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In this study, we focused on the verification of suitable aggregation operators
enabling accurate differentiation of selected neurophysiological features extracted from
resting-state electroencephalographic recordings of patients who were diagnosed
with schizophrenia (SZ) or healthy controls (HC). We built the Choquet integral-
based operators using traditional classification results as an input to the procedure
of establishing the fuzzy measure densities. The dataset applied in the study was a
collection of variables characterizing the organization of the neural networks computed
using the minimum spanning tree (MST) algorithms obtained from signal-spaced
functional connectivity indicators and calculated separately for predefined frequency
bands using classical linear Granger causality (GC) measure. In the series of numerical
experiments, we reported the results of classification obtained using numerous
generalizations of the Choquet integral and other aggregation functions, which were
tested to find the most appropriate ones. The obtained results demonstrate that the
classification accuracy can be increased by 1.81% using the extended versions of
the Choquet integral called in the literature, namely, generalized Choquet integral or
pre-aggregation operators.

Keywords: schizophrenia, extended Choquet integral, classifiers, aggregation, Sugeno fuzzy measure

INTRODUCTION

Mental illnesses are usually long-lasting conditions associated with great psychological suffering,
the substantially limited possibility of independent functioning, and social development. Among
them, schizophrenia (SZ) is one of the most severe forms of mental health disorder with the
complex and multidimensional clinical picture. The onset of SZ occurs most often in adolescence
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or early adulthood commonly has a slow and hidden course
consisting of gradual augmenting of the so-called negative
syndromes, i.e., loss of interests, affective blunting, reduced
initiative, and social isolation, and more or less delayed phase
of active psychotic exacerbation characterized by the presence of
delusions, i.e., incorrect judgments of reality and the behavior
of other people, as well as hallucinations, i.e., incorrect sensory
impressions, most often in the auditory form (Rosen et al., 1984;
Heilbronner et al., 2016). In addition to the negative and positive
symptoms, there are also various cognitive disorders including
disturbances in the course of thinking and deficits in specific
cognitive domains, such as attention, memory, cognitive speed,
language, and communication, and difficulties with adapting
to new circumstances and problem-solving (Szöke et al., 2008;
Krukow et al., 2017; Green et al., 2019). It should be noted
that long-term pharmacological treatment of the disease is
the main form of therapeutic intervention focused mainly on
psychotic syndromes. However, even when modern methods of
treatment are applied, distortions of cognitive processes improve
to a much lesser extent, often causing lifelong constraints
in achieving full independence (Keefe, 2019). Personal, social,
and economic burdens associated with severe mental illness
prompt researchers to search for new therapies and also to
develop accurate methods of differential diagnosis, which should
be ultimately based on objective, biological markers (Pantelis
et al., 2009). The development of new neuroimaging techniques
enables researchers to identify neural circuits that underline
the human brain integration system. Various neuropsychiatric
conditions are correlated with changes in brain communication
patterns and pointed as potentially useful biomarkers for clinical
applications (Sporns et al., 2005). In accordance with the results
of earlier studies focused on brain synchronization, SZ is
seen unequivocally as a disconnectivity disorder characterized
by abnormal functional and structural connectivity of the
brain (Friston and Frith, 1995). Application of diffusion tensor
imaging (DTI) methods, such as magnetic resonance imaging
(MRI) technique, into SZ research, showed disconnection and
multiple microstructural aberrances of brain white matter fibers
(Zalesky et al., 2011; Klauser et al., 2017). Studies based on
electroencephalography (EEG) and functional MRI (fMRI) also
revealed abnormalities in the functional connectivity of the
brain, which were also correlated with the clinical picture of
the SZ (Skudlarski et al., 2010; Uhlhaas, 2013; Krukow et al.,
2018). Nevertheless, to understand the systemic level of the
brain organization and to explain neurophysiological processes
such as disconnectivity syndrome in the SZ, researchers started
to analyze the brain as a complex network (van den Heuvel
and Sporns, 2013). The neural network is understood as a
system of spatial (anatomical) and temporal (synchronous firing
of neuronal assemblies) dimensions, involving different brain
regions interconnected with each other (Zalesky et al., 2010).
However, to analyze the state of the functional and structural
connections from the viewpoint of the entire brain, an infinite
number of potential anatomical and functional interactions
between a given set of neural regions makes such an analysis
a challenge almost impossible to obtain. Therefore, a graph
theorem has been introduced to solve this problem and to test the

complex whole-brain networks in their global dimension (Van
Den Heuvel and Fornito, 2014). Previous studies investigating
the neural brain networks in SZ showed significantly changed
network organization as indicated by graph-analytical measures
of global, short communication paths (Yan et al., 2015), local
organization (Alexander-Bloch et al., 2010), and small-worldness
(balance between local segregation and global integration) (Shim
et al., 2014). Aberrant functional networks in the SZ were also
linked with cognitive impairments (Sheffield et al., 2015; Krukow
et al., 2020) and the duration of the illness (Jonak et al., 2019).

Previous studies considered the problem of automated
classification of altered brain activity in SZ based on the EEG
or fMRI data. Among traditional classifiers, methods such as
support vector machine (SVM; Shim et al., 2016; Liu et al.,
2017; Huang et al., 2018), adaptive boosting (Sabeti et al., 2011),
kernel discriminant analysis (KDA; Zhu et al., 2018), or nearest
neighbor algorithm (Parvinnia et al., 2014) are used. Some of
these studies (Sabeti et al., 2011; Parvinnia et al., 2014) applied
time-frequency features obtained from single EEG channels,
which is a limited capacity approach as it does not consider
interactions between channels understood as a network. Other
authors applied a convolutional neural network (Phang et al.,
2019) and deep neural networks (DNNs; Plis et al., 2014; Guo
et al., 2017). In addition, manifold learning for aggregation was
considered in works by Shen et al. (2010); Anderson and Cohen
(2013), and Gallos et al. (2021a,b). The idea of applying fuzzy
classification into SZ-based data is a relatively new concept,
as there are only a few papers on this subject (Sabeti et al.,
2007; Silvana et al., 2018). One of the answers to the problems
related to the application of single classifiers in the processes of
automated disease diagnosis may be using various aggregation
models. Aggregation can be carried out at the stage of data
analysis in the form of information fusion and the stage of
analysis of classification results. Despite some shortcomings such
as extending the duration of the diagnosis process or the need
to implement additional algorithms, the undoubted advantage of
this approach is the increase in the effectiveness of classification,
which, combined with the field of application critical to
human health, is of key importance. Common examples of
aggregation operators are voting, maximum, minimum, and
median functions. The methods based on triangular norms
(Klement et al., 2000) or ordered weighted averaging operators
(OWA; Yager and Kacprzyk, 2012) are somewhat more complex.
Various general approaches to the aggregation of classifiers were
already presented (e.g., in publications of Alsina et al., 2006;
Beliakov et al., 2007; Grabisch et al., 2009; Calvo et al., 2012;
Gągolewski, 2015; Dolecki et al., 2016; Baczyński et al., 2017).
Recently, one of the dominant techniques is using the Choquet
integral or its generalizations or extensions (Kwak and Pedrycz,
2004, 2005; Karczmarek et al., 2014, 2017a,b, 2018, 2019b;
Anderson et al., 2018; Rutkowska et al., 2020). In particular,
recent studies on the so-called pre-aggregation functions offer
hope for the development of this approach (Lucca et al., 2015,
2016, 2017; Bustince et al., 2016; Dimuro et al., 2017; Dias et al.,
2018). They are particularly used in computer image analysis
and its subdiscipline of facial recognition (Karczmarek, 2018;
Karczmarek et al., 2019a). Detailed theoretical and practical

Frontiers in Neuroinformatics | www.frontiersin.org 2 December 2021 | Volume 15 | Article 744355

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-744355 December 8, 2021 Time: 12:58 # 3

Plechawska-Wójcik et al. Recognition of EEG-Related Features in Schizophrenia

analyses of the approach based on pre-aggregation functions, i.e.,
slightly weakening the classical aggregation (Beliakov et al., 2007)
conditions, are still ongoing. Nevertheless, the weakening of these
conditions does not have a negative impact on the classification
results, which is confirmed by the experimental outcomes from
the above-mentioned studies. A survey of the generalizations of
Choquet integral can be found in Dimuro et al. (2020).

The problem undertaken in this study was related to the
effective automatic distinction between patients diagnosed with
SZ and healthy subjects based on EEG-based features of neuronal
network organization. The main goal of this study was to
find the appropriate operator aggregating the neurophysiological
outcomes and categorizing them as patients diagnosed with SZ
or healthy controls (HC), i.e., increasing the effectiveness of
the classification. For this purpose, various generalizations of
the Choquet integral were tested and a set of over a thousand
aggregating functions not related to the Choquet integral was
verified. In the section on numerical experiments, we indicate
the classes of functions and their detailed parameters that work
best in terms of the identification of SZ. The dataset applied
in this study included data gathered from 40 subjects, i.e.,
20 schizophrenic patients and 20 HCs. The Granger causality
(GC; Granger, 1969) concept had been applied to particular
EEG bands to achieve functional brain connectivity measures.
The collected measurements were analyzed using a minimum
spanning tree (MST; Stam et al., 2014). The global MST
parameters obtained in the analysis were chosen as features
in the classified dataset. Applying the MST algorithms enabled
grasping the backbone structure of the brain network with
only the strongest connections included (González et al., 2016;
Van Dellen et al., 2016). Using MST ensured that the link
between nodes was not based on an arbitrarily set connectivity
strength threshold, which allowed avoiding the bias in network
density computations (Tewarie et al., 2015). In general, the
MST parameters were chosen because this method lacks some
theoretical and mathematical problems incorporated to more
typical network organization indicators based on the small-
worldness approach and, above all, because the authors wanted
to refer to the concept of SZ as a disconnection disease in
which pathology of neuronal integration is not isolated only to
selected regions or type of synchronizations but has a global
dimension. The MST enables the characterization of the global,
whole-brain network.

MATERIALS AND METHODS

Participants
Twenty patients, who met the DSM-5 (Structured Clinical
Interview for DSM-5) criteria for SZ, were involved from
the Department of Psychiatry, Psychotherapy and Early
Intervention, Medical University of Lublin. Additionally, the
other criteria were as follows: age over 18 years; minimum
10 years of regular education; not more than 5 psychiatric
hospitalizations associated with exacerbation of psychosis; no
markers of structural brain abnormalities visualized on MRI,
indicative of surviving craniocerebral trauma or neurovascular

episodes; and lack of serious somatic diseases needing intense
pharmacotherapy that would impact the EEG recordings.
During testing, all patients were on stable doses of atypical
antipsychotics. Using anticholinergic agents, benzodiazepines,
and mood stabilizers up to 3 months before the assessment
was an exclusionary factor for all participants. The patients
participated in the study during the last week of psychiatric
hospitalization, after obtaining a significant clinical and
functional improvement, being fully able to give consent and
undergo EEG examination. The control group consisted of
HC, demographically matched to the clinical group, who were
chosen from the local community. Additionally, HC had no
history of psychiatric diagnoses, per the Structured Clinical
Interview for DSM-5, brain disease, or neurological injury as
well as no family history of psychosis. All patients consented
to the study in accordance with the protocol approved by the
Bioethical Commission of the Medical University of Lublin.
The Commission also validated the methods used in the study.
Demographical and clinical data are presented in Table 1. The
groups did not differ significantly in terms of age (SZ = 34.41,
SD = 8.41; HC = 31.63, SD = 6.42), number of the years of
education (SZ = 12.43, SD = 2.94; HC = 14.87, SD = 1.68), and
gender (SZ = 50% of men; HC = 50% of men). In the SZ group,
the duration of illness lasted for about 12 years.

Data Acquisition
Using a 21-scalp position, electro-cap electroencephalograph
(Electro-Cap International Inc., OH, United States) and Ag/AgCl
disk electrodes, in 10 min of resting-state, EEG data were
recorded for each participant. Electrodes were distributed
according to the 10–20 International system (Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, A1, A2, F7, F8, T3, T4, T5, T6, Fz, Pz,
and, Cz). Subjects were seated with eyes closed and restricted
head movement. The electrode impedances were kept below 5 k,
and the data were filtered from 0.5 to 70 Hz (with active notch
filter set at 50 Hz) when the sampling rate was 512 Hz. The data
were exported into ASCII format after recording. Post-processing
procedures were carried out in the EEGLAB program, which
is a MATLAB toolbox. First, the signal was filtered using the
bandpass filter at 0.5–45 Hz (second-order Butterworth filter).
Second, the reference was changed offline into the averaged.
Next, from the processed signal, 25 epochs lasting for 8 s (4,096
samples) without artifacts were extracted for each patient by a
clinical neurophysiologist. Last, EEG signals were divided into six

TABLE 1 | Demographic and clinical data of research groups.

SZ
(n = 20)
M (SD)

HC
(n = 20)
M (SD)

z value or χ2 p

Age (years) 32.41 (8.41) 31.63 (6.42) 0.16 0.91

Education (years) 12.43 (2.94) 14.87 (1.68) −1.12 0.45

Sex (% male) 50 50 0 1

Duration of illness (years) 12.1 (9.43)

Number of hospitalizations 2.25 (2.65)

Risperidone equivalents 4.66 (1.76)
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frequency bands using finite impulse response filters: the delta
(0.5–4 Hz), theta (4–8 Hz), low alpha (8–10 Hz), high alpha
(10–12 Hz), beta (13–30 Hz), and gamma (30–45 Hz).

Data Processing
Several steps were involved in the data processing procedure.
Feature extraction was associated with the calculation of
functional brain connectivity (FC) measures separately for
particular electrodes and each EEG frequency band. The FC
was calculated to indicate the statistical dependence between
the spatially distributed neurophysiological time series such
as EEG signals stemming from separate units of a nervous
system (Cheng et al., 2015). There were several metrics used in
assessing FC strength, such as classical measures (e.g., Pearson’s
correlation coefficient, cross-correlation function, or coherence),
phase synchronization indexes (e.g., phase lag index or phase-
locking value), and GC measures. We chose the classical linear
GC. The idea of GC (Granger, 1969) was based on the assumption
that having two simultaneously determined signals (X and Y),
the signal X could be better explained using information from
the signal Y than using only information from the signal X.
In such a situation, signal Y could be specified as “causal” to
signal X. The GC measure is widely applied as a statistical tool
to detect the influence of particular system components (Nolte
et al., 2010). For the GC calculation, we used the Matlab MVGC
toolkit (Sackler Centre for Consciousness Science, University
of Sussex, Brighton, United Kingdom; Barnett and Seth, 2014),
which was based on advanced VAR (vector autoregressive)
model theory. To optimize auto-covariance delays, the Akaike
information criterion was used to estimate the optimal model
order. MVGC algorithms were used to convert EEG signals into
auto-covariance data. The observed auto-covariance sequences
were then subjected to paired spectral GC. In the case study, the
calculated GC measures were used in the next feature extraction
procedure step consisting of deriving MST. The MST was built
based on Kruskal’s algorithm. First, the weight of all edges
was sorted, and then the stronger edges were connected, i.e.,
those with the highest connectivity values, eliminating those
that form loops. These stages were repeated as many times as
necessary until the final tree had 19 nodes and 18 edges, which
corresponded to the total number of electrodes used in our
EEG recording. The MST metrics were generated separately for
each frequency band.

Global MST parameters were used as the features for the
classification procedure, which included the following:

• maximal degree, a maximal degree in the MST tree,
• maximal BC, maximal betweenness centrality in the MST

tree,
• leaf fraction (Lf), the ratio between leaf vertex number

(further denoted as L) and the total vertex number,
• diameter (d), the longest distance between any two vertices

in the MST tree,
• hierarchy (Th), the measure describing the optimality of the

tree topology.

After the feature extraction procedure, the classification was
done using classical classifiers.

A General Processing Scheme
The classification procedure was performed to assign
observations into one of two classes: schizophrenic patient
and HC. Several classical classification methods were used: cubic
SVM, linear SVM, decision tree, logistic regression, multilayer
perceptron (MLP), random forest, and k-nearest neighbors
(kNN). Data were split into training and testing datasets based
on the 80:20 ratio.

The results of this classification process, in the form of
the probabilities of belonging to considered classes, were taken
as the inputs to the aggregation functions. The next step of
the analysis procedure was to generate fuzzy measure density
values to apply aggregation operators. The aggregation operators
allow combining the predictions of multiple classifiers to further
improve the results. The fuzzy measures can be interpreted as the
degree of trust (weights or level of importance) to predictions of
the individual classifier.

In general, there are several methods of fuzzy measure
generation, such as expert assumption, optimization, and the
heuristic one. In our study, the cross validation-based heuristic
one was applied. N-fold cross-validation was run on the training
set to obtain a density measure for a classifier.

It is a well-known fact that the results of different
classifications can be aggregated. This situation can be easily
illustrated by the example of various sports competitions held
in the form of a Grand Prix cycle, where the points are added
together to determine the final winner. EEG signal-based features
can be similarly aggregated. In general, the results obtained using
different kinds of classifiers can be added, averaged, or, generally
speaking, transformed with the help of different kinds of
aggregation operators. Typical operators are median, minimum,
and maximum functions, etc. The general scheme of classification
using aggregation methods is presented in Figure 1. It is worth
noting that the values that are input to the aggregation operator
can change the distances between the training and testing
representation of an EEG signal in the case of k-nearest neighbor-
based classifiers, likelihoods of belonging to a class in the case
of neural network-like methods, etc. Here, it is worth stressing
that the weights presented in this diagram can be obtained from
experts but also based on the quality of classification of individual
classifiers (e.g., their accuracy measures).

Aggregation of Classifiers Using the
Choquet Integral and Its Extensions
One of the best known and most efficient classifiers is the
Choquet integral. Hence, let us recall the main properties of
the fuzzy measure, Choquet integral, and its generalizations. Let
us denote a set as X. Then P(X) = 2X is a family of all its
subsets. 2X is a σ-algebra; i.e., the empty set belongs to it, the
complement of a set belonging to σ-algebra belongs to it, and the
sum of countable many sets from the σ-algebra also belongs to
it. Generally speaking, in the context of classification tasks, the
elements of the set X are the individual classifiers (methods, parts
of the images under consideration, etc.). In the context of this
specific study, they are particular classifiers, see the experimental
section for details of the methods. These classifiers are denoted
as x1, xn, n 1. Now, one can define (Sugeno, 1974) a fuzzy
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FIGURE 1 | A general classification scheme based on an aggregation process.

measure as a set function g : P(X)→ R satisfying the following
conditions:

g (∅) = 0 and g (X) = 1 (1)

g (U) ≤ g (W) , U ⊂W, U,W ∈ P(X) (2)

lim
n→∞

g (Un) = g
(

lim
(n→∞)

Un

)
(3)

Here, {Un}, n = 1, 2, . . . means increasing set sequence. Recall
that Sugeno λ-fuzzy measure realizes the above conditions and

g (U ∪W) = g (U) + g (W) + λg (U) g (W) (4)

with λ >− 1. Here, U and W are not overlapping. In addition, we
have

g (U i + 1) = g (U i) + gi + 1 + λg (U i) (5)

for Ui = {x1, ..., xi}, Ui + 1 = {x1, ..., xi + 1}. The following
notation is used commonly: gi = g({xi}), i = 1, . . ., n. Now, let
us introduce a function h(x) and let the series h(xi), i = 1, . . ., n,
be ordered non-increasingly and let h(xn+1) = 0. In the context
of this study, the function h(·) represents a value of classifier
describing the probability of belonging to a specific class. Next,
the Ui set is, in fact, only an abstract object. The real importance
has the value of g (Ui) appearing in (5) which can be easily found
recursively starting from the values of gi. The value gi represents a
significance (or importance) of a particular classifier xi. Its value
can be commonly defined twofold: (1) based on the opinions of
experts and (2) based on initial tests. In this study, we applied
the second method. Finally, n is a number of classifiers. The last

parameter to be found is λ, which can be obtained from the
following equation:

1 + λ =

n∏
i = 1

(
1 + λgi

)
, gi = g ({xi}) (6)

see Sugeno (1974).
For such assumptions, the Choquet integral is defined as

C =
n∑

i = 1

(
h (xi)−h (xi + 1) g (U i)

)
(7)

From this function, many generalizations and extensions can
be delivered as follows:

CM =

n∑
i = 1

M
(
h (xi)−h (xi + 1) , g (U i)

)
(8)

and for any t-norm M (·,·), see Lucca et al. (2014),

CFM = min

( n∑
i = 1

M
(
h (xi)−h (xi + 1) , g (U i)

)
, 1

)
(9)

(Lucca et al., 2014, 2015),

CCM =

n∑
i = 1

(
M
(
h (xi) , g (Mi)

)
−M

(
h (xi + 1) , g (U i)

))
(10)

see (Lucca et al., 2017), CMin (Lucca et al., 2015), where the role
of the function M is played by the minimum, or CO [see (Lucca
et al., 2016)] with a so-called overlap function under the integral
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sign. Newer functions were proposed in Karczmarek (2018) and
Karczmarek et al. (2019a). They are

CMC =

n∑
i = 1

(
M
(
h
(
xi
)
, g
(
U i
))
−M

(
h
(
xi + 1

)
, g
(
U i
))

+ M
(
h
(
xi
)
−M

(
xi + 1

)
, g
(
U i
)))

(11)

CMMin

=

n∑
i = 1

M
(
min

(
h (xi) , g (U i)

)
−min

(
h (xi + 1) , g (U i)

)
, g (U i)

)
(12)

CMMin2

=

n∑
i = 1

M
(
min

(
h (xi) , g (U i)

)
, min

(
h (xi + 1) , g (U i)

))
(13)

CMinM

=

n∑
i = 1

min
(
M
((
h (xi) , g (U i)

))
,M

(
h (xi + 1) , g (U i)

))
(14)

and the integrals inspired by some numerical analysis formulae
such as

CD1 =

n∑
i = 1

M
(
h (xi−1)−h (xi + 1) , g (U i)

)
(15)

CD2 =

n∑
i = 1

M
(
h (xi−1) + h (xi + 1)−h (xi) , g (U i)

)
(16)

and

CD3 =

n∑
i = 1

M
(
h (xi−1) + h (xi + 1)

h (xi)
, g (U i)

)
(17)

It is worth noting that M(·,·) can be any triangular norm
which, as an intersection or conjunction operator in many
application areas, is a counterpart to a classic product operator
appearing in the original Choquet integral.

RESULTS

Individual Classifiers
In this study, we described particular classifiers that were
considered in the series of numerical experiments and
determined their accuracy. We applied the following classical
machine learning models: SVM with linear and cubic kernels,
logistic regression, kNN, decision tree, random forest, and MLP.
The classical machine learning models were used due to a low
number of observations available for training and testing. In
order to obtain the fuzzy density that is necessary for aggregation,
the following approach can be adapted. According to the holdout
validation procedure, the data were split into training and
validation subsets, where 20% of the dataset was used for
validation. The fuzzy density was calculated as a mean accuracy
measure obtained in the process of a fivefold cross-validation
run using the training data. The resulting classification quality
of separate models was tested on the validation subset after
fitting the models on the complete training set. The classification
accuracy values obtained with separate classifiers are presented
in Figure 2.

Aggregation of Classifiers
The experimental results of the aggregation scheme used for
the classifiers discussed in the previous section, namely decision
tree, k-nearest neighbor, quadratic SVM, cubic SVM, linear SVM,
logistic regression, random forest, and MLP, are discussed. The
accuracies of the individual classifiers obtained in the initial
series of experiments are the input to establish the fuzzy measure
densities gi. The values of the function h are the results of
the classification of testing elements being the probabilities of
belonging to the two classes, namely, healthy and SZ patients.
The validation procedure described in the previous section was
repeated 200 times. After each run, a value of fuzzy density and 8
probability vectors (20% out of 40 observations) were obtained
per classification model. The details of aggregation algorithm
implementation required a single estimation of classification
accuracy per model and aggregation method. Hence, all 1,600
(200 × 8) classification results were analyzed. It is worth noting
that the models were fitted and the fuzzy densities were obtained
independently in every separate run of the experiment. In the
series of experiments, we have evaluated 25 classes (families) of
popular and commonly considered in the literature triangular
norms (Alsina et al., 2006, page 72). The monograph can be
treated as a compendium of the t-norms to be applied in more
advanced aggregation operators. In this particular approach, the
t-norms serve as the integer functions M with parameters −10,
−9.9, . . ., 0, . . ., 9.9, 10, but only if the parameter is in the
range allowed for the t-norm. Such a choice of the parameter
range seems to be optimal and emphasizes the most important
properties of each of the t-norm classes. The maximal accuracy
was obtained for the classifier CD2 for triangular norm from the
family no. 8, namely

M
(
x, y

)
=

max
(
α2xy− (1−x)

(
1−y

)
, 0
)

α2−(α−1)2 (1−x)
(
1−y

) ,α > 0 (18)
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FIGURE 2 | Average of accuracies of separate classifiers.

FIGURE 3 | The accuracies were obtained with the function (18) and aggregation operator CD2.
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TABLE 2 | Triangular norms and their parameters for the results.

Aggregation function Number of t-norm family α

CM 12 0.2

CFM 12 0.2

CD2 2 0.5

CD2 8 0.1, 0.2

CD2 11 2.1, 2.4

CD2 13 1.2, 1.3

CD2 14 2.1, 2.4

CD2 25 4.4, 5, 5.1

Average 8 0.1

In this case, the best option to choose is α = 0.1. The plot
illustrating the recognition rate for the combination of CD2 and
the function (18) is given in Figure 3. It is obvious that satisfying
accuracy can be obtained only for relatively small values of the
parameter α.

It is important to understand the process of calculation
of the value of the aggregation function. Let us consider,
for example, the process of CD2 finding. Here, the individual
classifiers xi, i = 1, ..., n = 5 (five classifiers are discussed in
this experiment) should be analyzed, and for their significance
measures (simply, weights) gi = g ({xi}), see Figure 2. Next,
the parameter λ appearing in (6) is calculated. Based on
the value of λ, the values of g (Ui) appearing in Eq. (5)
are found recursively. Next, using the values of h (xi−1),
which are the likelihoods of belongings of a given probe to
a specific class, the final sum (16) can be obtained, taking
into account that M (·, ·) is any t-norm, in particular a
function given by (19).

Very good results were obtained also for the aggregation
functions CM and very similar CFM . Maximal yielded values were

TABLE 3 | The best choices of t-norms for various generalizations of the
Choquet integral.

Aggregation function Number of t-norm family

CM 12

CFM 12

CCM 11, 14

CMC 11, 14

CMMin 4, 12

CMMin2 4, 12

CD1 4, 13

CD2 8

CD3 4

98.81% for the function number 12 serving as integer function
and α = 0.2. The formula of the t-norm is as follows:

M
(
x, y

)
= max

(
1−
(
(1−x)α +

(
1−y

)α) 1
α , 0

)
α > 0 (19)

Table 2 supplements the above discussion by showing for
which triangular norms and their parameters the classification
rate exceeding 98.81% was reached.

It is worth stressing that the best average result among the
operators CM , CFM , CCM , CMC, CMMin, CMMin2, CD1, CD2, and
CD3 was also obtained for the triangular norm no. 8 given by
the formula (18) and its parameter α = 0.1. The plot presenting
the values of the combination of all the aggregation functions
with this t-norm and parameter is presented in Figure 4. It is
obvious that the function (18) works well with almost all of the
aggregation operators except CCM and CD3.

As a supplement to the results, it is worth noting that Table 3
presents the information for which the best results of the t-norms

FIGURE 4 | Averages of accuracies achieved with top aggregation functions.
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were obtained by aggregation operators. It can help match
t-norms and generalizations of the Choquet integral by experts
conducting similar research. For instance, function no. 4, see
Alsina et al. (2006), works well when it is combined with a few
Choquet integral-based operators.

Finally, what should be emphasized, we have conducted the
same tests for over 1,000 functions that are not Choquet-like
integrals. The functions that were used in this competition were
selected based on the studies by Alsina et al. (2006), Beliakov
et al. (2007); Grabisch et al. (2009), and Calvo et al. (2012). The
best results were obtained for the ordinary weighted averaging
operator at the level of 98.81%.

OWA (x1, ..., xn) =
n∑

j = 1

ωjyj (20)

where yj is the j-th largest of the xi, and the weights are ω1 = 1,
ω2 = 1 – 1

n , . . ., ωn = 1
n with or without normalization to their

sum. Despite it being a very good result, it is obvious that it is
hard to find the function giving the results more satisfying than
Choquet integral-based operators. Moreover, to find the proper
form of OWA, similar to the Choquet integral case, a proper
heuristic can be used.

CONCLUSION AND FUTURE WORK

In this study, we have indicated the most appropriate operator
aggregating the results of binary classification of patients to
efficiently distinguish individuals with SZ and healthy subjects
using a set of neural network organization features extracted from
EEG-based functional connectivity measures. A series of both
types of functions, generalizations of the Choquet integral and
other aggregating functions, have been verified to determine the
classes of functions and their parameters, which are the most
effective in the classification of SZ. As an input to the main
analysis, the results of classification were performed with classical
methods such as decision tree, k-nearest neighbor, quadratic
SVM, cubic SVM, linear SVM, logistic regression, random forest,
and MLP were applied. The original results obtained in the
study of classical methods classification reached 97% for logistic
regression. Although the initially obtained results were high, we
decided to verify if there is the possibility to reach even higher
results using the fuzzy-based classifier.

The results prove that applying various classification models
in combination with aggregation functions enable further
improvement of classification results. This approach allows us
to take advantage of the additional knowledge cumulated in the
parameters of the trained models.

Detailed results show that several aggregation functions
enabled to give promising results [presented in the study as
Eqs (9–13) and (15, 16)], which increase the classification result
by more than 1%. Among numerous functions evaluated and
implemented in the thorough comparison, the best accuracy was
reached for the aggregating integral CD2 with triangular norm
appearing under the integral sign given by the formula (19).

Very good results (classification accuracy higher than 98.8%)
were reached also for aggregation functions CM and CFM. It
is worth noting that the obtained results occurred to be better
than the original accuracy reached with classical methods by
1.81%. Although the obtained improvement is not very high
(less than 2%), the overall increase in classification accuracy
from 97% (for the best classical classifier) to as high as almost
99% (for the properly selected pre-aggregation operators) is
relevant. Nevertheless, we have not done double cross-validation
analysis, so this limitation can influence classification accuracy,
hence the classification rate could be slightly overestimated.
Results show the usefulness of this method especially if the
role of aggregation function is an extended version of the
Choquet integral. In contrast, the application of aggregation
functions could give a relatively better improvement in case
of weaker initial individual classification results. In future,
we have planned to extend the analysis to consider more
phases and stages of SZ. Moreover, we are interested in the
application of other classes of aggregation operators and the
determination of their weights (significance in the process
of aggregation) based on the opinions of medical experts.
More theoretically, it is still an interesting as well as difficult
task to find the optimal parameters of the integral operators
only based on their results according to various classification
tasks with no relation to the accuracies or expert opinions.
Finally, an application of aggregation techniques in other
medical pattern recognition or classification problems will be
worth analyzing.
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