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Background: The incidence of thyroid cancer (THCA) continues to increase in recent
decades. Accumulating evidence showed that the unbalanced alternative splicing (AS)
promotes the occurrence of cancers and leads to poor prognosis of patients. However,
the research on alternative splicing events in THCA is lacking, and its underlying
mechanism is not fully understood. This study identifies a novel prognostic signature
based on AS events to reveal the relationship of AS with tumor immunemicroenvironment.

Methods: Based on the AS data, transcriptional data, and clinical information, the
differentially expressed alternative splicings (DEASs) were screened out. Least absolute
shrinkage and selection operator (LASSO) regression and multi-Cox regression analyses
were employed to identify prognostic results related to AS events and establish a
prognostic signature. The predictive ability of the signature was assessed by Kaplan-
Meier (K-M) survival curve, risk plots, and receiver operating characteristic (ROC) curves.
Furthermore, correlations between tumor-infiltrating immune cells, immune checkpoints,
immune score and prognostic signature were analyzed.

Results: According to the LASSO regression analysis, a total of five AS events were
selected to construct the signature. K-M survival curve showed that the higher the risk
score, the worse the OS of the patients. Risk plots further confirmed this result. ROC
curves indicated the high predictive efficiency of the prognostic signature. As for tumor
immune microenvironment, patients in the high-risk group had a higher proportion of
immune cells, including plasma cell, CD8+ T cell, macrophages (M0 and M2), and
activated dendritic cell. Immune checkpoint proteins, such as PDCD1LG2, HAVCR2,
October 2021 | Volume 11 | Article 7638861

https://www.frontiersin.org/articles/10.3389/fonc.2021.763886/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.763886/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.763886/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.763886/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ent_gzrch@163.com
mailto:tsjbent@163.com
https://doi.org/10.3389/fonc.2021.763886
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.763886
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.763886&domain=pdf&date_stamp=2021-10-18


Wu et al. Alternative Splicing for Thyroid Cancer

Frontiers in Oncology | www.frontiersin.org
CD274, etc., were significantly higher in the high-risk group. We also found that the
ESTIMATE score, stromal score, and immune score were lower in the high-risk group,
while the result of tumor purity was the opposite.

Conclusions: Collectively, a prognostic signature consisting of five AS events in THCA
was established. Furthermore, there was an inextricable correlation between immune cell
infiltration, immune checkpoint proteins, and AS events. This study will provide a basis for
THCA immunotherapy in the future.
Keywords: thyroid cancer, alternative splicing, immune microenvironment, immunotherapy, immune
checkpoint (ICP)
INTRODUCTION

The incidence of THCA continues to increase worldwide, mainly
due to the progress of imaging technology and the increase of
examination methods. The number of thyroid cancer cases
detected in the USA each year increased by 240% from 1973 to
2002, eventually reaching 7.7 per 100,000 people. However, the
data continues to increase, reaching 15.2 per 100,000 people in
2013 (1). The mechanisms of THCA are complex because they
are controlled by genetic alterations in gene mutation, increased
copy number of genes and abnormal methylation of genes, which
lead to heterogeneity of the disease (2, 3). The challenge for
clinical doctors in the treatment of thyroid cancer is to balance
the treatments so that patients with low-risk disease or benign
thyroid nodules are not overtreated. At the same time, doctors
need to find new treatments as the traditional antineoplastic
therapy did not achieve satisfactory results for all thyroid cancers
(4). Therefore, there is an urgent need to explore new biological
indicators and molecular mechanisms of THCA to help achieve
accurate treatment and provide new targets for immunotherapy.

Gene sequencing technology, especially the next-generation
sequencing, has developed rapidly in recent decades. It has
become a trend to utilize big data of tumor genomics to excavate
and analyze the internal factors affecting tumor formation and
progression. Alternative splicing (AS) is one of the most important
posttranscriptional regulation, which canmodifymore than 90%of
human genes (5). Accumulating evidence showed that AS is widely
involved in the formation of tumor microenvironment (6–9).
Although there were some studies on the AS events in THCA (10,
11), the role of AS events in tumor immune microenvironment is
lacking. Therefore, it is an unmet need to explore the potential
mechanism ofAS events on immunemicroenvironment in THCA.

In this research, we established a prediction model including
five AS events on the basis of comprehensive bioinformatics
analysis. ROC curve and K-M survival curve revealed the
prediction capability of the prediction model in THCA. To
reveal the underlying mechanism between AS events and 22
types of immune cells, CiberSort algorithm was employed to
calculate the proportion of tumor immune cell infiltration
between patients in the high- and low-risk groups. Finally, the
potential immune checkpoints of patients were analyzed, which
may help to break the bottleneck of THCA immunotherapy.
2

METHODS

Data Collection
Transcriptional data and clinical information of 506 THCA
patients were downloaded from The Cancer Genome Atlas
(TCGA) database (https://tcga-data.nci.nih.gov/). AS data of
THCA patients were downloaded from the SpliceSeq database
(http://bioinformatics.mdanderson.org). Finally, a total of 495
THCA patients with splicing data, transcriptional data, and
clinical information were included in this study for analysis.
Identification of Survival-Related
AS Events and Prognostic
Signature Construction
For TCGA spliceseq, seven types of AS events were quantified by
percent spliced in (PSI), which ranges from 0 to 1 (12). A PSI
value ≥0.75 was selected as filter of all samples. Visualization of
AS events was performed through the Upset plot, which was
drawn using the UpSetR package (R software 4.0.5). Univariate
Cox regression (set p < 0.05 as filter) was selected to identify the
differentially expressed alternative splicings (DESAs), and the
DEASs related to prognosis were selected for further analysis.
The final survival-related AS events was identified by least
absolute shrinkage and selection operator (LASSO) regression,
which can avoid overfitting of model. Furthermore, multivariate
Cox regression was employed to construct the prognostic
signature model based on selected AS events. Risk score =

on
i=0 = PSI ∗ coef i, in which n represented the number of AS

events selected by prognostic signature and coefi represented
regression coefficient of each selected AS event.
Validation of Prognostic Signature
According to the results of median risk score, 495 THCA patients
were divided into the high- and low-risk groups. For K-M
survival curve, the difference of overall survival time (OS) in
the high- and low-risk groups was compared. The predictive
efficiency of prognostic signature was evaluated by using ROC
curve to calculate the survival rate of 1, 3, and 5 years. The hazard
ratio (HR) of the risk score and clinical parameter were obtained
by univariate and multivariate Cox regression analyses.
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Immune Cell Infiltration and Immune
Checkpoint Analysis
CiberSort, a tool that can provide specific immune cell types
based on RNA profile, was used to analyze the 22 immune cell
subtypes in THCA. The vioplot package of R was used to identify
different immune cell infiltration between the high- and low-risk
groups. At the same time, the immune score was calculated
according to the ESTIMATE algorithm. The ggpubr package of R
was used to analyze the difference of immune features (stromal
score, immune score, ESTIMATE, and tumor purity). Immune
status and potential immunotherapy were predicted by
comparing the differential expression of immune checkpoints
between the high- and low-risk groups. Meanwhile, the
correlation of immune checkpoints and the risk score
was analyzed.

Splicing Factors and DEAS
Regulatory Network
AS-related genes were acquired from MSigDB, which was the
abbreviation of the Molecular Signatures Database (13). The
correlation between the PSI values of DEASs and expression of
splicing factors (SFs) was assessed by the Pearson correlation
analysis. Both correlation coefficient >0.6 and adjusted p < 0.001
were set as filtering conditions. Cytoscape (version 3.8.2) was
used to visualize networks related to DEASs and splicing
genes (14).
RESULTS

Characteristics and AS Events of Patients
With THCA
A total of 506 THCA patients from TCGA database were
enrolled in the study, and 11 of them were excluded for null
splicing data, which were over 30%. Details of the study are
shown in the workflow (Figure 1). The clinical information of
enrolled patients are displayed in Table 1. Figure 2A shows
seven types of AS events, such as, the alternate acceptor site
(AA), alternate donor site (AD), alternate promoter (AP),
alternate terminator (AT), exon skip (ES), mutually exclusive
exons (ME), and retained intron (RI). A total of 3,638 AA in
2,592 genes, 3,190 AD in 2,240 genes, 9,127 AP in 3,650 genes,
8,595 AT in 3,753 genes, 17,536 ES in 6,748 genes, 232 ME in 224
genes, and 2,787 RI in 1,865 genes were identified
(Figures 2B, C).

Survival-Associated AS Prognostic
Signature Construction
A total of 1,089 AS events in 823 genes associated with THCA
progression were identified by univariate Cox regression analysis
with a filter of p < 0.05 (Figures 2D, E). The distribution of OS-
related AS events was shown in the volcano plot (Figure 2F). The
top 20 OS-related seven types of alternative splicing events are
shown in Figures 3A–G. To avoid overfitting, LASSO regression
was employed to determine the final OS-related AS events that
were highly associated with THCA (Figures 4A, B). Independent
Frontiers in Oncology | www.frontiersin.org 3
prognostic AS events were further identified by multivariate Cox
regression. As a result, five AS events, SRSF5-28161-AD,
PDCD10-67560-ES, AKAP8L-48080-ES, GALNTL6-71169-AT,
and FOXRED1-19377-ES were selected as independent risk
factors for constructing the prognostic signature in THCA.
The detail of each AS event was recorded (Supplementary
Table S1).

Prognostic Signature Validation
To evaluate the predictive efficiency of the prognostic signature,
heat map, risk score plots, K-M curve, and ROC curve were
drawn. The risk score distribution curve showed that the higher
the risk score of the THCA patients, the shorter is the
corresponding survival time (Figures 4C, D). The heat map
exhibited the expression of five DEASs in patients of the high-
and low-risk groups (Figure 4E). K-M survival curve showed
that the THCA patients in the high-risk group tend to have
shorter OS, p < 0.001 (Figure 4F). Clinical feature-dependent
ROC curve showed that the AUC of risk score, age, gender, and
stage were 0.951, 0.906, 0.576, and 0.773, respectively
(Figure 5A). Time-dependent ROC curve showed that the
AUC value of 1, 3, and 5 years was 0.899, 0.905, and 0.951,
respectively (Figure 5B). The HR values for OS calculated by
univariate and multivariate Cox regression analyses were 1.007
and 1.003, respectively (p < 0.001 and p = 0.008, Figures 5C, D).
These data indicated that the AS-related prognostic signature
could be applied to predict OS of patients with THCA.
Meanwhile, we constructed a nomogram model to predict the
1-, 2-, and 3-year survival rates of the THCA patients (Figure 6).

Relationship Between Immune
Microenvironment and
Prognostic Signature
CIBERSORT was applied to identify the 22 types of immune
cells. The proportion of infiltrated immune cells in THCA is
shown in Figure 7A. Macrophage (M2) cells and CD8+ T cell
were the main immune cell types that infiltrated the thyroid
cancer tissue among all identified immune cells. Patients in the
high-risk group exhibited lower proportion of plasma cells and
CD8+ T cells compared with that in the low-risk group.
However, the proportion of dendritic cells and macrophages
(M0 and M2) were higher in patients of the low-risk group
(Figure 7B). The above result was consistent with the correlation
between immune cells and risk score. The heatmap showed the
difference of immune cells and immune response between the
high- and low-risk groups for each of the THCA sample
(Supplementary Figure S1). We found that the proportion of
most immune cells was higher in the high-risk group except for
macrophages, and most immune response was more active in the
low-risk group (Supplementary Figure S2).

Relationship Between Immune
Checkpoint Genes, Immune Scores,
and Prognostic Signature
Patients in the high-risk group displayed higher expression of
immune checkpoints, including ADORA2A, PDCD1LG2
October 2021 | Volume 11 | Article 763886
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(PD-L2), HAVCR2, CD70, IDO2, TNFSF4, TNFSF18, CD160,
CD80, and CD274 (PD-L1), compared with that in the low-risk
group (Figure 7C). The stromal score, ESTIMATE score, and
immune score were higher in the low-risk group, while the result
of tumor purity was the opposite (Figure 7D).
Regulatory Network of DEASs and SFs
In order to explore the potential regulatory relationship
between the DEASs and SFs, the correlation between the PSI
Frontiers in Oncology | www.frontiersin.org 4
value of prognostic-related DEASs and the expression of SFs
was analyzed in the THCA. A total of 78 DEAS events,
including 41 high-risk and 37 low-risk AS events, were
significantly correlated with 89 SFs (absolute value of R ≥ 0.6
and adjusted p < 0.001) (Figure 8). In the regulatory networks
of SFs and DEAS, their relationship was not a simple one. A
DEAS can be regulated by up to 42 different SFs, and one SF can
regulate up to 24 DEASs. These data indicated the
comprehensive regulatory network of cooperation or
competition between DEASs and SFs.
FIGURE 1 | Flow diagram of this study.
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DISCUSSION

Recent studies have focused on the effects of AS events in cancer
progression and recurrence. The recurrence of AS events can
exert an impact on cancer prognosis (15). Previous studies
indicated that abnormal AS events can lead to various diseases,
especially cancers, but the mechanism is unclear (16). The AS
events play an indispensable role in the progression and
metastasis of THCA, which has been proven in many studies
(11, 17, 18). However, due to the limited sample size and
focusing on specific AS events, the previous research on AS
events in THCA was not comprehensive. Therefore, we made a
comprehensive analysis of AS events in a large sample size of
THCA in order to clarify the mechanism of AS events in THCA.

In this study, we detected 45,150 AS events in 21,075 genes in
495 THCA patients, suggesting that AS was a ubiquitous
biological process in THCA and mainly involved in the
regulation of posttranscriptional modification. In addition,
1,089 DEASs were identified from the comparison between
THCA and normal tissues. Previous study found that most
DEASs were closely related to their corresponding genes,
which indicated that AS plays an indispensable role in the
posttranscriptional process and can change gene expression
(19). Network of prognostic-related DEASs and SFs further
clarified potential pathways associated with AS events. All the
important splicing variants verified in previous THCA studies
TABLE 1 | Characteristics of patients with THCA from TCGA database
(n = 506).

Characteristics No. of patients Percentage (%)

Age
≤65 435 85.97
>65 71 14.03

Gender
Female 370 73.12
Male 136 26.88

Stage
I 285 56.32
II 52 10.28
III 112 22.13
IV 55 10.87
Unknown 2 0.40

T category
T1 144 28.46
T2 167 33.00
T3 170 33.60
T4 23 4.55
Unknown 2 0.40

N category
N0 230 45.45
N1 226 44.66
Unknown 50 9.88

M category
M0 283 55.93
M1 9 1.78
Unknown 214 42.29
A B C

D E F

FIGURE 2 | AS events in THCA. (A) Seven AS events types. (B) Upset plot of seven types of AS events and related genes in THCA. (C) Bar plot of AS events and
related gene numbers in THCA. (D) Upset plot of OS-related AS events and related genes. (E) Bar plot of OS-related AS events and related genes numbers.
(F) Volcano plot of prognostic AS events.
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A B C D

FE G

FIGURE 3 | Bubble plots of top 20 significantly OS-related AS events in THCA. Seven types of AS events were displayed from (A–G).
A B

C

D

E

F

FIGURE 4 | Construction of prognostic signature based on AS events. (A) LASSO coefficient of selected OS-related AS events. (B) Lambda graph of the LASSO
regression signature. (C, D) Survival time and survival status of patients in the high- and the low-risk groups. (E) Heat map showed the differential expression of five
AS events between the high- and the low-risk groups. (F) K-M Survival curve of patients in the high- and the low-risk groups.
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have also been identified by our program, which showed that the
results we found were reliable and the DEASs found in this study
were common in THCA. At the same time, we also found that
some common DEASs were detected in THCA, colorectal
cancer, and head and neck squamous cell carcinoma,
indicating that some AS events were ubiquitous in the
occurrence and development in different types of cancers
(20, 21).

SRSF5, PDCD10, AKAP8L, FOXRED1, and GALNTL6 were
finally identified as integrated prognostic splicing biomarkers in
our study. The prognosis of patients with THCA can be
predicted accurately predicted by the signature composed with
five AS events. According to NCBI, Ensemble, and SMART
database, SRSF5 encoded the protein which was an important
constituent element of pre-mRNA splicing factors and forms
part of the spliceosome (22). Previous studies have found that
SRSF5 can regulate the m6A methylation of pancreatic cancer,
thus promoting its growth and metastasis (23). SRSF5 has been
investigated as a novel oncogene that is involved in oral
squamous cell carcinoma and can be upregulated by SRSF3
(24). PDCD10 was one of the CCM families of proteins and
also known as cerebral cavernous malformations 3 (CCM3) (25,
Frontiers in Oncology | www.frontiersin.org 7
26). PDCD10 overexpression can accelerate tumor migration,
invasion through reversing TRIM59 loss-induced contractile
phenotypes (27). AKAP8L was found to regulate translation,
cell growth, and cell proliferation (28). FOXRED1 encodes a
protein that contains a FAD-dependent oxidoreductase domain
and has been investigated as a new biomarker in human
colorectal cancer (29). Passon found that amplifications of
GALNTL6 were more likely to be identified in the high-risk
group than that of the low-risk group in THCA (30). We found
that all the above five genes were widely involved in the biological
process of cancers. Therefore, we assumed that the changes in
these genes may be related to the formation and progression of
cancers and that the mechanism of related splicing events should
be further identified.

Immunotherapy targeting immune checkpoints has been
proven to improve the prognosis of patients with THCA.
Therefore, the difference of immune checkpoint expression
between the high- and low-risk groups was analyzed. The
results of our study indicated that the patients in the high-risk
group had higher expressions of immune checkpoint proteins
(ADORA2A, PDCD1LG2, HAVCR2, CD70, IDO2, TNFSF4,
TNFSF18, CD160, CD80, and CD274). An increasing body of
A B

C D

FIGURE 5 | Prognostic signature validation. (A) The ROC curves of risk score, age, gender, and stage in THCA. (B) The ROC curves of prognostic signature in
THCA at 1, 3, and 5 years. (C) Forest plot of risk score and clinical data analyzed by univariate Cox regression. (D) Univariate Cox regression based on risk score
and clinical data analyzed by univariate Cox regression.
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FIGURE 6 | The nomograph, based on clinical data and risk score, was created to predict the 1-, 2-, and 3-year survival rate of THCA patients.
A B

C D

FIGURE 7 | Immune landscape of patients with THCA. (A) Proportion of 22 types of immune cells in 495 samples. (B) twenty-two types of infiltrating immune cells
between the high- and low-risk groups in THCA. (C) Immune score between the high- and the low-risk groups in THCA. (D) Immune checkpoints between the high-
and low-risk groups in THCA. *p < 0.05, **p < 0.01, ***p < 0.001.
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evidence showed that CD274 (PD-L1) played a key role in the
TME of various tumors. Nikita and Yoo found that high
expression of PD-L1 was associated with poor clinical
outcomes for THCA patients (31, 32). However, the expression
of another PD-1 ligand, PCCDLG2 (PD-L2), has not been fully
elucidated, especially in thyroid cancer. PD-L2 expression can be
detected in various immune cells and tumor cells and is easily
affected by the change of microenvironment (33–35). Daisuke’s
research confirmed that CD80 limits the PD-1 coinhibitory
signal and induces T-cell proliferation and cytokine production
(36). HAVCR2 (Tim-3) plays an important role in inhibiting the
expression of cytokines such as TNF and INF-g that are
cytokines widely existing in many immune response (37).
Frontiers in Oncology | www.frontiersin.org 9
Cancer cells, endothelial cells, and tumor-infiltrating
lymphocytes are the main cells that express HARVR2 (38). It
has been proven that the expression of HAVCR2 were
significantly higher in tumor tissue samples compared with
paracarcinoma tissue. Meanwhile, high expression of HAVCR2
was significantly correlated with the poor prognosis of ovarian
cancer (39), colon cancer (40), bladder urothelial carcinoma (41),
and gastric cancer (42). Lawrence et al. performed a study of an
A2AR antagonist for cancer treatment and demonstrated the
antitumor activity in patients with refractory renal cell cancer
(43). Several new immune checkpoint proteins that have not
been previously reported in thyroid cancer have been found.
Therefore, the differentially expressed immune checkpoint
FIGURE 8 | SF-DEAS regulatory network in THCA. Forty-one OS-related high-risk AS events (red triangles) and 37 OS-related low-risk AS events (green diamonds)
were positively (green lines) or negatively (red lines) regulated by 89 SFs (blue ellipses).
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proteins between patients with high- and low-risk scores may
provide a new solution for immunotherapy of THCA.

It has been reported that AS events are widely involved in
angiogenesis, invasion, and immune destruction of a variety of
tumors (44). New epitopes, produced by gene-derived AS events,
can be used in immunotherapy to improve patient survival rate.
However, at present, there were few studies on the bioinformatics
analysis of AS and immunity in THCA (45). In this study, we
described the relationship between AS events and immunity and
revealed the different distributions of immune cells in the high-
and low-risk groups. The differential distribution of immune
cells, such as plasma cells, CD8+ T cells, macrophages (M0),
macrophages (M2), and dendritic cells was identified. Among
them, low proportion of plasma cells and CD8+ T cells was
clearly correlated with poor prognosis, while high proportion of
macrophages (M0), macrophages (M2), and dendritic cells was
correlated with better prognosis. A similar trend has been
identified in the study of skin cancer (46) and malignant
melanoma (47). In brief, our research showed that there was a
strong correlation between AS events and immune cell
infiltration in THCA.

Immunotherapy, which was based on immune cells, can
provide a new insight for the treatment of some cancers,
including THCA (48, 49). However, the problem faced by
researchers was how to find a suitable target antigen for
immunotherapy. In the process of searching for new tumor
mutant antigens, attention has been paid to the new epitopes
produced by mRNA AS events. Recent studies have found that
peptides produced by mRNA AS events may combine with
MHC-I molecules to produce complexes that can act as new
epitopes (49). Therefore, assuming that the AS events identified
in the present study can discover new epitopes for CD8+ T cells,
plasma cells, or other immune cells, the alternative targets for
cancer immunotherapy will be greatly expanded. As for clinical
transformation, personalized vaccines prepared with new
antigenic peptides can produce T-cell responses in vivo, which
can reduce or eliminate tumor cells and improve the prognosis of
patients with cancers.
CONCLUSIONS

Taken together, a prognostic signature consisting of five AS
events in THCA was established, which was helpful for
individualized and accurate treatment of patients. Furthermore,
there was an inextricable correlation between immune cell
infiltration, immune checkpoints, and AS events. This result is
Frontiers in Oncology | www.frontiersin.org 10
of great significance and provides as basis for THCA
immunotherapy in the future.
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and infiltration of immune cells between the high- and the low-risk groups in THCA.
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