelation. Aquila provides two methods,
KD-Tree and Delaunay triangulation, to determine the
neighbors of a cell. KD-Tree employs a binary tree struc-
ture approach to analyze spatial data, making it an effi-
cient way for spatial queries. Users set two parameters to
use this method, the search radius for each cell and the num-
ber of nearest neighbors for a cell. Delaunay triangulation
is a nonparametric method that can be thought of as filling
a discrete set of points (i.e. cells) in a 2D plane with trian-
gles. Each point is used as the vertex of a triangle such that
no points lie in the circumcircle of any triangle. Cells are
considered neighbors if they are connected to the edge of
the triangle. Both methods construct a spatial network and
display the results graphically with nodes representing cells
and edges as the Euclidean distance between cells. With the
network graph, users can examine the quality of the net-
work and determine which cells have neighbors. They can
also check the Euclidean distance between cells by hover-
ing over the edges. Both methods are implemented in Rust
using Kiddo (v0.2.3) and Delaunator (v1.0.1).
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Spatial community analysis

Tissue phenotyping can be conducted by grouping cells
within a local environment as a community (37). Thus, it
is essential to identify these groups of cells that are spatially
distinguished. Aquila includes three community detection
methods, Leiden (38), Louvain (39) and Infomap (40), for
clustering cells based on the above-mentioned neighboring
network results. For the Louvain method, a multilevel ver-
sion was implemented, which has a better computation ef-
ficiency than the original (41). The Leiden method requires
users to input a resolution parameter that affects the size
of each community. No input parameters are needed for ei-
ther Louvain or Infomap. These three methods are executed
using Python-igraph (v0.9.10).

Cell centrality analysis

Cell centrality analysis measures the importance of a cell in
a network. Aquila provides three ways to determine cell cen-
trality based on ‘degree’, ‘closeness’ and ‘betweenness’ (42).
‘Degree’ centrality works by counting the number of links
connected to a node, while ‘closeness’ centrality is based
on calculating the number of times a node acts as a bridge
along the shortest path between two other nodes. Finally,
‘betweenness’ centrality measures the average length of the
shortest path between a node and all other nodes in the net-
work. Cell centrality analysis is implemented in Python us-
ing Python-igraph (v0.9.10).

Cell–cell interaction analysis

The spatial relationship between each cell type is deter-
mined by bootstrapping, a previously described approach
used to analyze spatial single-cell data (43). For each ROI,
the cell type identity is randomly reassigned, while the phys-
ical location of each cell type remains unchanged. First, a
null distribution is generated for the number of cells A in
the neighborhood of cell B. This result is derived from sev-
eral times of bootstrapping. The null distribution is then
compared to the actual distribution to determine the sig-
nificance. A pseudo P-value (two-tailed) is calculated by

Passociation =
number of

(
simulation ≥ real

)
resample times + 1

,

Pavoidance =
number of

(
simulation ≤ real

)
resample times + 1

.

If a Z-score is used, the significance is calculated as

z = real − simulation
σ

.

The Z-score will then be converted into a P-value. An in-
teraction result with a P-value <0.05 is considered signifi-
cant. If two cells are likely to occur in each other’s neighbor-
hood, their relationship is considered an association (+1);
otherwise, their relationship is classified as avoidance (−1).
Users need to define the number of times to perform the
bootstrapping (500–2000). The cell–cell interaction analy-
sis is implemented in Rust.

Spatial co-expression analysis

The spatial co-expression analysis is similar to the co-
expression analysis described above, except that here Aquila
uses the adjacency list from the neighbor network result to
construct an expression vector. For example, the expression
of marker A is {A1, A2, A3, . . . , Ax} and that of marker B is
{B1, B2, B3, . . . , Bx}.

Spatial autocorrelation analysis

Spatial autocorrelation analysis calculates the degree of
random spatial distribution of cells. If cells tend to locate
closely together, they are considered positively spatially cor-
related. Moran’s I (44) measures global spatial autocorrela-
tion, while Geary’s C (45) measures local spatial autocorre-
lation. Moran’s I is defined as

I = N
W

∑
i

∑
j wi j (xi − x̄)

(
xj − x̄

)
∑

i (xi − x̄)2 ,

while Geary’s C is defined as

C = (N − 1)
∑

i

∑
j wi j

(
xi − xj

)2

2W
∑

i (xi − x̄)2 .

N is defined as the number of spatial units indexed by i and
j , while wi j is the spatial weight matrix derived from the
neighbor network analysis and W is the sum of the matrix.
The spatial autocorrelation analysis is implemented in Rust.

Structure and implementations

The Aquila web user interface (UI) was generated using
Next.js, a framework based on React. The web UI was de-
signed using MUI, following the Material Design Guide-
lines. The visualization was created using Echarts.js with
WebGL support to enable GPU acceleration. The codes
for processing user datasets were implemented using pure
JavaScript and executed directly in the browser using Web
Workers. All user data are stored locally using IndexedDB.
The central API server was constructed using the Actix
framework and written in Rust. Analyses including cell
neighbor network, cell distribution, co-expression analysis,
spatial autocorrelation analysis, spatial entropy and cell–
cell interactions were also implemented in Rust. The sec-
ondary API server was constructed using FastAPI, written
in Python and implemented the following analyses: Ripley
statistics, spatial community, cell centrality and spatial vari-
able gene. SpatialDE powered the spatial variable gene anal-
ysis with GPU support. Currently, we are running Aquila
on a server with an NVIDIA GTX750 GPU. Nginx was
used as the reverse proxy server to register the two API
servers under the same API gateway.

DATABASE CONTENT AND USAGE

Querying and selecting data

To query and select datasets, users must first click on the
‘Explore’ button on the home page, which will direct them
to the ‘Dataset’ page. This page displays all the datasets as a
list of cards. Each card highlights the essential information
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Figure 2. Navigating and using Aquila. (A) An example of a dataset card displaying different essential information. (B) A panel for filtering and searching
datasets with a sort button. (C) An example of an analysis panel for selecting methods and inserting parameters to run an analysis.

of a dataset, including species, tissue, disease, technology,
molecule, the statistics of datasets and associated publica-
tions. The card also contains buttons that users can choose
to view the dataset, download the dataset or add the dataset
to the download list to download multiple datasets at once
(Figure 2A). Aquila has a powerful filtering panel on the
same page that helps users look for the dataset(s) they are
interested in faster. Users can select dataset(s) based on mul-
tiple conditions such as species, technology, tissue or dis-
ease (Figure 2B). They can also find datasets by running
a fuzzy search with any keywords. Searching datasets by
gene names (case-insensitive) is also supported (Figure 2B).
After narrowing down their search, users can sort the fil-
tered datasets by publication name, year or the number of
cells/ROIs/genes in either an ascending or a descending or-
der. Aquila also supports viewing datasets from the ‘Publi-
cations’ page since each publication may contain multiple
datasets. Once users find their dataset of interest, they can
explore it in detail by selecting the ‘View’ button. After en-
tering the details page of data, users can also select to view
different ROIs in each dataset through a feature-rich data
table. The default will present the first ROI in the dataset.

Visualizing spatial maps

Spatial maps are shown in 2D or 3D, depending on the
dataset (Figure 1B). Users can begin by obtaining a general
overview of the dataset by choosing one or more ROIs they
would like to view in the ROI preview panel. They can then
pick from the ROI preview panel one ROI at a time that they
would like to acquire additional details. Once users have se-
lected an ROI, they can view different contents of the ROI
by toggling between ‘Cell Map’, ‘Expression Map’ and ‘Co-
localization of Markers’. ‘Cell Map’ shows users the spatial

distribution of the different cell types in the ROI. ‘Cell Map’
also contains general information about the ROI, includ-
ing the dimension (minimum bounding box) and the num-
ber of cells. As for ‘Expression Map’, this option lets users
look at the spatial expression of individual markers. Users
can select or search for their markers of interest using the
dropdown menu. Multiple expression maps can be viewed
at once, so users can compare the spatial expression patterns
of the different markers. Users can click on an ROI to ob-
tain a larger view. Quantification of the expression distribu-
tion for the selected marker is also provided under ‘Expres-
sion Map’. Finally, by selecting ‘Co-localization of Mark-
ers’, users can view the expression of multiple markers in a
cell, similar to immunofluorescent and fluorescent in situ hy-
bridization analyses. Users can select up to two to five mark-
ers, assigning each marker a different color to see whether
their expression is co-localized. All spatial maps allow users
to adjust the point size and canvas size and zoom in and out
to check tissue structures at different resolutions. All visu-
alizations displayed in Aquila can be downloaded as PNGs.

Performing spatial analysis

Users can perform a comprehensive spatial analysis of any
selected ROI within Aquila. Currently, 14 types of analyses
are available. A concise explanation of each analysis can be
found by clicking on the down arrowhead icon to the right
of each analysis title. Users can choose to use the general
default parameters supplied for every analysis, or they can
input their own values. Users can also hover over the ques-
tion mark at the end of each parameter to learn its func-
tionalities in the popup card (Figure 2C). Many analyses
come with more than one method, which allows users to
try out different methods to achieve optimal results. Anal-
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yses will start immediately after selecting the ‘Run’ button,
and users can visualize the results as soon as they are com-
pleted. Some spatial analyses, as described above, rely on
the results from the neighboring network analysis to work
and, by default, are not accessible to users. To unlock and
run these other spatial analyses, users will need to perform
the ‘neighboring network’ analysis, which will then embed
the results into these analyses. Other analyses require cell
type information to run, and thus they are not available for
datasets that do not provide this information. The details
of each analysis and how to choose parameters are found
in the ‘Materials and Methods’ section.

Analyzing user data

Users can use Aquila to analyze their data by upload-
ing them on the ‘Analysis’ page. Users must upload three
files containing ROI annotation, cell/spot coordination and
gene expression values. After these files are processed, users
can then view and analyze their data in Aquila with the ex-
act layout and functionalities as the public datasets. To pro-
tect sensitive private information from patient samples or
unpublished research data from possible leaks, Aquila pro-
cesses the data and stores the results locally.

CONCLUSION AND FUTURE DEVELOPMENT

In this work, we introduce Aquila, a database and analy-
sis package for spatial omics data. Aquila provides a 2D
and 3D spatial omics data visualization platform and allows
users to analyze existing datasets in the database. Moreover,
Aquila also supports visualizing and analyzing user data.
Overall, Aquila provides users with results in a detailed and
comprehensive profile from a spatial perspective.

Many spatial omics datasets provide tissue images such
as H&E staining and expression information. Combining
expression information with images helps users better un-
derstand the datasets and gain deeper insights into their
findings. However, Aquila currently does not support tis-
sue images, mainly due to the vast storage size needed to
archive them and the resulting performance degradation in
the backend database. We will seek better technical solu-
tions in the future to incorporate tissue images. Finally, we
will continuously update Aquila with new datasets and inte-
grate additional analyses to provide a richer understanding
of the data.

DATA AVAILABILITY

Aquila is freely accessible to anyone with no registration
requirements. The database can be accessed and all the
datasets can be downloaded via https://aquila.cheunglab.
org. For usage and API documentation, please refer to
https://aquila.cheunglab.org/about. All preprocessing and
source codes for deploying the database are found at https:
//github.com/Mr-Milk/Aquila-next.

ACKNOWLEDGEMENTS

We are grateful to Nitin Narwade, Lingling Hu,
Zhengqiang Miao and Jianfei Zheng for devoting their

valuable time to testing and providing priceless advice
for improving Aquila. We thank the Information and
Communication Technology Office from the University of
Macau for providing network and hardware support to
host the API server for the database. We also thank all the
members of the Cheung lab for critical feedback on this
work.

FUNDING

University of Macau [MYRG2018-00033-FHS, MYRG
2020-00100-FHS]; Science and Technology Development
Fund [0011/2019/AKP, 0137/2020/A3]. Funding for open
access charge: University of Macau.
Conflict of interest statement. None declared.

REFERENCES
1. HuBMAP Consortium (2019) The human body at cellular resolution:

the NIH Human Biomolecular Atlas Program. Nature, 574, 187.
2. Chen,X., Teichmann,S.A. and Meyer,K.B. (2018) From tissues to cell

types and back: single-cell gene expression analysis of tissue
architecture. Annu. Rev. Biomed. Data Sci., 1, 29–51.

3. Moses,L. and Pachter,L. (2022) Museum of spatial transcriptomics.
Nat. Methods, 19, 534–546.

4. Stickels,R.R., Murray,E., Kumar,P., Li,J., Marshall,J.L., Di
Bella,D.J., Arlotta,P., Macosko,E.Z. and Chen,F. (2021) Highly
sensitive spatial transcriptomics at near-cellular resolution with
Slide-seqV2. Nat. Biotechnol., 39, 313–319.

5. Liu,Y., Yang,M., Deng,Y., Su,G., Enninful,A., Guo,C.C., Tebaldi,T.,
Zhang,D., Kim,D. and Bai,Z. (2020) High-spatial-resolution
multi-omics sequencing via deterministic barcoding in tissue. Cell,
183, 1665–1681.
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Bergenstråhle,J. et al. (2020) Multimodal analysis of composition and
spatial architecture in human squamous cell carcinoma. Cell, 182,
497–514.

21. Rendeiro,A.F., Ravichandran,H., Bram,Y., Chandar,V., Kim,J.,
Meydan,C., Park,J., Foox,J., Hether,T. and Warren,S. (2021) The
spatial landscape of lung pathology during COVID-19 progression.
Nature, 593, 564–569.

22. Fan,Z., Chen,R. and Chen,X. (2020) SpatialDB: a database for
spatially resolved transcriptomes. Nucleic Acids Res., 48, D233–D237.

23. Dries,R., Zhu,Q., Dong,R., Eng,C.-H.L., Li,H., Liu,K., Fu,Y.,
Zhao,T., Sarkar,A. and Bao,F. (2021) Giotto: a toolbox for
integrative analysis and visualization of spatial expression data.
Genome Biol., 22, 1–31.

24. Palla,G., Spitzer,H., Klein,M., Fischer,D., Schaar,A.C.,
Kuemmerle,L.B., Rybakov,S., Ibarra,I.L., Holmberg,O. and
Virshup,I. (2022) Squidpy: a scalable framework for spatial omics
analysis. Nat. Methods, 19, 171–178.

25. Harris,C.R., Millman,K.J., van der Walt,S.J., Gommers,R.,
Virtanen,P., Cournapeau,D., Wieser,E., Taylor,J., Berg,S., Smith,N.J.
et al. (2020) Array programming with NumPy. Nature, 585, 357–362.

26. McKinney,W. (2011) pandas: a foundational Python library for data
analysis and statistics. In: Proceedings of the Workshop onPython for
High Performance and Scientific Computing. Vol. 14, pp. 1–9.

27. Wolf,F.A., Angerer,P. and Theis,F.J. (2018) SCANPY: large-scale
single-cell gene expression data analysis. Genome Biol., 19, 15.

28. Fath,B.D. (2018) Encyclopedia of Ecology. Elsevier, Amsterdam, The
Netherlands.

29. Morisita,M. (1962) I� -index, a measure of dispersion of individuals.
Res. Popul. Ecol., 4, 1–7.

30. Clark,P.J. and Evans,F.C. (1954) Distance to nearest neighbor as a
measure of spatial relationships in populations. Ecology, 35, 445–453.

31. Ripley,B.D. (2005) Spatial Statistics. John Wiley & Sons, Hoboken,
NJ.

32. Rey,S.J. and Anselin,L. (2010) Handbook of Applied Spatial Analysis.
Springer, Berlin, pp. 175–193.

33. Shannon,C.E. (1948) A mathematical theory of communication. Bell
Syst. Tech. J., 27, 379–423.

34. Leibovici,D.G., Claramunt,C., Le Guyader,D. and Brosset,D. (2014)
Local and global spatio-temporal entropy indices based on
distance-ratios and co-occurrences distributions. Int. J. Geogr. Inf.
Sci., 28, 1061–1084.

35. Svensson,V., Teichmann,S.A. and Stegle,O. (2018) SpatialDE:
identification of spatially variable genes. Nat. Methods, 15, 343–346.

36. Kats,I., Vento-Tormo,R. and Stegle,O. (2021) SpatialDE2: fast and
localized variance component analysis of spatial transcriptomics.
bioRxiv doi: https://doi.org/10.1101/2021.10.27.466045, 27 October
2021, preprint: not peer reviewed.

37. Jackson,H.W., Fischer,J.R., Zanotelli,V.R., Ali,H.R., Mechera,R.,
Soysal,S.D., Moch,H., Muenst,S., Varga,Z. and Weber,W.P. (2020)
The single-cell pathology landscape of breast cancer. Nature, 578,
615–620.

38. Traag,V.A., Waltman,L. and van Eck,N.J. (2019) From Louvain to
Leiden: guaranteeing well-connected communities. Sci. Rep., 9, 1–12.

39. Rotta,R. and Noack,A. (2011) Multilevel local search algorithms for
modularity clustering. J. Exp. Algorithmics, 16, 2.1–2.27.

40. Rosvall,M. and Bergstrom,C.T. (2007) Maps of information flow
reveal community structure in complex networks. PNAS, 105,
1118–1123.

41. Blondel,V., Guillaume,J., Lambiotte,R. and Lefebvre,E. (2008) Fast
unfolding of community hierarchies in large networks. J. Stat. Mech.,
2008, P10008.

42. West,D.B. (2001) Introduction to Graph Theory. Prentice Hall, Upper
Saddle River, NJ.

43. Schapiro,D., Jackson,H.W., Raghuraman,S., Fischer,J.R.,
Zanotelli,V.R., Schulz,D., Giesen,C., Catena,R., Varga,Z. and
Bodenmiller,B. (2017) histoCAT: analysis of cell phenotypes and
interactions in multiplex image cytometry data. Nat. Methods, 14,
873.

44. Moran,P.A. (1950) Notes on continuous stochastic phenomena.
Biometrika, 37, 17–23.

45. Geary,R.C. (1954) The contiguity ratio and statistical mapping. Inc.
Stat., 5, 115–146.

https://doi.org/10.1101/2021.10.27.466045

