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Introduction
Centromeric chromatin is defined by the incorporation of a 
unique nucleosome containing the histone H3 variant CENP-A 
(centromere protein-A), which distinguishes this locus from 
general chromatin. Centromeric chromatin plays an integral 
role in organizing and controlling chromosome segregation. 
The centromere is the site of microtubule attachment and check-
point signaling during mitosis and also organizes the constitu-
tive centromere components throughout the cell cycle (Cleveland 
et al., 2003; Musacchio and Salmon, 2007; Cheeseman and  
Desai, 2008).

The human centromere contains hundreds of thousands to 
millions of base pairs of DNA arranged in -satellite higher  
order repeats (Cleveland et al., 2003; Schueler and Sullivan, 
2006; Allshire and Karpen, 2008). Despite the characteristic 
-satellite DNA content of centromeres, the existence of stable 
dicentric chromosomes in which a single centromeric region 
remains “active” and the formation of neocentromeres at non–
-satellite repeat regions have led to the understanding that 

centromere specification is an epigenetic process (Marshall et al., 
2008). The mechanism by which CENP-A is assembled at pre-
existing centromeric sites, whether at canonical centromeres or 
neocentromeres, remains unclear.

The presence of the CENP-A nucleosome within centro-
meric chromatin directs the recruitment of a large set of proteins 
present at the centromere throughout the cell cycle (Musacchio 
and Salmon, 2007). These proteins can be divided into partially 
overlapping subcomplexes, including the CENP-A nucleosome-
associated complex (CENP-ANAC), CENP-A distal components, 
and CENP-H–I complexes, and are collectively termed the con-
stitutive centromere-associated network (CCAN; Obuse et al., 
2004; Foltz et al., 2006; Okada et al., 2009). CENP-N and 
CENP-C, within the CENP-ANAC, are able to independently dis-
cern centromeric CENP-A–containing chromatin from general 
chromatin by directly recognizing the CENP-A nucleosome 
(Carroll et al., 2009, 2010).

Several models have been proposed to explain how 
CENP-A nucleosomes may be differentiated from H3.1 nucleo-
somes. One model predicts an octameric CENP-A–containing 
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localizes to centromeres just before new CENP-A loading, it is 
hypothesized that Mis18 primes the centromere for CENP-A 
deposition through a mechanism that may involve histone 
acetylation (Hayashi et al., 2004; Fujita et al., 2007).

Recruitment of HJURP to a noncentromeric LacO (Lac 
operon) array is sufficient to drive the stable association of 
CENP-A at the array and to recreate a functional centromere. 
The HJURP-deposited CENP-A at the array is competent to re-
cruit CCAN proteins and the kinetochore protein NDC80 and 
form stable microtubule attachments during mitosis. A frag-
ment of HJURP that contains the Scm3 domain is able to  
specifically assemble CENP-A nucleosomes in vitro. We addi-
tionally show the Mis18 complex is required for HJURP re-
cruitment to endogenous centromeres. However, when this 
recruitment step is bypassed by tethering HJURP to the LacO 
array, CENP-A deposition can still occur in the absence of 
Mis18 at this noncentromeric location. Together, our data delineate 
the roles of Mis18 and HJURP in the recruitment of CENP-A 
and its assembly into nucleosomes.

Results
HJURP recruitment is sufficient to drive 
CENP-A deposition into chromatin
HJURP is required for CENP-A deposition and is localized to 
centromeres during early G1 when new CENP-A is incorpo-
rated into centromeres (Jansen et al., 2007; Dunleavy et al., 
2009; Foltz et al., 2009). We hypothesized that recruitment of 
HJURP may couple CENP-A delivery and nucleosome assem-
bly at centromeres by chaperoning CENP-A to centromeres and 
providing intrinsic CENP-A deposition activity. If true, HJURP 
recruitment to a noncentromeric site should be sufficient to dic-
tate the site of CENP-A nucleosome deposition. We ectopically 
localized HJURP to a noncentromeric site within the genome by 
expressing a LacI (Lac repressor)-HJURP fusion protein in U2OS 
cells containing 200 copies of a 256×LacO/96×tetracycline-
 responsive element (TRE) array on chromosome 1 (Janicki et al., 
2004). We then determined whether CENP-A deposition occurred 
at this site.

LacO/TRE U2OS cells were transiently transfected with 
either mCherry-LacI or the mCherry-LacI-HJURP fusion (here-
after called LacI or LacI-HJURP). GFP-TetR (tet repressor) was 
cotransfected to independently determine the location of the 
array. The LacI-HJURP and GFP-TetR fusion proteins success-
fully localized to and marked the LacO/TRE array (Fig. 1,  
A and B). When HJURP was localized at the array, endogenous 
CENP-A was also enriched in 61.3% of transfected cells, 48 h 
after transfection (Fig. 1, A and C). This was in contrast to 1% 
of cells showing CENP-A colocalization with the array when 
the LacI control was expressed, demonstrating the LacO/TRE 
array did not consistently overlap with an endogenous centro-
mere (Fig. 1, A and C).

We disrupted the LacI interaction with the LacO array  
using IPTG to determine whether CENP-A was stably associated 
with the underlying chromatin or whether it was tethered at the 
array solely through its interaction with LacI-HJURP. We ex-
pected that the portion of the CENP-A tethered at the array 

nucleosome with a more compact structure relative to the his-
tone H3.1 nucleosome (Black et al., 2007; Camahort et al., 
2009; Sekulic et al., 2010). Also proposed are changes in the 
CENP-A nucleosome composition that include single copies of 
each of the four core histones, a lack of histones H2A and H2B, 
or the inclusion of the nonhistone component Scm3 (Dalal et al., 
2007; Mizuguchi et al., 2007; Williams et al., 2009). Finally, it 
has been suggested that centromeric nucleosomes wrap DNA in 
a right-handed path around the CENP-A/CenH3-containing his-
tone core, in contrast to the left-handed wrapping of the canoni-
cal H3 nucleosome (Furuyama and Henikoff, 2009). All of these 
distinctions may contribute to the selective assembly of CENP-A 
nucleosomes into centromeric loci or to the recruitment of a 
unique set of proteins to the centromeric chromatin.

The redistribution of preexisting CENP-A nucleosomes 
between newly synthesized sister DNA strands during S phase 
necessitates the incorporation of new CENP-A nucleosomes 
during each round of cell division to maintain centromeric iden-
tity. Distinct histone chaperones for the different histone H3 
variants function to couple the deposition of the appropriate his-
tone variant to a unique site within the genome at distinct times 
during the cell cycle (Ransom et al., 2010). In the case of verte-
brates, new CENP-A is recruited to centromeres in a prenucleo-
somal complex with HJURP during early G1 (Jansen et al., 
2007; Dunleavy et al., 2009; Foltz et al., 2009; Shuaib et al., 
2010; Bernad et al., 2011). Point centromeres of Saccharomyces 
cerevisiae and regional centromeres of Schizosaccharomyces 
pombe also require the HJURP homologue Scm3 for the  
recruitment of their respective CENP-A homologues. The 
interaction between HJURP and CENP-A depends on the 
centromere-targeting domain (CATD) of CENP-A (Black et al., 
2004; Foltz et al., 2009). The CATD is a portion of the histone-
fold domain of CENP-A that confers structural changes that 
alter the shape, surface, and conformational flexibility of the 
complexes into which CENP-A assembles, relative to its con-
ventional counterpart H3 (Black et al., 2007; Sekulic et al., 
2010). This same region dictates the interaction of CENP-A 
with the Scm3 domain of HJURP as well as CENP-A’s associa-
tion with the constitutive centromere protein CENP-N (Carroll 
et al., 2009; Foltz et al., 2009). These data suggest that the struc-
tural differences imparted by the CATD mediate the correct 
localization and incorporation of the variant within the genome 
and the recruitment of the appropriate proteins required for 
building the centromere.

New CENP-A nucleosome assembly also requires the  
human Mis18 complex (Mis18, Mis18, and Mis18BP1hsKNL2; 
also known as M18BP1; Fujita et al., 2007; Maddox et al., 
2007). This complex is initially recruited to centromeres during 
telophase and remains associated with CENP-A–containing 
chromatin during G1. The S. pombe homologue of Mis18 is re-
quired for the localization of Scm3 and CENP-A to centromeres 
(Camahort et al., 2007; Mizuguchi et al., 2007; Stoler et al., 
2007; Pidoux et al., 2009; Williams et al., 2009). In vertebrates, 
Mis18 is not found as part of the CENP-A–HJURP prenucleo-
somal complex nor is it associated with isolated CENP-A  
nucleosomes, but it is contained within CENP-A–containing 
chromatin (Foltz et al., 2006; Maddox et al., 2007). Because it 
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Figure 1. HJURP-dependent CENP-A recruitment and incorporation into the LacO/TRE array. (A and B) Recruitment of endogenous CENP-A to the LacO/TRE  
array in the presence of LacI-HJURP or LacI-HJURPScm3. All LacI constructs have an N-terminal mCherry tag. Representative images of preextracted cells 
treated with 0 mM IPTG (A) or 10 mM IPTG (B) for 1 h before fixation. Endogenous CENP-A was detected using a monoclonal anti–CENP-A antibody. 
mCherry-LacI fusions of HJURP or HJURPScm3 and GFP-TetR markers are transiently transfected at equal ratios, and DNA is visualized using DAPI. Cells are 
fixed at 48 h after transfection. Arrows indicate the array. Insets show magnified views of boxed regions. (C) Quantification of CENP-A staining at the 
LacO/TRE array. Error bars represent the standard deviations between two experiments. At least 30 cells per condition were analyzed; n = 2. In the case 
of IPTG treatment, cells in which the residual mCherry signal was still visible at the array were excluded. (D) Quantification of the amount of CENP-A at the 
array in LacI-HJURP– and LacI-HJURPScm3–transfected cells with and without treatment with IPTG (>28 cells/condition). Middle lines in each box represent the 
mean integrated intensity for each condition, and whiskers represent the maximum and minimum intensities observed. A.U., arbitrary unit. Bars, 5 µm.

through its binding to LacI-HJURP would be removed by treat-
ment with IPTG. Any remaining CENP-A signal at the array  
after IPTG treatment would indicate stable association of 
CENP-A with the DNA. Cells were treated with 10 mM IPTG 
for 1 h before fixation, 48 h after transfection. Under these 

conditions, LacI-HJURP was no longer visible at the array in 
cells counted for CENP-A stability (array marked by GFP-TetR; 
Fig. 1 B). CENP-A persisted at the array in 51.6% of IPTG-
treated cells in which LacI-HJURP was no longer visible. We 
observed a 46% decrease in the mean intensity of the CENP-A 
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deposition; therefore, we tested whether the region of HJURP 
that includes the Scm3 homology domain (HJURPScm3), which 
can interact with CENP-A but is unable to localize to centro-
meres, is sufficient to direct the stable association of CENP-A at 
the array. HJURPScm3 was fused to mCherry-LacI (called LacI-
HJURPScm3) and transfected into the LacO–containing U20S 
cells. Targeting LacI-HJURPScm3 resulted in the recruitment of 
endogenous CENP-A to the array in 39.9% of cells after 48 h in 
culture, similar to the full-length protein (Fig. 1, A and C). We 
removed LacI-HJURPScm3 from the array using IPTG, and en-
dogenous CENP-A remained associated with the chromatin in 
32.8% of cells, similar to full-length HJURP (Fig. 1, B and C). 
LacI-HJURPScm3 recruited less CENP-A to the array (Fig. 1 D); 
however, the proportion of CENP-A retained at the array in 
LacI-HJURPScm3–transfected, IPTG-treated cells was greater 
than full-length HJURP. Cells transfected with LacI-HJURPScm3 
showed only a 5% decrease in mean CENP-A intensity at the 
array when treated with IPTG relative to controls.

CENP-A deposition by HJURP recruits 
CENP-A nucleosome-associated proteins
The recruitment of constitutive centromere proteins is thought 
to depend on the presence of CENP-A, as indicated by affinity 
purifications, siRNA, and knockout experiments (Obuse et al., 
2004; Régnier et al., 2005; Foltz et al., 2006; Liu et al., 2006). 

at the arrays in cells treated with IPTG (Fig. 1 D), which is consis-
tent with a subset of CENP-A being tethered at the array through 
HJURP. The stable association of CENP-A with the LacO DNA 
after removal of HJURP is consistent with the assembly of 
CENP-A–containing chromatin at the array (Fig. 1, B and C). 
Alternatively, the CENP-A observed after removal of HJURP 
may persist as a prenucleosomal form pending its assembly by 
other factors, similar to what has been proposed previously in 
RSF1 knockdowns (Perpelescu et al., 2009).

We used an NIH3T3 cell line containing a LacO-SceI-TRE 
array to demonstrate that the stable recruitment of CENP-A by 
LacI-HJURP was not a unique property of the U2OS cells or the 
genomic location of the array (Soutoglou et al., 2007). Trans-
fected YFP–CENP-A was recruited to the LacO array when 
LacI-HJURP was expressed and remained stably associated 
with the array when the cells were treated with IPTG, similar to 
what we observed in the U2OS cell line (Fig. S1 A).

The extent of homology between the yeast Scm3 proteins 
and HJURP is contained within a small 52–amino acid stretch 
in the amino terminus of HJURP (Sanchez-Pulido et al., 2009). 
A fragment of HJURP that contains the Scm3 homology domain is 
sufficient to mediate the interaction of CENP-A and HJURP but 
is not able to direct HJURP to centromeres (Fig. S2; Shuaib  
et al., 2010). It is reasonable to suppose that HJURP and Scm3 
mediate similar functions with respect to CENP-A nucleosome 

Figure 2. HJURP-deposited CENP-A recruits constitutive centromere proteins. (A) LacO/TRE U2OS cells were transiently transfected with LacI-HJURP and 
constructs expressing LAP (GFP localization and purification)-tagged CENP-C, CENP-M, CENP-N, or CENP-T. Cells were preextracted and fixed 72 h after  
transfection. The presence of CENP-A was assessed using antibodies against endogenous CENP-A. Insets show the arrays at a higher magnification.  
(B) LacI control images for LAP-CENP-C–T, indicating that recruitment is never observed in the absence of CENP-A. (C) Graph showing the percentage of 
doubly transfected (GFP and LacI-HJURP) U2OS LacO/TRE cells with endogenous CENP-A present at the array, which also recruited the indicated constitu-
tive centromere proteins (≥30 cells per condition; error bars represent standard deviation). Bars, 5 µm.

http://www.jcb.org/cgi/content/full/jcb.201012017/DC1
http://www.jcb.org/cgi/content/full/jcb.201012017/DC1


233HJURP and centromere assembly • Barnhart et al.

were observed to terminate at several LacO arrays assembled by 
LacI-HJURPScm3 in metaphase cells (Fig. 3 C). Consistent with 
an interaction between microtubules of the mitotic spindle and 
the LacO array, cells transfected with LacI-HJURPScm3 exhib-
ited lagging chromosomes during anaphase (Fig. 3 D, Video 1, 
and Video 2). The lagging chromosomes contained the LacO 
array (Fig. 3 E), which suggests that the array of each chromo-
some is interacting with microtubules emanating from both 
spindle poles in a merotelic-like arrangement. These data sup-
port our findings that HJURP-assembled ectopic centromeres at 
the array can mimic centromeric CENP-A nucleosomes through 
their ability to recruit CENP-ANAC proteins and assemble a 
functioning kinetochore.

In vitro assembly of CENP-A nucleosomes 
by HJURPScm3

It is unclear whether HJURP is required only to stabilize and 
deliver prenucleosomal CENP-A to centromeres or whether 
HJURP is also actively involved in the assembly of CENP-A 
nucleosomes at the centromere. Based on the ability of HJURP 
to drive the stable association of CENP-A at the LacO array, we 
hypothesized that HJURP plays an active role in the deposition 
of CENP-A nucleosomes at centromeres. We assessed the abil-
ity of HJURP to assemble CENP-A–containing nucleosomes in 
an in vitro chromatin assembly assay using purified recombinant 
proteins independent of other assembly factors. The assembly 
of nucleosomes in this assay is assessed on closed circular plas-
mid DNA by monitoring the formation of topoisomers (Lusser 
and Kadonaga, 2004).

Because the Scm3 domain of HJURP is able to bind 
CENP-A and we demonstrated the stable association of CENP-A 
at the LacO array in response to LacI-HJURPScm3 expression, 
we reasoned that this fragment of HJURP should be suffi-
cient to assemble CENP-A nucleosomes. Maltose-binding pro-
tein (MBP)–tagged HJURPScm3 containing amino acids 1–208 
was expressed in bacteria and purified (Fig. S3 A). As hypothe-
sized, when incubated with CENP-A and histones H4, H2A, 
and H2B, HJURPScm3 was indeed able to assemble CENP-A nu-
cleosomes as indicated by the accumulation of faster migrating 
topoisomers (Fig. 4 A). The accumulation of fully supercoiled 
plasmids increased with increasing the amounts of HJURPScm3 
(Fig. 4, A–C). HJURP-assembled CENP-A nucleosomes pro-
tected the expected 150 bp of DNA after micrococcal nucle-
ase digest (Fig. 4 D).

General histone chaperones are often promiscuous in their 
ability to bind and assemble histones into nucleosomes as  
exemplified by dNAP (Drosophila melanogaster nucleosome 
assembly protein), which is capable of directly interacting with all 
four core histones and has been shown to assemble both histone 
H3 and CENP-A chromatin (Figs. 5 A and S3 B; Yoda et al., 
2000; Park and Luger, 2006). We next examined whether the 
assembly activity of MBP-HJURPScm3 was specific for CENP-A–
containing nucleosomes. HJURPScm3 was not able to effi-
ciently assemble nucleosomes when CENP-A was replaced 
with histone H3.1 (Fig. 4, A–C), which is consistent with the 
inability of HJURP to bind histone H3–H4 (Foltz et al., 2009) 
and supporting its role as a CENP-A–specific assembly factor. 

In vitro, CENP-N and CENP-C are able to directly and selec-
tively recognize the CENP-A nucleosome (Carroll et al., 2009, 
2010). To test the ability of CENP-A nucleosomes to determine 
the recruitment of the constitutive centromere, we examined 
whether components of the CENP-ANAC are recruited to the 
LacO array after CENP-A was stably associated there using 
LacI-HJURP (as in Fig. 1). LacO/TRE U2OS cells were co-
transfected with LacI-HJURP and GFP-tagged constructs ex-
pressing CENP-C, CENP-N, CENP-M, or CENP-T and fixed 
72 h later. Only cells with endogenous CENP-A present at the 
array and a GFP-CENP signal at the centromeres were ana-
lyzed. We observed the recruitment of GFP-tagged CENP-C, 
CENP-N, CENP-M, and CENP-T in 12–28% of cotransfected 
cells (Fig. 2, A and C). CENP-N was most strongly recruited 
and selectively interacts with intact CENP-A nucleosomes but 
does not recognize the prenucleosomal heterotetramer, sug-
gesting CENP-A assembled at the array may be nucleosomal 
(Carroll et al., 2009). GFP signal was never observed at the 
array for any of the GFP-tagged CENP-ANAC proteins when cells 
were cotransfected with the LacI control construct (Fig. 2 B).

Ectopic centromeres formed by HJURP act 
as kinetochores during mitosis
The stable association of CENP-A at the array and the sub-
sequent recruitment of constitutive centromere proteins prompted 
us to investigate whether mitosis-specific kinetochore proteins 
would also be recruited to the array. To address this, we immuno-
stained mitotic chromosome spreads for the microtubule-binding 
kinetochore protein NDC80 and observed its recruitment to the 
LacO array in 40% of cells transfected with LacI-HJURPScm3 
(Fig. 3 A). Endogenous centromeres exhibit a unique mor-
phology in mitotic chromosomes called a constriction. In the 
LacI-HJURPScm3–transfected cells in which NDC80 is re-
cruited to the array, we observed a second region of constriction 
at the array in addition to the constriction present at the endog-
enous centromere consistent with the array acting as a func-
tional kinetochore.

Cells were treated with the Eg5 inhibitor Monastrol to 
demonstrate that the array behaves similarly to endogenous 
centromeres during mitosis. Under these conditions, cells fail to 
separate their spindle poles during prometaphase and arrest in 
mitosis with their centromeres oriented toward the central pole 
and the telomeres toward the periphery. The array of the U2OS 
cells is incorporated near the telomere of chromosome 1 (Janicki 
et al., 2004) and is located away from the central cluster of cen-
tromeres, as identified by CENP-T staining in control cells 
(LacI transfected; Fig. 3 B). However, when LacI-HJURPScm3 is 
expressed, we observe the array closer to the center of the mono-
polar mitotic structure, consistent with the array acting as a 
centromere and binding microtubules (LacI-HJURPScm3 trans-
fected; Fig. 3 B).

We predicted that cells in which ectopic centromeres were 
successfully assembled at the LacO array should form stable 
microtubule attachments and cause errors in chromosome segre-
gation caused by the presence of two active centromeres on a single 
chromosome. As expected, cold-stabilized microtubules, charac-
teristic of kinetochore fibers (Brinkley and Cartwright, 1975), 

http://www.jcb.org/cgi/content/full/jcb.201012017/DC1
http://www.jcb.org/cgi/content/full/jcb.201012017/DC1
http://www.jcb.org/cgi/content/full/jcb.201012017/DC1
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Figure 3. Recruitment of CENP-A by HJURPScm3 mediates kinetochore formation at the LacO array. (A) Mitotic chromosome spreads from U20S-LacO/TRE 
cells transfected with LacI or LacI-HJURPScm3, arrested in nocodazole, and stained with antibodies for NDC80. 40% of LacI-HJURP arrays recruited NDC80. 
(B) Monastrol-arrested cells transfected with LacI or LacI-HJURPScm3 and immunostained for centromere marker CENP-T. Radial distribution plots describe  
the mean centromere position (black circle) in the cells measured (>26 cells per condition) relative to the center of the DNA mass. The array position 
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support the hypothesis that HJURP is a CENP-A–specific chro-
matin assembly factor possessing the intrinsic ability to deposit 
CENP-A nucleosomes into DNA.

Because both HJURP and NPM1 (nucleophosmin 1) are 
consistently copurified with prenucleosomal CENP-A and NPM1 
has been shown previously to act as a histone chaperone for histone 
H3 nucleosomes (Okuwaki et al., 2001), we sought to determine 

Although the degree of assembly of CENP-A nucleosomes cor-
relates with the amount of HJURPScm3 present in the reaction, 
the limited amount of supercoiling observed in H3 assembly re-
actions did not increase as increasing amounts of HJURPScm3 
were titrated into the reactions (Fig. 4 C). This suggests that the 
limited degree of supercoiling observed with histone H3 does 
not reflect chaperone-mediated assembly. Together, these data 

is diagrammed relative to the center of the DNA mass as blue triangles (LacI) or red diamonds (LacI-HJURPScm3). The gray circle represents one standard deviation 
from the mean centromere position. The LacI-HJURPScm3 array falls within the centromere region in 69% of transfected cells versus 15% for LacI controls. (C) Selec-
tive stabilization of kinetochore-bound microtubules through cold treatment demonstrates the LacI-HJURPScm3 arrays form stable microtubule interactions similar to 
endogenous centromeres. Insets show magnified views of the boxed region. (D) LacO-SceI-TRE NIH3T3 cells were transfected with YFP–histone H2B and followed 
by live-cell imaging as they progress through mitosis. Times are given relative to the last frame when cells were in metaphase. Arrows indicate the array, and 
asterisks indicate nonchromatin-bound unspecific LacI staining. (E) Insets taken from images in D show the behavior of the array (red in merge) and YFP-H2B (green 
in merge) for (1 and 2) LacI-HJURPScm3 at 6 and 9 min into anaphase, respectively. Bars: (A–D) 5 µm; (E) 2 µm.

 

Figure 4. HJURPScm3 is sufficient to assemble CENP-A nucleosomes in vitro. (A) Plasmid supercoiling assays were conducted using recombinant MBP-
tagged HJURPScm3 and recombinant CENP-A octamer (including histones H4, H2A, and H2B) or histone H3.1 octamer to assess the relative ability of 
HJURP to assemble CENP-A– and H3.1-containing nucleosomes. The relaxed DNA lane contains topoisomerase-treated supercoiled (S.C.) plasmid DNA. 
HJURPScm3 induced supercoiling more efficiently in the presence of CENP-A relative to H3.1. (B) Line scans across topoisomers within conditions presented 
in A. Lines indicate the least supercoiled topoisomers. Boxes indicate the location of the maximally assembled topoisomers. (C) Assembly reactions from A 
containing H3.1 and CENP-A are graphed here as fold intensity over reactions containing no HJURPScm3. Error bars show standard deviations. (D) Assembly 
reactions in A (using HJURPScm3) or assembly reactions using NPM1 digested with micrococcal nuclease to show DNA protection of the assembled species. 
A dotted line was drawn to indicate the migration of a 200-bp fragment.
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Figure 5. HJURPScm3-assembled CENP-A nucleosomes are negatively super-
coiled and contain H2A and H2B. (A and B) Supercoiling assay com-
paring assembly efficiencies of chaperones dNAP, NPM1, and HJURPScm3 
with CENP-A histone octamers (CENP-A–H4 and H2A/H2B) in A or with 
CENP-A–H4 alone in B. CENP-A–H4 levels added to the reactions were 
varied from 1 to 2× compared with the amount of CENP-A–H4 present in 
the reactions in A. Line scans are presented in Fig. S3. SC, supercoiled. 
(C) Integrated intensities of maximally supercoiled populations were mea-
sured from reactions in A and B. Values are graphed as fold-maximally 
supercoiled heterotetramer to octamer. Error bars show standard devia-
tions. (D) Supercoiling assay showing assembly activities (top) for dNAP, 
HJURPScm3, and NPM1. Supercoiled DNA was separated by agarose gel 
electrophoresis with (bottom) or without (top) the DNA intercalating agent 
chloroquine to distinguish negatively and positively supercoiled DNA. The 
minus signs indicate no addition of chaperone. The white line indicates 
that intervening lanes have been spliced out.

as a pentamer (Okuwaki et al., 2001). Like dNAP and HJURPScm3, 
NPM1 was also able to assemble CENP-A–containing nucleo-
somes onto plasmid DNA (Figs. 4 D and 5, A and D). When 
NPM1 and HJURP were both present in the assay, we did not ob-
serve an increase in assembly efficiency (unpublished data).

Cse4 in S. cerevisiae is reported to form a centromeric 
subnucleosomal particle with histone H4 that lacks histones H2A 
and H2B and may include Scm3 (the homologue of HJURP; 
Mizuguchi et al., 2004; Stoler et al., 2007; Williams et al., 
2009). Subnucleosomal H3–H4 heterotetramer complexes 
can be deposited onto DNA templates, resulting in supercoiling 
(Peterson et al., 2007), and recently, Shuaib et al. (2010) dem-
onstrated the ability of HJURP to deposit a single CENP-A–H4 
heterotetramer into DNA. We determined whether HJURPScm3 
was able to assemble extended arrays of CENP-A–H4 hetero-
tetramers into plasmid DNA and to compare the extent of super-
coiling induced by heterotetramer assembly relative to octameric 
CENP-A assembly. We observed plasmid supercoiling around 
CENP-A–H4 heterotetramers in response to all three assembly 
factors tested; although, in each case, the degree of supercoiling 
was less than that observed with the CENP-A octamers, which 
included H2A and H2B (Figs. 5, A–C; and S3 C). When the 
amount of CENP-A–H4 heterotetramer was increased by two-
fold in the reaction over the amount in the octamer assemblies, 
dNAP became as efficient as in the presence of all four histones. 
However, NPM1 and HJURPScm3 continued to yield a lesser de-
gree of plasmid supercoiling around the CENP-A–H4 hetero-
tetramer (Fig. 5, A–C). These observations are consistent with 
either a lesser activity of HJURPScm3 for the assembly of 
CENP-A–containing heterotetramers or with a decreased degree 
of supercoiling per heterotetramer.

It has been reported that CENP-A–containing nucleo-
somes positively supercoil DNA in Drosophila and S. cerevi-
siae, in contrast to the negative supercoiling produced by 
canonical histone H3-containing nucleosomes (Furuyama and 
Henikoff, 2009). We separated HJURPScm3-induced topoiso-
mers in the presence of chloroquine, an intercalating drug that 
allows for the detection of both positive and negative super-
coiling by a shift in the topoisomers. Positively supercoiled  
DNA will shift toward faster migrating species in the presence  
of chloroquine, and negatively supercoiled DNA will shift  
toward more slowly migrating species (Lusser and Kadonaga,  
2004). MBP-HJURPScm3–assembled CENP-A–containing nu-
cleosomes induced negative supercoils as indicated by the up-
ward shift in the gel (Fig. 5 D, bottom), contrary to what has 
been observed for the Drosophila CID (centromere identifier) 
and budding yeast Cse4 nucleosomes. These data suggest human 
CENP-A nucleosomes assembled by their native chaperone 
include histones H2A and H2B and are wrapped in a left-handed 
direction, similar to canonical H3.1-containing nucleosomes.

HJURP centromeric localization is 
dependent on the Mis18 complex  
at centromeres
HJURP and the Mis18 complex are both required for the re-
cruitment of newly synthesized CENP-A to the centromere; 
however, the function of the Mis18 complex in CENP-A assembly 

whether NPM1 might contribute to CENP-A nucleosome deposi-
tion (Frehlick et al., 2007; Dunleavy et al., 2009; Foltz et al., 
2009; Shuaib et al., 2010). NPM1 was expressed and purified 
from bacteria (Fig. S3 A) and eluted from a size exclusion column 

http://www.jcb.org/cgi/content/full/jcb.201012017/DC1
http://www.jcb.org/cgi/content/full/jcb.201012017/DC1
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requires the Mis18 complex. By targeting HJURP to an ectopic 
location using the LacI/LacO system, we have bypassed the 
need for Mis18-mediated centromere recruitment of HJURP to 
assess the role of HJURP in CENP-A deposition independently 
of the context of the endogenous centromere. Targeting HJURP 
to the LacO array demonstrates that the recruitment of HJURP 
is the process that determines the site of CENP-A nucleosome 
deposition and, subsequently, the assembly of the associated 
constitutive centromere and mitotic kinetochore (Fig. 8). Further-
more, we have determined that HJURP is directly responsible 
for CENP-A nucleosome assembly in vitro. Together, these 
data demonstrate that HJURP recognizes the centromere 
through the action of the Mis18 complex and that HJURP’s in-
trinsic ability to assemble CENP-A nucleosomes is an integral 
step in the epigenetic mechanism by which centromeres are  
stably propagated.

The CENP-A nucleosome is independently recognized by 
two components of the CENP-ANAC/CCAN, CENP-N and 
CENP-C (Carroll et al., 2009, 2010), and both of these proteins 
are recruited to the LacO arrays containing CENP-A. In vitro, 
CENP-N is unable to bind the CENP-A–H4 heterotetramer but 
uniquely recognizes the CENP-A–containing nucleosome as-
sembled with histone H4, H2A, and H2B. The recruitment of 
CENP-N to the LacO array indicates the presence of assembled 
CENP-A nucleosomes. The CENP-T–W complex is localized 
in close proximity to the CENP-A nucleosome at centromeres, 
although it has been proposed to interact directly with histone 
H3 chromatin at the centromere (Foltz et al., 2006; Hori et al., 
2008). We observed CENP-T recruitment to the array, suggest-
ing the incorporation of CENP-A is able to organize the array 
relative to surrounding H3 nucleosomes in a way that reflects 
the arrangements present at endogenous centromeres. Recently, 
it has been demonstrated that recruitment of CENP-T and 
CENP-C are sufficient to build an ectopic centromere using the 
LacO system (Gascoigne et al., 2011), which is consistent with 
our work showing recruitment of CENP-T and CENP-C to  
the CENP-A–containing arrays that go on to assemble func-
tional kinetochores.

Data examining the ability of CENP-A deposition to drive 
centromere and kinetochore formation have been somewhat 
mixed. In human cell lines, overexpression of CENP-A can lead 
to incorporation of CENP-A throughout the chromatin with an 
accompanying relocalization of CENP-C; however, these regions 
do not support kinetochore formation during mitosis (Van Hooser 
et al., 2001). Recruitment of CENP-A to the LacO array is suc-
cessful at reconstituting centromere and kinetochore activity. 
This may be caused by an enrichment of CENP-A at the LacO 
arrays relative to that deposited into general chromatin by over-
expression. Alternatively, the kinetochore activity of the LacO 
array may reflect a contribution of HJURP-mediated assembly 
on the CENP-A nucleosomes at the array, as opposed to  
overexpression-induced chromatin incorporation of CENP-A, 
which may occur through HJURP-independent mechanisms.

The overexpression of CID in Drosophila was more suc-
cessful in recapitulating centromere and kinetochore formation 
than overexpression in human cell lines. In this case, CID over-
expression resulted in its accumulation throughout the chromatin 

remains unclear. It was not known whether Mis18 and HJURP 
are required for independent events in CENP-A deposition or 
whether the action of the Mis18 complex is required for HJURP 
recruitment. To address this question, Mis18, Mis18BP1hsKNL2, 
or HJURP were knocked down by siRNA treatment in HeLa 
cell lines that stably express either GFP-tagged Mis18 or 
GFP-tagged HJURP. The GFP-tagged proteins behave similarly 
to endogenous proteins, as the proportion of cells with centro-
meric GFP-Mis18 or GFP-HJURP increases significantly 
when we enrich for cells in early G1 (Fig. S4).

Knockdown of Mis18 by siRNA reduced GFP-Mis18 
protein levels to below 25% of mock-treated levels after 48 h 
(Fig. 6 A). HJURP siRNA reduced endogenous HJURP to 
below 25% of normal cellular levels while also substantially 
decreasing the level of the GFP-tagged protein (Fig. 6 B). Cen-
tromeric localization of GFP-tagged Mis18 was abolished 
after Mis18 siRNA treatment (Fig. 6, C and D). Antibodies that 
recognize CENP-T were used to identify centromeres. Treating 
cells with siRNA against Mis18BP1hsKNL2 did not lower the pro-
tein level of the exogenous GFP-Mis18 (Fig. 6 A) but did abol-
ish Mis18 localization at centromeres (Fig. 6, C and D) 
consistent with previous findings (Fujita et al., 2007).

HJURP siRNA completely eliminated centromeric local-
ization of the GFP-tagged HJURP protein after 48 h (Fig. 6,  
E and F). In contrast, siRNA knockdown of HJURP did not alter 
the localization pattern of GFP-Mis18 to centromeres as 
compared with the glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) control nor did it decrease the protein level of GFP-
Mis18 (Fig. 6, A, C, and D). Importantly, siRNA against either 
Mis18 or Mis18BP1hsKNL2 eliminated HJURP recruitment to 
centromeres (Fig. 6, E and F) while not affecting the level of 
endogenous or GFP-tagged HJURP (Fig. 6 B). Therefore, the 
Mis18 complex is required for HJURP recruitment to centro-
meres, suggesting that the lack of CENP-A deposition in Mis18 
knockdown experiments results from the inability to recruit 
HJURP (Fujita et al., 2007; Maddox et al., 2007).

To determine whether the Mis18 complex is also required 
for the function of HJURP in recruiting and stabilizing CENP-A, 
we performed siRNA knockdown of Mis18BP1hsKNL2 in the 
LacO-containing U2OS cells. Mis18BP1hsKNL2 protein was re-
duced to <90% of endogenous levels by siRNA treatment of 
U20S cells as indicated by immunoblotting and by the loss of 
centromeric CENP-A (Fig. 7, A and B). The stability of endog-
enous CENP-A at the LacO array in LacI-HJURPScm3–transfected 
cells was unaffected by Mis18BP1hsKNL2 depletion after IPTG 
treatment (Fig. 7 A). Similar numbers of CENP-A–containing 
arrays were observed in GAPDH and Mis18BP1hsKNL2 siRNA-
treated cells after treatment with IPTG (Fig. 7 C). We conclude 
that the requirement for the Mis18 complex can be bypassed by 
directly targeting HJURP to DNA.

Discussion
Determination of the site of centromere assembly is an epigene-
tic process that depends on the Mis18 complex and the CENP-A–
specific chaperone HJURP during early G1. Here, we have 
demonstrated that recruitment of HJURP to the centromere 
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artificial chromosomes (Nakano et al., 2008; Bergmann et al., 
2011) and may inhibit the ability of HJURP to deposit CENP-A, 
acting as a way to avoid spurious CENP-A deposition into 
noncentromeric loci. Alternatively, a stepwise maturation of the 
CENP-A–containing region toward a functional centromere may 
require multiple cell cycles and depend on cell cycle–specific as-
sembly of centromere proteins. Likewise, additional chromatin-
remodeling steps after CENP-A nucleosome deposition mediated 
by RSF1 or MGCRacGAP could influence both long-term stabil-
ity of CENP-A nucleosomes and the assembly of the constitutive 
centromere (Perpelescu et al., 2009; Lagana et al., 2010).

and the assembly of centromere-like regions that recruited 
CENP-C and mediated microtubule attachments. These ectopic 
centromeres were restricted to a subset of sites within the chro-
matin (Heun et al., 2006). In our experiments in which CENP-A 
deposition is restricted to a single location along the chromosome, 
we observed that not all cells recruited the constitutive centro-
mere proteins and assembled kinetochores at the CENP-A– 
assembled array. The restricted recruitment of CENP-ANAC proteins 
to the array may reflect differences in the state of the underly-
ing chromatin. Transcriptional activity or modification state of 
chromatin can negatively impact centromere formation in human 

Figure 6. Recruitment of HJURP to centromeres requires the Mis18 complex. (A and B) Cellular extracts from siRNA-treated and control cell lines were 
analyzed by Western blotting using anti-GFP (A) or anti-HJURP antibodies (B). Each lane contains lysate from 105 cells. Dilution series were generated from 
mock-treated HeLa GFP-Mis18 (A) or parental HeLa (B) cells. (C) Stable GFP-Mis18 cells lines were treated with siRNA against Mis18, Mis18BP1hsKNL2, 
HJURP, or GAPDH (control). Representative images of siRNA-treated GFP-Mis18 cells were selected in which a midbody was clearly present (differential 
interference contrast [DIC], arrows) to show the cell was in early G1. DAPI staining was overlaid onto the differential interference contrast image. Cells 
were stained with anti–CENP-T. (D) Mean percentage of GFP-Mis18 centromere-positive nuclei from a population of ≥57 cells in each siRNA treatment 
from two experiments. (E) Similar image acquisition as in C. Here, stable HeLa GFP-HJURP cells were treated with the same siRNAs. (F) Mean percentage 
of GFP-HJURP centromere-positive nuclei from a population of ≥135 cells in each siRNA treatment from two experiments. Error bars show standard devia-
tions. Insets show magnified views of boxed regions. Bars, 5 µm.
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Several models for the composition of the CENP-A nucleo-
some have been proposed, including tetrameric forms that contain 
a single copy of each histone as well as hexameric forms that lack 
H2A and H2B but incorporate the yeast HJURP homologue 
Scm3. In human cells, HJURP is present at centromeres during 
early G1 when new CENP-A nucleosomes are being actively re-
cruited. Similar to a previous study using full-length HJURP 
(Shuaib et al., 2010), HJURPScm3 is able to assemble CENP-A–H4 
heterotetramers into DNA to some degree (Fig. 5); however, the 
assembly mediated by HJURPScm3 is processive and maximally 
efficient in the presence of histones H2A and H2B. The assem-
bled structure protects 145 bp of DNA. These data suggest 
human HJURP assembles an octameric nucleosome. Consistent 
with a centromeric nucleosome containing two copies of CENP-A, 
disruption of the CENP-A dimerization interface precludes the 
ability of CENP-A to accumulate at centromeres (Camahort et al., 
2009; Sekulic et al., 2010). After deposition by HJURP, further 
remodeling by additional factors may mediate the conversion of 
the centromeric nucleosome into the hexameric and/or tetrameric 
forms observed by others (Dalal et al., 2007; Mizuguchi et al., 
2007; Furuyama and Henikoff, 2009; Dimitriadis et al., 2010).

Histone H3 variants partner with distinct chaperone com-
plexes to facilitate their different temporal and spatial incorpo-
ration within the genome. Histone H3.1 nucleosome incorporation 
is coupled to DNA synthesis through an interaction between the 
p150 subunit of the chromatin assembly factor complex (CAF1) 
and proliferating cell nuclear antigen (Shibahara and Stillman, 
1999; Moggs et al., 2000). The assembly of H3.3-containing 
nucleosomes occurs independently of DNA synthesis and is ac-
complished through HIRA, ATRX, and DAXX (Tagami et al., 
2004; Drané et al., 2010; Goldberg et al., 2010; Wong et al., 
2010). Here, we demonstrate the activity of the CENP-A 
chaperone/assembly factor HJURP is coupled to the centromere 
through the recruitment by the Mis18 complex. S. pombe con-
tains a single Mis18 protein that directly interacts with Scm3 
(Pidoux et al., 2009). However, HJURPScm3, which contains the 
regions of significant homology between Scm3 and HJURP, 
does not demonstrate centromeric localization on its own, sug-
gesting the mechanism of HJURP centromeric recruitment in 
vertebrates is different from Scm3 recruitment in yeast, possi-
bly through a priming mechanism as previously proposed  
(Fujita et al., 2007).

Figure 7. The Mis18 complex is not required for CENP-A deposition at the LacO/TRE array. (A) Representative images of endogenous CENP-A recruitment 
in U2OS-LacO cells treated with 15 mM IPTG after 72 h of either GAPDH or Mis18BP1hsKNL2 siRNA treatment. Cells had been transiently transfected with 
LacI-HJURPScm3 and GFP-TetR 48 h before fixation. Cells were transfected after an initial 24 h siRNA treatment to ensure Mis18BP1hsKNL2 depletion before 
CENP-A establishment at the array. Insets show magnified views of boxed regions. Bar, 5 µm. (B) Cellular extracts from GAPDH and Mis18BP1hsKNL2 siRNA-
treated cells were analyzed by Western blotting using an anti-Mis18BP1hsKNL2 antibody. Each lane contains lysate from 107 cells. (C) Quantification of 
CENP-A staining at the LacO/TRE array marked by GFP-TetR after 72 h of GAPDH or Mis18BP1hsKNL2 siRNA treatment and 1 h of 15 mM IPTG treatment. At 
least 30 cells per condition were analyzed; n = 2. Error bars represent the standard deviation between the two experiments. The p-value between GAPDH 
and Mis18BP1hsKNL2 is 0.3609.
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Drosophila for CID deposition (Podhraski et al., 2010). The ac-
tivity of RSF1 appears to be restricted to mid-G1 well after new 
CENP-A nucleosome deposition by HJURP, which immedi-
ately follows mitosis (Jansen et al., 2007; Perpelescu et al., 
2009). The period of RSF1 recruitment may represent a remod-
eling event whereby the centromere is reorganized in prepara-
tion for the ensuing S phase and mitosis.

Budding yeast and higher eukaryotes use Scm3/HJURP 
proteins for the common purpose of depositing CENP-A nu-
cleosomes but use disparate mechanisms to determine the site 
of recruitment (Shivaraju et al., 2011). In the case of budding 
yeast, the DNA sequence defines the site of CENP-A deposi-
tion, whereas in higher eukaryotes, the site of new CENP-A in-
corporation is influenced by the location of the preexisting 
CENP-A nucleosomes. Epigenetic inheritance requires the re-
cruitment of HJURP through the activity of the Mis18 complex 
dictating the site of CENP-A nucleosome deposition.

In addition to HJURP, several other chromatin assembly 
factors have been implicated in the assembly of the human cen-
tromeres. NPM1 is also able to assemble CENP-A (Fig. 5) and 
histone H3 nucleosomes (Okuwaki et al., 2001). NPM1 is asso-
ciated with the CENP-A–HJURP prenucleosomal complex 
(Dunleavy et al., 2009; Foltz et al., 2009; Shuaib et al., 2010). 
The exact role of NPM1 in CENP-A deposition remains some-
what unclear, but it is reasonable to suppose that its assembly 
activity for CENP-A may play a role in centromere activity 
given its presence in the CENP-A prenucleosomal complex and 
at the centromere. In addition, three previously described chro-
matin-remodeling complexes, FACT (facilitates chromatin tran-
scription), CHD1, and RSF (remodeling and spacing factor) are 
also associated with the centromere and are important for the 
stable assembly of CENP-A–containing chromatin (Obuse  
et al., 2004; Foltz et al., 2006; Okada et al., 2009; Perpelescu  
et al., 2009). However, CHD1 appears to be dispensable in 

Figure 8. HJURP recruitment determines centromere position. (A) HJURP is recruited to centromeres through the action of Mis18. During G1, HJURP 
directly assembles CENP-A nucleosomes at centromeres along with histones H2A and H2B. The recruitment of HJURP is the critical step in determining 
the site of the centromere. (B) Redirecting HJURP to an integrated LacO array bypasses the requirement for Mis18, results in deposition of CENP-A, and is 
sufficient to form a functional kinetochore.
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and fixed/immunostained U2OS-LacO cells with or without IPTG treatment 
48 h after transfection were taken under identical exposure conditions and 
analyzed for CENP-A intensity at the array using MetaMorph 7.7. CENP-A 
signal was subjected to local background subtraction. Intensity measure-
ments were made per a set area, and the integrated intensities over this 
area for each group of cells were graphed.

Mitotic chromosome spreads
U2OS-LacO cells were arrested overnight in 0.1 ug/ml nocodazole in 
DME GlutaMAX media 32 h after transfection. Mitotic cells were harvested 
using a transfer pipette to blow cells off the plate. Cells were spun down, 
washed in PBS, and resuspended at 106 cells/ml in a hypotonic solution 
(20 mM Hepes, pH 7.0, 1 mM MgCl2, 0.2 mM CaCl2, 20 mM KCl, LPC 
[10 µg/ml leupeptin, 10 µg/ml pepstatin A, and 10 µg/ml chymostatin], 
and 0.5 ug/ml nocodazole/colcemid). After a 10-min incubation in the 
hypotonic solution, cells were spun onto glass slides using a cytospin (30,000 
cells/slide), immediately hydrated with PBS, and then fixed and immuno-
stained as described (see previous section). The anti–mouse NDC80 anti-
body was used at a 1:500 dilution (GTX70268; GeneTex).

Monastrol arrest
For U2OS-LacO, cells transfected for 48 h with mCherry-LacI-HJURPScm3 or 
mCherry-LacI, as described above, were arrested overnight in 50 µM  
Monastrol in DME GlutaMAX media. Mitotic cells were harvested by mitotic 
blow off, spun down, rinsed with PBS, and then resuspended at 106 cells/
ml. Using a cytospin, 30,000 cells/slide were spun onto a glass slide. 
Cells were immunostained with an anti–rabbit CENP-T antibody (described 
in the previous section). For the quantification, 26 transfected Monastrol-
arrested cells were imaged per condition (LacI or LacI-HJURPScm3). An  
ellipsoid was drawn to encompass the DNA, and the position of each 
centromere in each cell was measured relative to the center of this ellipsoid 
using ImageJ (National Institutes of Health). The black circle represents the 
mean centromere position over all the cells analyzed. The next gray circle 
represents one standard deviation from this mean. The blue triangles (LacI) 
and red diamonds (LacI-HJURPScm3) represent the array positions relative to 
the center of the ellipsoid in each of the 26 cells measured (Fig. 3).

Cold stable microtubules
Cells were transfected as indicated in the previous section with either 
mCherry-LacI or mCherry-LacI-HJURPScm3 and synchronized using a double 
thymidine block. After the second block, cells were released until they were 
entering mitosis. Cells were then placed on ice and treated with ice-cold 
media for 10 min. Cells were then cofixed (2% paraformaldehyde and 
0.5% Triton X-100 in PHEM buffer) and immunostained for CENP-T and  
tubulin (using an FITC-conjugated tubulin antibody).

Recombinant protein purification
Recombinant proteins were expressed in the Rosetta (DE3) pLysS bacterial 
strain. Bacteria expressing His-tagged dNAP1 were sonicated in lysis buf-
fer containing 50 mM sodium phosphate, pH 7.5, 500 mM NaCl, 10 mM 
imidazole, 10% glycerol, 10 mM -glycerophosphate, 0.2 mM PMSF, and 
0.5 mM benzamidine and purified by Ni–nitrilotriacetic acid (NTA) affinity 
chromatography. dNAP1 was further purified by size exclusion chromatog-
raphy on a Superose 6 column in buffer containing 10 mM Hepes/KOH, 
pH 7.6, 10 mM KCl, 0.1 mM EDTA, 10% glycerol, 0.01% NP-40, 10 mM 
-glycerophosphate, 0.2 mM PMSF, and 1 mM DTT followed by anion ex-
change chromatography on an UnoQ (Bio-Rad Laboratories) column. The 
topoisomerase I catalytic domain (Shaiu and Hsieh, 1998) was purified as 
described previously (Fyodorov and Kadonaga, 2003). Bacterial lysates 
were sonicated in 50 mM sodium phosphate, pH 7.0, 0.5 M NaCl, 15% 
(vol/vol) glycerol, and 0.1% (vol/vol) NP-40 and purified by Ni-NTA affin-
ity chromatography. A codon-biased human CENP-A was coexpressed 
with histone H4 from a bicistronic vector (Black et al., 2004). The CENP-A–
histone H4 heterotetramer was purified by hydroxyapatite chromatogra-
phy followed by cation exchange chromatography. Canonical histones 
(from S. Khorasanizadeh, Burnham Institute, Orlando, FL) were individu-
ally expressed and purified by size exclusion chromatography in 7 M gua-
nidinium HCl, 20 mM Tris-HC1, pH 7.5, and 10 mM DTT on a Sephacryl 
S-200 column followed by cation exchange chromatography in 7 M deion-
ized urea, 20 mM sodium acetate, pH 5.2, 5 mM 2-mercaptoethanol, and 
1 mM Na-EDTA as described previously (Luger et al., 1999). His-NPM1 
bacterial pellets were resuspended in buffer containing 50 mM Na-phosphate, 
pH 8.0, 300 mM NaCl, 10 mM imidazole, 10 mM -glycerophosphate, 
1.5 mM MgCl2, and 0.5 mM PMSF and supplemented with 1 mg/ml  
lysozyme. The mixture was incubated on ice for 30 min and then lysed by 

Materials and methods
siRNA treatment
HeLa cell lines expressing either GFP-Mis18 or GFP-HJURP were plated at 
8 × 105 cells in 6-well plates. The next day, cells were transfected with  
5 nM Silencer Select siRNAs (Invitrogen) using RNAiMAX (Invitrogen). siRNA 
sequences were as follows: Mis18, 5-GAAGAUGUCUUGAAAGCAUTT-3; 
Mis18BP1hsKNL2 (C14orf106), 5-GGAUAUCCAAAUUAUCUCATT-3;  
and HJURP, 5-CAAGUAUGGAAGUUCGAUATT-3. The next day, one 
third of the plating volume of DME with 10% heat-inactivated FBS was 
added. For Western blot analysis, cells were harvested 48 h after siRNA 
treatment with PBS + 3 mM EDTA and counted, and whole-cell lysates were 
made in SDS-PAGE sample buffer. Lysates from 105 cells per lane were 
separated on 10% SDS-PAGE gel and transferred to nitrocellulose. Blots 
were incubated in primary anti-GFP or anti-HJURP (Foltz et al., 2009) anti-
body overnight at 4°C and in secondary (Jackson ImmunoResearch Labo-
ratories, Inc.) for 1 h at 4°C. For U2OS-LacO cells, they were plated at  
8 × 104 cells in 24-well plates onto poly-lysine coverslips. They were trans-
fected after 24 h with 5 nM Silencer Select siRNAs (same sequence as 
mentioned previously in this paragraph for Mis18BP1hsKNL2 siRNA). After 
24 h in siRNA, cells were transiently transfected with mCherry-LacI-HJURPScm3 
and GFP-TetR using Effectene (QIAGEN) into the media still containing the 
siRNA. After 8 h of transfection, the media were removed, and cells were 
retreated with siRNA. Cells were then incubated for 48 h and treated with 
15 mM IPTG (Sigma-Aldrich) for 1 h before preextraction, fixation, and stain-
ing for endogenous CENP-A as described in the following section.

Cell culture, transfections, and immunocytochemistry
HeLa or U2OS-LacO-TRE (a gift from S. Janicki, Wistar Institute, Philadel-
phia, PA) cells were plated to poly-lysine–coated coverslips at 1.6 × 105 
cells per well in 6-well or 0.8 × 105 cells per well in 24-well plates, respec-
tively. Cells were then transfected 24 h later with 0.2–0.25 µg plasmid 
DNA (24-well plate) or 1 µg (6-well plate) using GeneJuice (EMD) or Effec-
tene. LacO-SceI-TRE NIH3T3 cells (a gift from T. Misteli, National Cancer 
Institute, Bethesda, MD) were transfected with Lipofectamine 2000 (Invitro-
gen). Live-cell imaging was conducted in the NIH3T3-LacO cell line at 
37°C in Leibovitz L15 media including 10% FBS after 48 h of transfection. 
Single-plane images were collected at 1-min intervals on a microscope 
(Deltavision; Applied Precision) equipped with an environmental chamber 
(WeatherStation; Applied Precision) maintained at 37°C.

HeLa cells were preextracted with 0.1% Triton X-100 in PBS for  
3 min, fixed with 4% formaldehyde in PBS for 10 min, and then quenched 
by the addition of 100 mM Tris, pH 7.5, for another 10 min at room tem-
perature. HeLa cells were blocked in 2% FBS and 2% BSA in 0.1% Triton 
X-100–PBS. U2OSLacO/TETr cells were treated with 0 or 10 mM IPTG for 1 h 
in DME GlutaMAX media before fixation and then preextracted in PHEM 
buffer (60 mM Pipes, 25 mM Hepes, 10 mM EGTA, 2 mM MgCl2) using 
0.1% Triton X-100 for 3 min and finally fixed with 4% paraformaldehyde 
in PBS for 10 min at room temperature. The cells were quenched for 5 min 
in 100 mM Tris-HCl followed by a 1-h block in 2% FBS, 2% BSA, and 0.1% 
Triton X-100 in PBS. Centromeres were visualized with a rabbit polyclonal 
anti–CENP-T (from D. Cleveland, Ludwig Institute for Cancer Research, San 
Diego, CA) antibody or monoclonal CENP-A at 1:1,000 dilution (ab13939; 
Abcam), and DNA was stained with 0.2 mg/ml DAPI. Donkey anti–rabbit 
Cy5-conjugated (111175003; Jackson ImmunoResearch Laboratories, 
Inc.) secondary antibodies were used for detection, and coverslips were 
mounted with ProLong (Invitrogen). GFP-TetR marker detection was en-
hanced in mitotic spreads and the Mis18BP1hsKNL2 siRNA experiment by 
staining with a rabbit anti-GFP antibody (1:500) and donkey anti–rabbit 
FITC-conjugated secondary antibody (711095152; Jackson Immuno-
Research Laboratories, Inc.).

All micrograph images were collected using a 100× oil immersion 
objective lens (numerical aperture = 1.40; Olympus) on a deconvolution 
microscope (DeltaVision) using a camera (CoolSNAP HQ2; Photometrics). 
The acquisition software used was SoftWoRX from Applied Precision. Images 
were deconvolved and presented as stacked images. Images within cell lines 
treated with different siRNAs were collected with identical exposure times 
and scaled equally. Intensities in live-cell and fixed images were analyzed 
using MetaMorph 7.7 (Molecular Devices). mCherry and YFP signals in 
live-cell images were subjected to local background subtraction. For deter-
mining siRNA knockdown, nuclei with all CENP-T foci colocalized with 
GFP-HJURP were scored as GFP-HJURP positive. Cells that had GFP-Mis18 
at all centromeres with a maximum intensity >7,600 arbitrary units were 
scored as GFP-Mis18 positive. To assess CENP-A intensity at the LacO/TRE 
array, images of mCherry-LacI-HJURP– or mCherry-LacI-HJURPScm3–transfected 
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Online supplemental material
Fig. S1 demonstrates the recruitment of CENP-A by LacI-HJURP in an 
NIH3T3 cell line containing a stable LacO-SceI-TRE array as well as live-
cell imaging of the CENP-A stability in the NIH3T3 cells after IPTG washout 
in LacI-HJURP– and LacI-HJURPScm3–transfected cells. Fig. S2 shows that the 
Scm3 domain of HJURP is not sufficient to target human HJURP to centro-
meres. Fig. S3 shows the purifications of the recombinant MBP-HJURPScm3, 
NPM1, and dNAP assembly factors used in the supercoiling assays in Figs. 4 
and 5 as well as a supercoiling assay showing the efficiency of dNAP in 
assembling H3.1- versus CENP-A–containing nucleosomes. Fig. S4 shows 
the enrichment at centromeres of our GFP-HJURP and GFP-Mis18 constructs 
upon synchronization of cells in G1 using a double thymidine block. Video 1  
shows the control cell from Fig. 3 D undergoing mitotic division. Video 2  
shows the cell expressing HJURPScm3 from Fig. 3 D undergoing mitotic 
division. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201012017/DC1.
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