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Abstract: The principal reason for measuring mental workload is to quantify the cognitive cost
of performing tasks to predict human performance. Unfortunately, a method for assessing mental
workload that has general applicability does not exist yet. This is due to the abundance of intuitions
and several operational definitions from various fields that disagree about the sources or workload,
its attributes, the mechanisms to aggregate these into a general model and their impact on human
performance. This research built upon these issues and presents a novel method for mental workload
modelling from EEG data employing deep learning. This method is self-supervised, employing
a continuous brain rate, an index of cognitive activation, and does not require human declarative
knowledge. The aim is to induce models automatically from data, supporting replicability, generalis-
ability and applicability across fields and contexts. This specific method is a convolutional recurrent
neural network trainable with spatially preserving spectral topographic head-maps from EEG data,
aimed at fitting a novel brain rate variable. Findings demonstrate the capacity of the convolutional
layers to learn meaningful high-level representations from EEG data since within-subject models
had, on average, a test Mean Absolute Percentage Error of around 11%. The addition of a Long-
Short Term Memory layer for handling sequences of high-level representations was not significant,
although it did improve their accuracy. These findings point to the existence of quasi-stable blocks of
automatically learnt high-level representations of cognitive activation because they can be induced
through convolution and seem not to be dependent on each other over time, intuitively matching the
non-stationary nature of brain responses. Additionally, across-subject models, induced with data from
an increasing number of participants, thus trained with data containing more variability, obtained a
similar accuracy to the within-subject models. This highlights the potential generalisability of the
induced high-level representations across people, suggesting the existence of subject-independent
cognitive activation patterns. This research contributes to the body of knowledge by providing
scholars with a novel computational method for mental workload modelling that aims to be generally
applicable and does not rely on ad hoc human crafted models.

Keywords: cognitive load; deep learning; self-supervision; brain rate; convolutional neural network;
recurrent neural network; mental workload; EEG bands; electroencephalography; spectral topology-
preserving head-maps

1. Introduction

The explosion of home-working and online interactions, the pervasive uses of tech-
nologies in daily activities and many working environments impose ever more mental
workload upon operators and less physical load. The literature on the construct of mental
workload (MWL) or, often interchangeably referred to as cognitive load (CL), has been
vast and in constant evolution for the last half-century. Note that cognitive load and
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mental workload might differ in little aspects, according to authors working in different
fields, such as psychology, neuroscience or education. However, to my knowledge, no
clear evidence has been found to address these differences formally. Thus, they are in-
terchangeably used in the remainder of this article. Many definitions of MWL exist in
the literature, as reported in [1]. However, a newly proposed operational and inclusive
definition is: “Mental workload (MWL) represents the degree of activation of a finite pool
of resources, limited in capacity, while cognitively processing a primary task over time,
mediated by external stochastic environmental and situational factors, as well as affected by
definite internal characteristics of a human operator, for coping with static task demands,
by devoted effort and attention” [1]. The principal reason for measuring workload is to
quantify the mental cost of performing tasks to predict human performance [2]. In turn,
prediction of performance can be used for designing interfaces, interactive technologies [3],
and information-processing activities [4] optimally aligned to the well-known human
mental limited capacities [1]. Despite 50 years of effort, research on MWL has not been
able to make major advances yet [5–7] failing at creating a clear, robust, transparent and
explainable model [8–11]. Guess intuitions and several operational definitions from various
fields have proliferated [12,13]. Still, these disagree about the MWL sources, their attributes,
the mechanisms to aggregate these together and their impact on human performance [8].
Identifying these sources, attributes, and mechanisms and how they impinge on human
performance are all open fundamental research problems. For instance, some researchers
have considered task-specific attributes [14] while others chose a combination of task and
user-specific attributes [5]. Primary researchers have employed self-reporting measure-
ments [13] or a combination of psychophysiological techniques [15]. However, MWL is
also influenced by the environment in which a human performs a task [16].

Currently, the literature on mental workload includes a plethora of hand-crafted
knowledge-driven models grounded in different theories, employing different attributes
and different strategies for aggregating these into indexes of workload, limiting their
comparison [1,10,17,18]. This makes cognitive load a knowledge-dependent construct.
This is also supported by the fact that cognitive load has been mainly investigated in the
fields of ergonomics and psychology [8,13] with several applications in the aviation [5],
automobile [15] and manufacturing industries [19]. In these fields, investigations are
mainly conducted in labs and highly controlled settings, making cognitive load a field-
dependent construct. Past research has had a tendency to focus on complex safety-critical
systems [9] with many applications in the transportation [20,21], nuclear and manufactur-
ing industries [5,15], making mental workload an application-driven construct. However,
researchers have claimed the need for models of cognitive load in other ecological settings
with real-world activities [6–8,22]. The vast majority of existing knowledge-dependent,
field-dependent, and application-driven models aggregate attributes, believed to influence
workload, in a linear fashion [5], or assume stationarity within a task, neglecting temporal
dynamics [9], making cognitive load a static construct. Additionally, these models are
largely built by fitting or correlating to some ad hoc indicator of human performance.
This is either explicitly achieved by applying self-reporting techniques and correlating
to subjective responses from experimental participants, or based on fitting human re-
sponses grouped by tasks of varying demands, often ad hoc and subjectively defined.
This largely complicates research efforts attempted at modelling mental workload and
increasing the generalisability of models because they are highly constrained on those sub-
jective design choices from modellers that highly differ across experiments, disciplines and
contexts. The aforementioned state of the art in cognitive load modelling has led to many
definitions of workload [1,17,23,24] and the formation of ad hoc, knowledge-dependent,
field-dependent, application-driven and static models with little chance of reconciliation [9].
Because of this, despite 50 years and more of research, the construct of workload is still
ill-defined [1,7–9,17,18].

The goal of this research is to tackle the above issues and design a model of cogni-
tive load that has wider applicability, facilitating comparison across studies, that is less
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constrained to the context of application, that is not static, meaning it consider mental
workload over time, that does not require any explicit ground truth, and that minimizes
experimental design-choices of researchers. To achieve this goal, this research proposes to
apply modern deep learning methods to avoid incrementally extending current knowledge-
driven approaches and supporting automatic learning of salient features for cognitive load
and their non-linear inner-relationship from data. In other words, this means that rather
than producing ad hoc models of mental workload, by using the declarative knowledge
and experience of a human modeller, it is possible to ‘induce’ such models from data, and
’learn’ salient features and patterns from it automatically. Additionally, this research focuses
on neurophysiological data collected in ecological settings and daily real-world activities
not traditionally considered in cognitive load research. In detail, electroencephalography is
employed for such a purpose. Experiments will be focused on simultaneously taking ad-
vantage of the temporal, spatial and spectral properties of physiological EEG data without
making any assumption on the linearity of cognitive load, supporting the automated ex-
traction of salient features and representations and their inner relationships with no explicit
declarative knowledge from designers. Linearity here refers to the extent to which any
effect on mental workload variation is exactly proportional to its cause, which is something
it is assumed not to hold. This will allow moving beyond the knowledge-driven research
approaches that have produced hand-crafted deductive knowledge and have dominated
the research landscape on mental workload for the last 50 years. Additionally, without
resorting to self-reporting subjective perceptions or task-performance measures but only
employing physiological EEG data, it represents a more objective method for modelling
cognitive load. Eventually, the proposed computational method does not require explicit
ground truth for mental workload, usually achieved by subjectively settings two design
conditions of increasing task demands, for example, ‘low’ and ‘high’, and then using this
as a dependent variable to fit while developing a specific model. Instead, a self-supervised
brain rate generated from data is proposed, supporting the automatic development of a
method of cognitive load modelling that potentially has a higher degree of applicability
and replicability. In other words, self-supervision is that property of learning methods that
obtains supervisory signals from the data itself, often leveraging the underlying structure
in it. Eventually, it is important to note that setting task conditions is still necessary while
performing experimental studies to evaluate the variation of cognitive load. However, this
is outside the scope of current research. As discussed in [1], the multiple resource theory
could be used to design different task conditions by manipulating the task demands on
each resource.

The remainder of this article is structured as follows. Section 3, introduces the design
of a self-supervised mental workload model based on a brain rate, an index of cognitive
activation, trained with deep learning techniques that are expected to identify recurrent
patterns while fitting such a rate. Section 4 presents the results of the experiment, followed
by a discussion in Section 5 and the identification of future research improvements.

2. State of the Art in Cognitive Load Modeling

The literature on cognitive load is vast, and recent work has attempted to collate the
great amount of information surrounding this construct [1]. Mental workload manage-
ment has always been one of the primary reasons for building interactive technologies,
information-based procedures and user interfaces to predict and optimise their performance
and that of humans interacting with them, improving their engagement and minimising
errors. Sometimes, the acquisition of specific certifications or compliance with certain
industrial standards of such interactive technologies is required [17]. All cognitive activi-
ties performed by humans, even the most simple and rudimentary, require some mental
processing and, therefore, at least some degree of mental workload. Three main classes
of measures of mental workload exist, including self-report measures, physiological (and
neurophysiological) measures, and primary task performance measures. Widely used
self-report measures, often multidimensional, are easy to administer across contexts and
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domains, do not interfere with the primary task, and are computationally inexpensive.
However, they are mainly administered post-task and provide an overall mental workload
assessment with low granularity and reliability over time, especially for long tasks. Ad-
ditionally, as scores are derived from subjective perceptions, it is difficult to use them for
comparison across participants on an absolute scale [1,8]. Task performance measures can
be gathered continuously, even for long tasks, representing reliable indicators of mental
workload, thus, the most direct indicators of human performance. However, their diagnos-
ticity is poor in spotting sources of workload, and if taken in isolation, they have low utility.
Contrarily, if considered in conjunction with other measures, they can be useful in helping
scholars establish cause and effect relationships [25]. Physiological measures are getting mo-
mentum thanks to advances in sensor-based technologies, with increasing applications in
experimental settings, Their main utility is monitoring the body’s physiological and neuro-
physiological responses of the brain continuously over time, often not interfering with the
primary task and with greater sensitivity. However, offline pre-processing pipelines on
gathered signals are often required to reduce the presence of internal and external artefacts.
These are computationally expensive, thus making them more difficult to administer and
limiting mental workload assessment in real-time, ecological settings. Several evaluation
criteria exist for measures of mental workload, with sensitivity, validity, reliability and
diagnosticity as the primary ones [1]. Given the use of neuro-physiological measures in
the current research study, this section is mainly devoted to reviewing related work on the
application of Electroencephalography to the problem of cognitive load modelling. Readers
can obtain further information on mental workload in [1,8,17,25].

Electroencephalography (EEG) is a technique for the direct assessment of brain elec-
trical activity via electrodes placed on the scalp and, as a consequence, the inference of
objective neuro-metrics of human mental activation and mental states [26]. The advantages
behind the application of EEG data for cognitive load modelling are represented by its
high portability, when compared to neuroimaging methods such as fMRI [27], its wider
applicability in ecological settings [28,29], financial affordability [30], and its high temporal
resolution [31]. Unfortunately, EEG-based cognitive load modelling methods must consider
several technical issues. Firstly, variation in EEG signals exists mainly because of the slight
differences in cortical mappings and brain functioning of subjects, leading to differences
in spatial, spectral and temporal patterns or due to imperfect fitting of the EEG cap on
heads of different shapes and sizes. Therefore, a key challenge in successfully recogniz-
ing mental states from EEG data is to create a model that is robust to deformation and
translation of signal in space, frequency, and time due to inter and intra-subject differences
and to the protocols or methods employed in signal acquisition. Fortunately, advances in
machine learning [32] and particularly in deep learning methods [33] have proven useful
for learning models from EEG data [34], and for minimising the above technical issues
while learning from data. The advantage of these data-driven deep-learning methods
is that they support the automatic extraction of meaningful high-level representations
from complex, non-linear data [35], they can lead to the creation of learning architectures
that have wider applicability, supporting replicability of experimental research, and are
flexible enough to be adapted and extended, eventually supporting advances and research
progresses. However, applications of deep learning methods with EEG data have barely
attempted to jointly preserve the structure of EEG signals within space, frequency and time.
Most studies have focused on spatio-temporal learning [36], time-frequency learning [37]
or spatial-frequency learning [38]. Therefore, a challenge is to inductively learn a model
capable of exploiting the spatio-temporal and frequency-based properties of EEG data.

The literature on cognitive load modelling with EEG and deep learning is recent, not
vast and highly scattered [39–47]. Most of these models are supervised, which means
they require a form of ground truth, usually in task-based categories or task-performance
measures. Unfortunately, there is no agreement among researchers on how to form such
categories systematically. This limits comparisons across studies because, on the one hand,
some scholars might focus on building a model for classifying low or high levels of task load
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for relatively simple tasks. On the other hand, others might focus, for example, on building
models for assessing low, medium or high load of complex tasks. In other words, these
models are context-dependent, and they learn high-level features from EEG data focused
on fitting these application-specific target classes. Therefore they cannot be meaningfully
used across studies, limiting their generalisability. Some recent work focused on applying
unsupervised learning techniques such as auto-encoders to automatically learn relevant
latent representations from EEG data in an unsupervised fashion or aimed at automatically
reducing the presence of noise in the data itself [48,49]. However, these unique high-level
representations are often used to learn a second model that, unfortunately, still often re-
quires supervision, as the goal is to fit, as described earlier, categories of task load, these
being the independent feature subjectively defined by researchers. State-of-the-art models
manipulating EEG data often rely on frequency bands, such as the alpha or theta rhythms,
deemed the alphabet for brain functions and mental state extraction. These have been
individually used as cognitive load indicators [50,51], or aggregated together [21,52–54]
because they have been shown to be sensitive to task difficulty manipulation, task engage-
ment or memory load [55,56]. However, these approaches often discard some EEG bands
in favour of other bands.

3. Design and Methods

A novel method is proposed to tackle the issues in modelling cognitive load, as dis-
cussed in the previous sections, followed by an empirical study to validate such a method.
Contrary to all the existing methods of cognitive load modeling, the method proposed here
is self-supervised [57,58]. Self-supervision is an approach that autonomously learns from
the data itself, and that is in the middle between supervised and unsupervised learning
methods within the discipline of artificial intelligence. It is not fully supervised because it
does not require ground truth (an independent variable to fit), usually as a form of declar-
ative knowledge. It is also not fully unsupervised because it is not used for discovering
patterns in the EEG data that need to be subsequently labelled and categorised with human
intervention. Rather, self-supervision refers to the fact that the ground truth is generated by
some automatic methods applied to the available data itself. Subsequently, some supervised
machine learning algorithm uses this ground truth as supervisory data to train a model.
In other words, self-supervised machine learning can be seen as an autonomous form of
supervised learning because it does not require explicit human declarative knowledge.

Starting from the definition of workload proposed in [1] whereby ‘Mental workload
(MWL) represents the degree of activation of a finite pool of resources, limited in capacity,
while cognitively processing a primary task over time, mediated by external stochastic
environmental and situational factors, as well as affected by definite internal characteristics
of a human operator, for coping with static task demands, by devoted effort and attention’,
this study is built upon a simpler version. This simpler definition assumes that mental
workload is the activation of the brain at a given point in time. In details, analogously to
blood pressure and heart rate, seen as standard preliminary indicators of general bodily
activation, a brain rate is proposed as an indicator of mental activation, and then used
in this research as an indicator of cognitive load. This simpler definition indeed assumes
that the brain is limited in its capacity, but it does not dissect it into multiple resources.
Additionally, the influence of the internal characteristics of a human operator during
task performance, and the influence of external environmental and situational factors are
not modelled here, nor the effort and attention devoted to the primary task. Rather, the
continuous cognitive activation, as measured by such brain rate, is assumed to be the means
to explain the manifestation of certain mental states over time, such as effort or attention,
and the influence of the internal and external factors of and to a human operator.
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Figure 1. Diagrammatic illustration of the computation of the mean frequency of brain oscillations,
via fast-Fourier Transformation (FFT), weighted over the EEG bands of potential (power) spectrum
for each channel and their final aggregation towards a brain rate.

In contrast to the approaches that suppress or elevates some EEG band, as described
in the previous section, the proposal is to fully use them, reasonably assuming that, when-
ever some band is modulated, the others are influenced too [59]. Analogously to the
computations for the centre of gravity or the mean energy of a physical system [60], a
spectrum-weighted frequency rate across the five canonical EEG bands (delta, theta, alpha,
beta, gamma) is proposed [61], here on referred to as the brain rate (BR). This is the sum
of the mean frequency of brain oscillations weighted over the EEG bands of the potential
(power) spectrum for each channel, as illustrated in Figure 1). Formally:

BR =
n

∑
ch=1

5

∑
b=1

fb · P(b, ch)

where b is the index denoting the frequency band (for delta b = 1, theta b = 2, alpha b = 3,
beta b = 4, gamma b = 5), ch is the index denoting a specific EEG channel, fb is the weight
associated with frequency band b, which is the mean frequency of each EEG band. Setting
the boundaries for each band in hertz as delta = [0.5, 4], theta = (4, 8], alpha = (8, 12],
beta = (12, 30] and gamma = (30, 45], then f1 = 2.25, f2 = 6, f3 = 10, f4 = 21, f5 = 37.5
(Figure 1). P(b, ch) is the mean amplitude of the electrical potential for band b of a channel
ch over the mean of all its amplitudes:

P(b, ch) =
avgb(FFTch)

avg(FFTch)

with FFTch is the vector containing the amplitudes of the fast-Fourier transformed channel
ch, avgb is the average (centroid) of only the amplitudes within the frequency band b. Note
that fb is in hertz, and P(b, ch) is in microvolt, with the brain rate BR in hertz. P can be
seen as the probability of having fb, with the number of frequencies in the lower bands
(example delta) smaller than the number of frequencies in the higher bands (example
gamma). In other words, since the ranges of the frequency bands are different, then also
the number of the frequencies within each of them is different, thus having different effect
in the computation of the brain rate. Thus, P balances the importance of each band and
then allows the fair identification of the dominant activated band in each EEG segment
considered. By keeping the length of an EEG segment relatively short, in the order of
seconds, then this rate can be used as a pseudo-real-time measure of cognitive load, since it
is the mean activation of the brain response, as registered all over the scalp. Pseudo-real-
time is because this rate is computed over a window of EEG data rather that a single point
in time. This is also dictated by the fact that the Fourier transformation requires some data
collected over time to produce meaningful translations in the frequency domain.
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Figure 2. Processing pipeline for producing topology-preserving head maps from windows of EEG
data. (I) The electrodes distributed over the scalp in a 3D space produce neural signals continuously
over time; (II) these are segmented into windows; (III) for each signal in a window, fast-Fourier
transformation (FFT) is applied to obtain information in the power spectrum; (IV) each power-
spectrum is divided into the five EEG bands (delta, theta, alpha, beta, gamma); (V) the centroid of the
frequency amplitudes for each band is computed; (VI) all the centroids are positioned in a 3D space
to produce a scattered head map, one for each EEG band; (VII) polar projection is applied to each
scattered map to produce 2D head maps; (VIII) each 2D map is interpolated; (IX) the 5 2D maps, one
for each EEG band are aggregated into a tensor.

One common problem within neuroscience, in general, and for the specific technical
challenge of creating a robust model of cognitive load, in particular, is the limited avail-
ability of EEG data. This is often due to the difficulties in recruiting participants, or faulty
recordings, or the presence of various artefacts in the EEG signal, leading researchers to
discard significant portions of collected data. Unfortunately, when employing machine
learning methods, in general and deep learning methods in particular, limited training data
might often not benefit a robust model formation. For these reasons, this work proposes to
use a sliding-window technique [62]. The available EEG data are segmented into windows
of k seconds, shifted by w milliseconds. For each window, a pre-processing pipeline has
been designed for producing 2D spatial-spectral preserving images, as summarised in
Figure 2. Fast Fourier transformation is run for each EEG channel in each window, obtain-
ing a power spectrum in the frequency domain. For each spectrum, the five EEG bands
(delta, theta, alpha, beta, gamma) are defined by employing the same boundaries used
to compute the brain rate. For each band, the centroid (geometric centre) is computed,
which equates to the arithmetic mean of all the power values within that band. For a given
band, all the computed centroids, one for each channel, are positioned in a 3-dimensional
space, following the coordinates of each electrode position on the scalp, forming a scat-
tered 3D spectral topology-preserving map. Azimuthal Equidistant Projection (polar) is
subsequently used to transform this map into a scattered 2D map, preserving the relative
distance between adjacent electrodes. Eventually, the Clough-Tocher method [63] is applied
to fill the scattered 2D maps by estimating the values in-between the electrode over a new
interpolated map, an image of 32 × 32. The aggregation of the five 32 × 32 maps, one for
each EEG band, creates a tensor of 32 × 32 × 5. The sequence of these tensors can be seen
as an ‘EEG movie’, a stream of data over time in the frequency domain that preserves infor-
mation in space. This stream can then be processed with deep learning methods, inspired
by state-of-the-art video classification methods for spatio-temporal feature learning [64,65].

The aforementioned justifications and design choices have led to the design of a novel
self-supervised convolutional, recurrent deep neural network trained to fit the brain rate in-
troduced above. The proposed architecture, as depicted in Figure 3, is built upon a first part,
the Convolutional Network (CNN), due to its ability to learn robust compressed represen-
tations of EEG data, and upon a second part, the Recurrent Network (RNN) to account for
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temporal variations. From a higher perspective, the overall architecture contains z parallel
convolutional networks with shared weights, which are useful for representational learning.
Their outputs, high-level representations referred to as feature maps, are concatenated into
a sequence of length z, respecting their time order. This sequence is subsequently injected
into a recurrent network composed of Long Short-term Memory units (LSTM) aimed at
temporal feature learning. The feature maps, the output of each CNN parallel network, are
injected into a final convolutional one-dimensional layer, and along with the output of the
last LSTM unit, they are used to fit the brain rate extracted from the z + 1 EEG window
(hence self-supervision).

Figure 3. A self-supervised Convolutional-recurrent deep neural network for spatio-temporal learn-
ing with spectral topology-preserving head maps and a brain rate. Parallel Convolutional Neural
Networks (CNN), inspired by the Visual Geometry Group Neural Network (VGGNET), are injected
into a Recurrent Neural Network (RNN) with Long-Short Term Memory (LSTM) layers to learn a
brain rate.

In more detail, the CNN architecture was inspired by the VGG-NET architecture
designed and used in the Imagenet classification challenge [66,67]. In detail, this network,
as depicted in Figure 4, is composed of 7 stacked convolutional layers with small receptive
fields of size 3 × 3 and stride of 1 × 1 pixel, with Rectified Linear Unit (ReLU) selected
as the activation function. To preserve the spatial resolution of each of the 32 × 32 × 5
topology-preserving spectral maps of each convolutional block, each layer’s inputs are
padded with 1 pixel. Each stacked block of convolutional layers is followed by a max-
pooling layer over a 2 × 2 window with a stride of 2 × 2 pixels. The number of kernels in
each convolutional block doubles for every consecutive block, expecting to create effective
receptive fields of higher dimensions while requiring fewer parameters [66]. In summary,
this network contains 4 consecutive 2D CNN layers with 32 filters, each with a kernel size
of 3× 3, a stride of 1× 1 and no padding (‘valid’ padding), followed by a max pooling layer
with a stride size of 2 × 2 and zero-padding (‘same’ padding, results in padding with zeros
evenly to the left/right or up/down of the input). This block is followed by another one
containing two 2D-CNN layers with 64 filters, with a kernel size of 3 × 3, a stride of 1 × 1
and no padding (valid padding), followed by a max pooling layer with a stride size of 2 × 2
and zero-padding (same padding). Eventually, the last block contains a single 2D-CNN
layer with 128 filters, with a kernel size of 3 × 3, a stride of 1 × 1 and no padding (valid
padding), followed by a max pooling layer with a stride size of 2 × 2 and zero-padding
(same padding).
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Figure 4. Single VGGNET-inspired Convolutional Neural Network (CNN) architecture for feature
maps learning with spectral topology-preserving head-maps with brain rate as a target feature.

Since the nature of neural responses is dynamic over time, a suitable method for
modelling the temporal evolution of brain activity is recurrent neural networks (RNNs).
Technically, Long Short-Term Memory (LSTM) appears to be an appropriate modelling
choice [68]. It is a specific type of RNN that uses memory cells with internal memory,
and gated inputs/outputs which have led to the creation of models that are efficient in
capturing long-term dependencies. The hidden layer function for LSTM is calculated by
applying the following equations:

it = σ
(
Wxixt + Whiht−1 + Wcict−1 + bi

)
ft = σ

(
Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
ct = ftct−1 + ittanh

(
Wxcxt + Whcht−1 + bc

)
ot = σ

(
Wxoxt + Whoht−1 + Wcoct + bo

)
ht = ottanh(ct)

σ represents the logistic sigmoid function, i as the input gate of the LSTM model, f as
its forget gate, o as the output gate and c as the cell activation vectors. As shown in [69]
where various trials were performed with EEG data, a reasonable number of LSTM units
seems to be only one, with 128 cells in it. This architecture was adopted to capture the
temporal relationship of the feature maps obtained from each parallel CNN and shaped as
a sequence of feature maps. However, only the output made by the LSTM after seeing the
complete sequence of the feature maps produced by each parallel CNN was propagated to
a fully connected layer. This fully connected layer also gets the output of a CNN layer that
receives the concatenation of the features maps computed by each of the parallel CNNs.
This is because of the reasonable assumption that variations between these may contain
additional information about the underlying mental state experienced by a subject. This
is a single 2D-CNN layer containing 64 filters with a stride of dimension 1 × 1 with valid
padding and ReLU as the activation function. The output of this layer was concatenated to
the output of the last LSTM, followed by a drop-out layer with a probability of 0.5, and its
output was injected to a dense layer with 512 neurons and ReLU as an activation function.
Another dropout layer with a probability of 0.5 followed, and a final dense layer with
a linear activation function was devised for fitting the brain rate computed for the next
window of EEG data following the sequence in time (z + 1). Concerning the hypothesis
that this study seeks to test, this is:

H: IF a convolutional-recurrent deep neural network architecture is trained with
spatio-temporal spectral topology-preserving head maps, derived from multi-
channel EEG data, to fit a brain rate, an index of cognitive activation, in a self-
supervised fashion.
THEN within-subject and across-subjects models can be induced with low error
rates, highlighting recurrent patterns of cognitive activation, thus cognitive load.

In order to test such a research hypothesis, data from a well-known dataset of EEG
recording is employed, namely, the DEAP dataset [70], as described in the following section.
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3.1. Dataset and Pre-Processing

The DEAP dataset [70] has been widely used for various experimental purposes in the
past few years. The electroencephalographic (EEG) data in this dataset was recorded from
32 participants while watching 40 one-minute-long excerpts of music videos [70]. Cortical
activity was recorded at 512 Hz using a Biosemi ActiveTwo system using 32 active AgCl
electrodes placed according to the international 10–20 system, with participants sitting
1 m away from a 17-inch screen. A 5-s fixation cross was run before each video to act as a
baseline. Participants watched two blocks of 20 videos each, separated by a short break.
EEG data was recorded from the following 32 channels: Fp1, AF3, F3, F7, FC5, FC1, C3,
T7, CP5, CP1, P3, P7, P03, O1, Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6, CP2,
P4, P8, PO4, O2. Biosemi ActiveTwo system was used to record data, with Cz used as the
reference channel. A pre-processing procedure using the EEGlab toolbox was applied to
data, including (i) downsampling to 128 Hz (ii) EOG artefact removal using the ICA blind-
source separation technique (iii) band-pass filtering between 0.5 Hz to 45 Hz (iv) common
average referencing. Further information on how the dataset has been formed, details on
the study and consent forms, and the decision taken to select videos, can be found in [70].
For the current research, the most important reason behind the selection of this dataset was
that the data was recorded for a prolonged time, which means 1 min, and not in the order
of seconds, as often the case for event-related potential studies. The reasonable assumption
was that while cognitively processing excerpts of videos, participants would have also
experienced different levels of cognitive processing [71]. In other words, the dataset was
selected because of the presence of various participants, executing different tasks, and
cognitively processing information in variables ways, thus activating the brain differently.
It is assumed that with this variability in brain responses, also the resulting computation of
the brain rates are variable, which is an important property to train cognitive load models
with the method described in the previous section.

3.2. Training

After the pre-processing pipeline is applied to selected EEG data, a new procedure
(as depicted in Figure 5) is designed and run to generate training instances for the specific
convolutional/recurrent neural network described in the previous section. Here, each
video that participants watched lasted for 63 s (60 for the actual video and 3 for baseline).
A time window of 2 s is set for producing spectral topology-preserving maps by applying
the processing pipeline described in Figure 2. This length is deemed short enough for
producing a meaningful power spectrum that contains enough points well distributed
across the five EEG bands. In detail, given a final sample rate of 128 Hz, each window
contains 256 points (128× 2) spread across the EEG bands for each channel. This means that
each video contains 8064 points (63 × 128 = 8064). A sliding-window technique is applied
across these points, and a shift of 125 ms is used (8 points per second), which translates into
a shift of 16 points (128× 0.125). This generates 489 windows of 2 s (63× 8− 16+ 1) for each
video in the dataset. The neural network designed in Figure 3 is a specific convolutional-
recurrent neural network accepting a sequence of windows. As mentioned before, this
sequence is set to z = 7 windows, equating to 14 s of neural activity. This is believed to be
short enough for the expectation of detecting some variations in cognitive load, and not
too long for hampering the automatic learning of temporal dependencies across points.
Each of these sequences represents a training input instance. Thus, 482 of these instances
(sequences) were produced for each video (489− 7). As previously mentioned, the designed
architecture is a specific self-supervised many-to-one network. The target output is the
brain rate computed for the subsequent window outside the sequence, next in time (the
8th). The goal is to learn this rate from past information, which in other words, is the
estimation of a brain rate from the neural activity of the previous 14 s (7 × 2).
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Figure 5. Pipeline for generating sequences for the convolutional-recurrent neural network.

Several models are trained within and across subjects to test the research hypothesis,
as listed in Table 1. Since each participant watched 40 videos, then the number of total
sequences associated with each participant equates to 19,280 (482 × 40). The canonical
approach employed in machine learning to create generalisable models would be to shuffle
these sequences and split them into training, validation and test sets. However, although
technically valid, performing such a shuffle for training a within-subject model would
generate a training set that will likely contain some sequence from each video. In other
words, each video would have a certain amount of representative data in the training,
validation and test sets. To further increase generalisability, it is decided that the training
set contains entire data from random 70% of the possible videos, and the validation and test
sets, respectively, 15% of the data associated with the remaining videos. Thus, the shuffle
is done at the video level, and data associated with 28 random videos are selected as the
training set (482 × 28 = 13,496 training sequences), data from 6 different random videos for
the validation set (482 × 6 = 2892 training sequences), and the data from the remaining
videos for the test set. In this way, the generalisability is exploited across unseen test
videos, expected to lead to different cognitive load fluctuations than those used for training
and validating models. The same rationale is applied to across-specific models. The only
difference is that the training, validation and test sets contain data from a random number
of participants, as listed in Table 1. In other words, for example, for a 3-persons model,
3 splits are performed for each participant individually. Then the resulting individual
training, validation and test sets are concatenated to produce larger sets. 32 within-subject
CNN models (Figure 4) are trained for participants twice with different batch sizes (32 and
100). This step aims to understand batch-size manipulation to validate and test errors.

Table 1. Details of within and across-subjects models with number of training, validation and test
instances, as well as the number of Monte Carlo repetitions.

Models Type
Instances (Training Sequences)

Repetitions
Total Training Validation Test

1-person within subject 19,280 13,496 2892 2892 2
3-persons across-subjects 57,840 40,488 8676 8676 10
5-persons across-subjects 96,400 67,480 14,460 14,460 10
7-persons across-subjects 134,960 94,472 20,244 20,244 10
9-persons across-subjects 177,570 125,514 26,028 26,028 10
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The rationale is to analyse the trade-off between generalisability and computational
resource consumption since it is known that larger batches lead to better convergence to
the global optima of the objective function but at the cost of slower convergence since more
memory is requested and more computations are performed. Instead, smaller batches allow
the model to start learning earlier, before seeing all the data, with lower consumption of
computational resources. Still, it is not guaranteed that the model converges to the global
optima, thus with a negative impact on its generalisability. After assessing the ideal batch
size, across-subject models are trained with incremental complexity, in terms of a higher
volume of data coming from an increasing number of participants, to assess whether their
generalisability still holds with a higher heterogeneity in the EEG signals. Additionally, to
reinforce the analysis, repeated Monte Carlo sampling is performed for each across-subject
model, with a random selection of participants at each repetition. Table 1 summarises the
number of training, validation and test sequences used and the number of repetitions for
each training configuration. The training dataset is not augmented in any way, for example,
by employing image zooming or flipping techniques, because of the distinct interpretations
of direction and location in the EEG topographic-maps that correspond to specific cortical
regions. Training is conducted by optimising the Mean Squared Error (MSE) loss function:

1
n

n

∑
i=1

(yi − ŷi)
2

with n the number of sequences (of length 7), yi the observed brain rate for that sequence
(in the 8th position) and ŷi the predicted brain rate for that sequence. Validation and test
MSEs is monitored during and after training and Mean Absolute Percentage Error (MAPE)
is also computed:

100%
n

n

∑
t=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣
where yi is the observed brain rate and ŷi is the predicted one. Their difference is divided
by the actual observed brain rate yi. The absolute value in this ratio is summed for every
predicted brain rate and divided by the number of sequences n. MAPE comes under
percentage errors and it has been selected because these errors are scale independent, thus
especially suitable for across-subject models and because it is easier to interpret and explain.
As mentioned earlier, the parallel CNNs share weights, thus potentially producing different
gradients in different internal layers. As a consequence, a smaller learning rate, set to
1× 10−3, was employed when applying the Stochastic Gradient Descent (SFD) to the CNNs.
Similarly, the whole neural network was trained with a small learning rate of 1 × 10−3,
optimised with the Adam algorithm [72], shown to achieve reasonable fast convergence
rates, with decay rates of first and second moments set to 0.9 and 0.999, respectively.

The overall final neural network devised contains a large number of parameters
(1.62 million) and considering that a different number of models are trained with an
increasing amount of training instances per model, with each instance being a tensor of
32 × 32 × 5 × 7 (where 32 × 32 is the size of the spatial-preserving topographic maps, 5 is
the number of EEG bands, 7 is the number of EEG windows, that means the length of the
trainable sequence), a significant demand on computational resources, in terms of memory
and processing power, is required. Additionally, many parameters can make each trained
model susceptible to overfitting. Therefore, several measures are taken into account. As
mentioned earlier, all the CNN networks share parameters across the 7 frames. Thus, a good
amount of parameters in the overall architecture were removed. Dropout layers were added
after each fully connected layer, with a probability of 0.5 to minimise overfitting [73,74].
Similarly, an early stopping training mechanism is employed to avoid training models when
it is no longer necessary, thus saving a significant amount of time. This is an optimization
procedure that is also used to minimise overfitting without compromising on model
accuracy. In detail, this is a regularization technique that stops training when the updates of
the model’s parameters no longer yield improvement on a validation set after consecutive
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E epochs. The value E is called patience, and in this study it was set to 6, after some trials.
This means that the training phase early stops automatically when the error associated with
the validation set does not reach a lower value for 6 consecutive epochs, and the Eth-last
model is retained as the final model.

Data up to 9 people are considered to train a single across-subject model since this is
the maximum amount of data that the selected machine has been estimated to process with
its resources. In particular, this machine is an Alienware Aurora R8 (model: 02XRCM), Intel
Core i7-8700 (6-core, 12 threads), 64 bits, 12Mb L2-cache, 32GB DDR-SRAM, 2 additional
graphics cards (GeForce RTX 2070), with the Linux Mint 19.2 operating system, and an
internal local total storage of 4 TeraBytes, comprising a primary 1TB SSD (Solid State Drive)
hard-disk (model: SK Hynix, PC601 NVMe), a 3.5-inch 2TB hard-drive (model: Seagate
BarraCuda ST2000DM008-2FR102) and an additional 1TB SSD hard-disk (model: 2-Power
SSD2044A). For allowing training of across-specific models (up to 9 persons), a Swap RAM
of 0.5TB was created.

4. Results

Figure 6 depicts the density plots of the validation and test mean squared errors
(MSEs) for the 32 within-subject models trained only by employing the CNN architecture
(Figure 4), respectively, with batch size of 32 and 100. Similarly, Figure 7 depict the density
plots of the number of epochs necessary to train the within-subject CNN architectures,
respectively, with a batch size of 32 and 100, with a minimum of 7 epochs to a maximum of
60. No significant difference exists in the validation and test errors, with the batch size of
32 leading to slightly better (lower) MSEs. However, although not significantly different, on
average, the number of epochs necessary to train CNN models with batch size 32 is lower
than that associated with batch size 100. Every epoch for the within-subject model, with
the current machine, required on average 300 s (5 min), thus, the finalisation of training,
according to the minimum and a maximum number of epochs (7 and 60), required between
2100 to 18,000 s (35 and 300 min). Therefore, 32 was the batch size selected for training the
subsequent within-subject and across-subject models with the full architecture (Figure 3)
since it leads to a lower number of training sequences in one forward/backwards pass,
thus lower consumption of memory, as well as a lower number of training epochs, saving a
great amount of time.

Figure 6. Comparison of validation and test Mean Squared Error for within-subjects CNN models
trained, respectively, with batch size of dimension 32 and 100.
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Figure 7. Comparison of the number of epochs to train the within-subjects CNN models, respectively,
with batch size of dimension 32 and 100.

Figures 8 and 9 depict the Mean Absolute Percentage Errors (MAPE) for the test data of
the within-subject models for the 32 participants, trained first with the single CNN architec-
ture of Figure 4 for learning the weights (in full red), and with the convolutional/recurrent
neural network with the parallel CNNs, sharing such weights, and the LSTM component
for temporal learning (Figure 3) (in dashed blue). As it is possible to notice, the test MAPE
has mean 0.111 (Std: 0.073) for the single CNN models and mean 10.75 (Std: 0.070) for
the CNN+LSTM models. These results demonstrate that the brain rate prediction for each
participant’s unseen test data is good because the forecast is only off by roughly 10%. How-
ever, at first glance, it seems that the impact of the addition of the recurrent component (the
Long Short Term Memory), as in the architecture depicted in Figure 3, does not add much
value in minimising the MAPE. This seems to point to the individual capability of the single
CNN architecture (Figure 4) to learn the relevant patterns, intricacies and relationships
in the data in the shape of topographic head maps containing information in the 5 EEG
frequency bands for the specific window length used (2 s). However, the LSTM layer takes
a sequence of 7 outputs from the single CNNs (in addition to a vector containing their
variational information) and tries to fit the brain rate associated with the next window (the
8th after the sequence). The fact that the MAPE of the CNN+LSTM does not significantly
change (decrease) does not mean that the LSTM did not learn any temporal relationship
and dependency in the input sequences. This can be demonstrated by inspecting Figure 10,
whereby the brain rate index, the predictions of the single CNN model and those of the
CNN+LSTM for some within-subject models associated with random participants and a
random video in their respective test sets, are compared. In detail, these figures show that
the brain rates (green), computed for each of the 482 instances, as explained in Section 3.2
(and depicted in Figure 5), associated with a specific video that a participant has watched,
not used for training the within-subject model of that participant, are reasonably approxi-
mated by the single-CNN within-subject model (red). However, the brain rate indexes seem
better approximated by the CNN+LSTM within-subject model (blue).

Figure 8. Paired histogram of the Mean Absolute Percentage Errors (MAPE) of the test data of the
32 within-subject models, respectively, trained only with the single Convolutional Neural Network
(CNN), and the Convolutional/Recurrent Neural network (CNN+LSTM).
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Figure 9. Density plot of the Mean Absolute Percentage Errors (MAPE) of the test data of the 32
within-subject models, respectively, trained only with the single Convolutional Neural Network
(CNN), and the Convolutional/Recurrent Neural network (CNN+LSTM).

The comparisons of Figure 10 highlight a number of things. Firstly, the main bursts in
the brain rates are also grasped by the CNN and the CNN+LSTM models. However, those
associated with the CNN (red) are shifted a bit to the right (x time axis) when compared to
those associated with the CNN+LSTM (blue), which seem to be more aligned to the brain rates
(green) over time. This is confirmed by the Person correlation coefficient, which on average
for participants and testing videos, is 0.5 for the CNN models and 0.7 for the CNN+LSTM
models. This means that the LSTM layer in the CNN+LSTM architecture did learn some
temporal relationships and long/short-term dependencies. The CNN+LSTM predictions are
smoother than those produced by the single CNN, and this might be justified by the fact that
they are based on the information taken from the precedent 7 consecutive EEG windows over
time. For the same reasons, this might be the reason why the scale (y-axis) of the predictions
of the CNN+LSTM (blue) is a bit lower than the others (blue and green).

Figure 10. Illustrative comparisons of the brain rate index, the single Convolutional Neural Network
(CNN) predictions and the Convolutional/Recurrent Neural Network (CNN+LSTM) predictions for
two random participants and a random video used in the test set.
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Regarding the across-subjects models, as planned in Table 1, Figure 11 depicts the density
plots of their Mean Absolute Percentage Errors (MAPEs) on the test sets. In detail, each density
curve contains the MAPEs associated with the test sets of 10 models, each trained with the
respective number of random people. As it is possible to see, the test MAPEs are lower on
average for those models trained with material taken from 10 people (black), followed by those
trained with 7 (brown), 5 (grey) and 3 people (yellow). Additionally, the standard deviations
(width of each curve) are smaller (thinner) for those trained with data from more people
and larger for those trained with data from fewer people. This means that smaller standard
deviations are associated with more steady models because these are capable of predicting
brain rates on the test data more consistently. These results might seem intuitive because
it can be argued that the more training material, the higher capacity a model has to learn.
However, training material comes from different numbers of people, selected randomly at
each run, and their cerebral responses are different while watching videos, exhibiting different
power activations and temporal dynamics. This introduces a higher variability within data,
thus making a model prone to confusion while learning. Despite this, across-subject models
can mitigate the influence of such an increasingly higher variability and can learn consistent
higher-level representations that are more generalisable across people.

Figure 11. Comparisons of the test Mean Absolute Percentage Error (MAPE) of the across-subject
models grouped by the type of architecture which is the single convolutional neural network (CNN)
and the convolutional/recurrent neural network (CNN+LSTM).

Figure 12 plots the pair-wise comparison of the across-subject models trained with
the single CNN and the CNN+LSTM architectures, grouped by the number of people,
and the density curve associated with the MAPEs of the within-subject models, used here
as baseline. Noticeably, the density plots associated with those models trained with the
CNN+LSTM architecture (dashed lines) contain lower MAPEs on the test sets than those
associated with the models trained with the CNN only (continuous lines). This means that
the addition of the Long-Short Term Memory (LSTM) layer for temporal learning had an
impact on building more accurate models, although, in this study, not statistically signifi-
cant. Additionally, these results suggest that the convolution of the topology-preserving
topographic maps over space (down-sampling) could learn some repetitive high-level
patterns within an EEG window (as set to 2 s). In other words, as expected in the research
hypothesis set in Section 3, within-subject and across-subjects models can be induced from
spatio-temporal spectral topology-preserving head maps derived from multi-channel EEG
data to fit a brain rate, an index of cognitive activation, with low error-rates, demonstrating
the existence of recurrent patterns of cognitive load over time. A more detailed interpreta-
tion of such results, along with a discussion of the strengths and limitation of the designed
method for cognitive load modeling, is done in the following section.
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Figure 12. Pairwise comparisons of the test Mean Absolute Percentage Error (MAPE) of the across-
subject models trained, respectively, with the single convolutional neural network (CNN) and the
convolutional/recurrent neural network (CNN+LSTM) compared to the within-subject models.

5. Discussion

The computational method described and tested in the previous sections is fully
automated and allows the induction of a model of cognitive load from EEG data based on
deep learning without requiring human intervention. In summary, this novel method:

• is based on data-driven deep-learning techniques for automatic inductive learning [33];
• is built upon electroencephalography (EEG), a non-invasive method for gathering

brain responses with high-temporal resolution [34];
• is sensitive to brain responses variation over time thanks to its recurrent neural

network component [68];
• is robust to deformation and translation of signal in space, and frequency, thanks

to the ability of its convolutional neural network component to learn meaningful
representations [75];

• is built upon 2D spectral topology-preserving head maps that are rich in information
and also more explainable than vectorial data, as discussed in [76–78];

• is self-supervised and does not require human intervention and explicit declarative
knowledge [58];

• is constructed upon a brain rate, a measure of cognitive activation, and treated as an
index of cognitive load that considers cortical brain oscillations weighted over the
potentials of all the canonical EEG bands;

• is flexible with short EEG segments, thanks to its time-slicing procedure over cortical
recordings;

• is adjustable and customisable because it can be trained on EEG data collected from a
variable number of electrodes, it can be employed with different ranges for the five
EEG bands (delta, theta, alpha, beta, gamma), and with EEG windows of varying size;

• is replicable and open to falsifiability [79], supporting the formation of models of
cognitive load with higher generalisability.

This method allowed the fully-automated formation of within-subject and across-
subject models of cognitive load from EEG signals. These models fit a brain rate, an index
of cognitive activation, with good accuracy, measured by the Mean Absolute Percentage
Error (MAPE) on the test sets, demonstrating a good degree of generalisability to unseen
data. In detail, each within-subject model, trained with EEG material from a single person,
could predict the brain rate of unseen EEG data—as encoded with spatially preserving
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topographic head-maps built upon 32 channels—with a MAPE of 0.11 and 10.75 (std 0.073,
0.070), only using a convolutional neural network architecture for spatial learning, and its
extension with a long-short term memory layer for temporal learning, respectively. The
across-subject specific models, induced from an increasingly higher amount of EEG data
from different people, confirmed these results and maintained the same testing accuracy
as measured with MAPE, despite the increasing variability within training data. This
perseveration in achieving similar testing accuracy, despite a higher variability in training
data, can be seen as positive because it highlights the existence of some patterns within EEG
data that are repetitive and stable. This observation might be linked to microstate theory
which assumes that distributions of activity across the scalp persist for milliseconds before
changing into a different pattern [80]. EEG microstates can be seen as transient, quasi-stable
patterns of an electroencephalogram [81,82]. An analogy can be applied to the findings
obtained in this current work, and the trained models might have learned quasi-stable
patterns of mental activation fluctuations, as modelled with a brain rate. The convolution
applied to the spatially preserving topographic head-maps, built over five EEG frequency
bands, has already led to the development of within and across-subject models with good
accuracy. This means quasi-stable high-level representations might be induced from the
convolutional operations that can be successfully mapped to a brain rate. Furthermore, this
view might be enforced by the minimal decrement of the test MAPEs obtained by those
models trained with the LSTM layer in the neural network for temporal learning. The fact
that it was minimal suggests that the sequence of convoluted representations over time
is not as important as the actual representations alone, taken individually, which seem
to be already rich in information and able to learn certain repetitive patterns of cognitive
activation.

6. Conclusions

Cognitive Load, often referred to as Mental workload [11], is one of the most invoked
concepts in the disciplines of human factors, with important utility within human–computer
interaction, neuroscience and education [1]. Unfortunately, a reliable, generally applica-
ble computational method for cognitive load modelling does not exist yet, complicating
applied research. This research, the first of its kind, was aimed at developing a method
for cognitive load modelling with generalisability in mind, supporting its application
across disciplines, replicability, comparisons across studies and thus enabling falsifiabil-
ity. All these advantages are aimed at supporting research on cognitive load modelling
at a larger level, avoiding the creation of another ad hoc, field-dependent, knowledge-
dependent and application-driven method of mental workload that has little chance of
being generally applicable across empirical works. This novel method employs deep
learning techniques of Artificial Intelligence, for the automatic formation of models of
cognitive load, in a fully unsupervised way, drastically limiting human intervention and
declarative knowledge. These models work on continuous EEG data, thus having a great
temporal resolution. They are built upon a newly designed notion of brain rate, a particular
index of cognitive load derived from the five EEG frequency bands (delta, theta, alpha,
beta, gamma). This method works on spatially-preserving topographic head-maps of
cognitive activation, offering spatial resolution and supporting diagnosticity. In this study,
these maps are based on spectral information derived from the five EEG bands, which are
known to be rich in information for deriving mental states and facilitating the analysis and
interpretation of human behaviours.

Findings suggest that within-subject and across-subjects models of cognitive load,
developed with the newly devised computational method, are accurate enough, exhibiting
a low prediction error on unseen data, thus showing a good degree of generalisability.
They suggest that certain high-level representations from EEG data in the frequency bands
can be extracted automatically, frequently appearing over time. This can be related to the
construct of cognitive load and these representations can be seen as patterns of cognitive
activation that have a recurrent appearance. However, these existing repetitive blocks of
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mental activation do not seem to be repetitive over time, in line with the non-stationary
nature of brain activation. In other words, frequent, quasi-stable high-level representa-
tions of cognitive activation exist, but these are not repetitive over time. Additionally,
these representations seem to be repetitive across-subjects, with important implications
for the research field of mental workload. Their existence might suggest that general
patterns of cognitive load exist, and these are subject-independent, therefore having a great
generalisability. However, to confirm this claim, further studies are needed.

Future work will include replicating the method developed in this research study with
varying time window sizes and investigating how these influence the accuracy of resulting
cognitive load models. A layer of interpretability for the automatically extracted high-level
representations will be deployed, considering the principles and notions of explainability
from Explainable Artificial Intelligence (XAI) [77]. Similarly, by using argumentation theory
and defeasible logic, as in [83], explainable rules can be created, these being more digestible
and aligned to the way humans reasons under uncertainty and with contradicting pieces of
information. This will help understand the shape of these high-level representations, and
the recurrent activated brain regions, giving analysts a richer level of interpretability. It will
also serve as a layer of explainability, providing analysts with tools for explaining spatial
and temporal dynamic of cognitive activation. The inferences of these models of cognitive
load can be compared against other indexes such as the theta-to-alpha or alpha-to-theta
band ratios [54], increasing their meaningfulness and validity. Eventually, studies can be
devoted to the development of additional recurrent neural networks for understanding the
temporal aspects of the high-level representations of cognitive activation, and establishing
if there exist sequences, and their lengths, that are repetitive and recurrent over time. These
future avenues will expand the science of mental workload and support the formation of
models of cognitive activation with an increasing accuracy and generalisability, in turn
facilitating the analysis of human behaviour.
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