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Cancer: The Roles of Transcription
Factors and Cytoskeleton
E Hui Clarissa Lee†, Darren Chen Pei Wong† and Jeak Ling Ding*

Department of Biological Sciences, National University of Singapore, Singapore, Singapore

Natural killer (NK) cells are innate immune cells which play a key role in shaping the
immune response against cancer. Initially hailed for their potential to recognise and
eliminate tumour cells, their application has been greatly hindered by the
immunosuppressive tumour microenvironment (TME) which suppresses NK functions
(e.g., cytotoxicity). This dysfunctional state that is accompanied by phenotypic changes
such as upregulation of inhibitory receptors and downregulation of activating receptors,
forms the basis of what many researchers have referred to as ‘exhausted’ NK cells.
However, there is no consensus on whether these phenotypes are sufficient to define an
exhausted state of the NK cell. While recent advances in checkpoint inhibition appear to
show promise in early-stage pre-clinical studies, much remains to be fully explored and
understood in the context of the TME. The TME is where the NK cells are subjected to
interaction with various cell types and soluble factors, which could exert an inhibitory effect
on NK cytotoxicity. In this review, we provide an overview of the general markers of NK cell
exhaustion viz, the surface activating and inhibitory receptors. We also highlight the
potential role of T-box transcription factors in characterising such a dysfunctional state
and discuss the often-overlooked mechanism of cell cytoskeletal dynamics in regulating
NK cell function. These aspects may further contribute to NK exhaustion or NK revival in
cancer and may open new avenues to explore cancer treatment strategies.

Keywords: natural killer cells (NK), cancer, tumour microenvironment (TME), NK exhaustion, NK cell receptors,
T-box transcription factors, cytoskeletal dynamics, mechanotransduction
1. INTRODUCTION

Natural killer cells (NK) belong to the family of Group 1 Innate Lymphoid Cells (ILC), and have
been well-characterised for their cytotoxic functions against a wide variety of pathogens, infections
and cancers (1).

Distinct from the adaptive immune cells, NK cells are purported to recognise target cells without
prior antigen sensitisation (2). Instead, classical schools of thought imply that NK cell activation
depends heavily on the functional state and balance of surface activating and inhibitory receptors
(2), which recognise stress-induced ligands or detect a ‘missing self’, characterised by the lack of
MHC class I molecules on cancer cells or infected cells (1). These characteristics make NK cells an
attractive immune sentinel for cancer immunomodulation, especially in view of the shortfalls in
immunotherapy, which has thus far been largely focused on CAR-T and immune checkpoint inhibition
org September 2021 | Volume 12 | Article 7345511
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(ICI) targeting T cells. Some of these limitations in T cell based
therapy include acquired mutations in antigen presentation genes
with subsequent loss of antigen presentation machinery (3), and the
heterogeneous nature of cancers resulting in patient non-response
or relapse (4). These issues have undermined the long-term efficacy
of T cell-mediated cancer therapy and have triggered interest in
exploring NK cells as a complementary, or potentially a more
efficacious therapeutic option.

Despite the promising potential of NK cells, clinical trials
utilizing NK cell immunotherapy have thus far yielded limited
outcomes. With traditional adoptive transfer either from an
allogeneic or autologous source, NK cells were observed to
quickly lose their function in vivo (5), exhibiting what has been
deemed an exhausted phenotype. This has prompted a paradigm
shift in exploring strategies for restoring and sustaining NK cell
functions, such as checkpoint blockade or the genetic engineering
of NK cells to express exogenous activating receptors. Recent
trends to investigate novel and practical ways to reverse NK cell
dysfunction are anticipated to provide substantial understanding
of how cancer suppresses and sustains the loss of NK cell activity.

While the dysfunctional NK cells observed in cancer patients
have been described by various groups as having an ‘exhausted’
phenotype, it is worth noting that the concept of NK cell
exhaustion remains unclear. Thus far, NK cell exhaustion is
commonly used to refer to NK cells exhibiting reduced effector
function as well as up- and down-regulation of various activating
and inhibitory surface receptors, respectively. In this review, we
adopt these phenotypic changes and accompanying functional
impairment to be the basis of NK cell exhaustion, and we discuss
how they contribute to exhaustion, and propose additional
aspects that may provide a more complete picture of NK cell
exhaustion. We also summarise the roles of numerous players in
the tumour microenvironment (TME) which contribute to the
dysfunctional state of NK cells. Importantly, various overlooked
mechanisms of NK cell regulation are highlighted.
2. CHARACTERISTICS OF
DYSFUNCTIONAL/EXHAUSTED NK
CELLS IN CANCER

Functionally impaired NK cells have been observed across a wide
range of solid tumours as well as haematological malignancies (6,
7) and often also show reduced infiltration into tumour sites (7,
8). Peripheral NK cells from cancer patients as well as tumour-
infiltrating NK cells exhibit reduced effector functions such as (i)
decreased expression of the membrane protein CD107a, which is
a degranulation marker, (ii) decreased secretion of cytokines
IFNg (9, 10) and TNFa (10), and the cytotoxic molecules,
perforin (11) and granzyme (12), all of which result in reduced
NK cell function against tumour cells. This loss of function in NK
cells is often referred to as ‘exhaustion’, a phenomenon which
was first observed in effector T cells present in persistent chronic
infections and cancers (13, 14). Diminished effector function and
accompanying phenotypic changes have been similarly observed
in both exhausted T cells and NK cells. In contrast to T cell
Frontiers in Immunology | www.frontiersin.org 2
exhaustion, which is clearly defined both functionally and
phenotypically (13), no strict consensus has thus far been
established on what exactly constitutes an exhausted state of
NK cells. This has prompted more than a decade of research on
the characterisation of NK cell exhaustion.

In addition to the often observed functional impairment,
numerous studies have also suggested the imbalance in the
expression levels of NK cell surface activating and inhibitory
receptors to be an indicator of exhaustion (6, 15–17). A diverse
repertoire of activating and inhibitory receptors is expressed on
the NK cell surface, and the balance and spatial-temporal
integration of signals from these receptors have been established
to impact NK cell effector function (18). Inhibitory receptors
include the killer cell immunoglobin receptors (KIRs), CD94/
NKG2A and leukocyte immunoglobin-like receptors (LIRs),
which typically function by recruitment of SHP-1/SHP-2, then
inducing Vav1, LAT, and PLCg1/2 dephosphorylation and Crk
phosphorylation, which in turn inhibit NK cell activation signals
and hence its function (19). Major activating receptors include the
natural cytotoxic receptors (NCRs), NKG2D and DNAM-1,
whose activating signals are typically transmitted through
receptors binding to ITAM-containing adaptor proteins such as
DAP10, DAP12, and FcRg (19). Engagement of these NK surface
receptors with their respective ligands thus results in the
transduction of either activating or inhibitory signals through
various signalling pathways, which eventually converge on key
processes regulating NK cell cytotoxicity such as target cell
conjugation, degranulation, and cytokine release (19).

Due to the sheer number of receptors present and many
receptors sharing recognition of the same ligands, there is no
consistent standard yet as to which of these receptors are specific
and precise markers of exhaustion. However, it is clear that the
altered expression of multiple receptors is key to characterising
exhaustion: for example, activating receptors, with the exception
of CD16, are not able to activate NK cells on their own (19). In
the case of the inhibitory receptor TIGIT, it has also been
reported that TIGIT expression levels on NK cell surface are
variable even in healthy individuals (20). Although higher TIGIT
expression on healthy human NK cells correlates with reduced
cytotoxic potential (20), these NK cells still largely retain their
function. Thus, the elevated expression of a particular inhibitory
receptor or downregulation of a single activating receptor does
not necessarily mark a severely dysfunctional NK cell state as is
observed in the case of chronic infections and cancers. In other
words, the altered expression of a single receptor is unlikely to
significantly alter NK cell activation status, instead, multiple
activating and/or inhibitory receptors have to be down- or up-
regulated, respectively, to result in NK cell exhaustion.

In the context of cancer, these receptors have been implicated
as markers of NK cell exhaustion, as their dysregulated expression
is often associated with reduced NK antitumour activity (Table 1).
Upregulation of inhibitory receptors and downregulation of
activating receptors typically correlates with reduced NK cell
function as discussed above. Existing attempts have also been
made at targeting these receptors (Table 1) for the reinvigoration
of NK cell function.
September 2021 | Volume 12 | Article 734551
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3. ROLE OF T-BOX TRANSCRIPTION
FACTORS IN CELL PHENOTYPE AND
FUNCTION: PARALLELS IN NK AND
T CELLS

T-bet and Eomes are members of the T-box family of transcription
factors which are characterised by the presence of a conserved T-
box DNA binding domain, and have been evolutionary
entrenched since the early metazoans (41). They are the only
Frontiers in Immunology | www.frontiersin.org 3
members of the T-box transcription factors expressed in the
immune system and are fundamental to the development and
existence of NK cells (42). The expression of T-bet and Eomes are
tightly regulated throughout the different stages of NK cell
development (43–45), with the presence of both transcription
factors being crucial for proper development. NK cells fail to
develop in the absence of both transcription factors, and deletion
of either T-bet or Eomes results in NK cells that are unable to
reach full maturation (45). Their expression is also deemed to be
TABLE 1 | Archetypal NK receptors in NK cell function, exhaustion and restoration.

NK cell
Receptors

Activating/
Inhibitory

Status/
Modification

Context Ref

NKG2A Inhibitory Upregulated Increased expression in intratumour Hepatocellular Carcinoma (HCC) tissues from human patients,
correlating with poor prognosis and functional exhaustion
Increased expression in peripheral and tumour-associated NK cells in breast cancer patients

(10, 21)

Antibody
blockade

Phase II clinical trial – in combination with cetuximab, increased NK cell killing by antibody-dependent
cellular cytotoxicity (ADCC) in patients with squamous cell carcinoma of head and neck

(22)

PD-1 Inhibitory Upregulated Increased expression on NK cells from myeloma patients (reportedly no expression on healthy donor NK
cells)
Increased expression on both peripheral and tumour-infiltrating NK cells from patients with digestive
cancers. Poor prognosis in liver and esophageal cancers.

(23, 24)

Antibody
blockade

Expanded NK cells from healthy donor peripheral blood – increased cytotoxicity against multiple
myeloma cell lines, human and murine model of Multiple Myeloma (MM)
Mouse model of lymphoma – blocking antibody against PD-1 reduced tumour progression

(24–26)

TIGIT Inhibitory Upregulated Increased expression on intratumoral NK cells from soft tissue sarcoma, colon and endometrial cancer
patients

(27–29)

Downregulated Decreased expression on tumour-infiltrating NK cells from melanoma patients (30)
Antibody
blockadea

Primary NK cells from sarcoma patients – increased degranulation and cytotoxicity against sarcoma cell
lines
Peripheral NK cells from melanoma patients – increased cytotoxicity against melanoma cell line and
increased IFNg production
Mouse models of various cancers: colon, breast, fibrosarcomas – reduced tumour volume, increased
CD107, TNF and IFNg expression

(27, 28, 30)

TIM-3 Inhibitory Upregulated Increased expression on peripheral NK cells from melanoma and bladder cancer patients,
corresponding with poor prognosis.
Increased expression on intratumoral NK cells from endometrial and bladder cancer patients

(29, 31, 32)

Downregulated Decreased expression on healthy human NK cells upon exposure to glioblastoma cell lines,
corresponding with decreased cytotoxicity and IFNg production.

(33)

Antibody
blockade

Primary NK cells from melanoma patients and healthy donor NK cells – increased NK cell cytotoxicity
against four melanoma cell lines

(31)

DNAM-1 Activating Downregulated Decreased expression on tumour-associated NK cells from breast and ovarian carcinoma patients
Decreased expression on peripheral and tumour-associated NK cells in gastric and breast cancer
patients

(10, 34, 35)

Overexpression NK-92 cell line – increased degranulation against primary sarcoma and various other cancer cell lines (36)
NKG2D Activating Downregulated Decreased expression on tumour-infiltrating NK cells in breast cancer and melanoma patients.

Decreased expression on peripheral NK cells from melanoma, breast and gastric cancer patients.
(10, 30, 31, 35)

Overexpression NK-92 cell line – increased degranulation against primary sarcoma and various other cancer cell lines
Primary NK cells from metastatic melanoma patients – enhanced NK cell cytotoxicity in vitro against
target K562 cells

(36, 37)

NKp30 Activating Downregulated Decreased expression on peripheral NK cells from breast and gastric cancer patients and associated
with cancer progression
Decreased expression on tumour-associated NK cells from breast cancer patients

(10, 35)

NKp44 Activatingb Antibody
blockade

NK-92 cell line in vitro – increased cytotoxic activity and IFNg release against solid tumour and leukemia
cell lines
NK-92 and HNSCC patient autologous NK cells in PDX-bearing mice – increased degranulation and
inhibited tumour growth

(38)

NKp46 Activating Downregulated Decreased expression on peripheral NK cells from gastric cancer patients and associated with cancer
progression
Decreased expression on peripheral NK cells from melanoma patients.

(31, 35)

Overexpression Mouse model of melanoma – increased NK cytotoxicity and tumour clearance (39)
September 2021 | Volume 12
aTIGIT blockade alone increases IFNg production in circulating NK cells, but has to be used in combination with IL-15 to promote increased cytotoxicity in tumour infiltrating NK cells (30).
bNKp44 is classified as an activating receptor, but can also have inhibitory effects when engaged with inhibitory ligands such as PCNA (40).
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crucial for mature NK cell cytotoxic function (42), with NK cells
from Eomes knockout mice demonstrating reduced IFNg
production, as well as Eomes+ cells producing more perforin
than Eomes- cells (45). T-bet has also been shown to bind to the
promoters of perforin (PRF), granzyme B (GZMB) and IFNg
(IFNG) (43), suggesting a role for T-bet in regulating NK cell
cytotoxicity. Together, these studies suggest that changes in T-bet
and Eomes expression and activity may potentially be a surrogate
for NK cell dysfunction.

T-bet and Eomes are also key transcription factors in T cells,
regulating both function and homeostasis (46, 47). They have both
been demonstrated to be essential for effective T cell antitumour
response (48), with dysregulation in expression levels being linked
to an exhausted T cell phenotype in various contexts including
infection and cancer (49, 50). Eomes expression in exhausted T
cells correlates with severity of exhaustion during chronic viral
infection, along with high inhibitory receptor expression (51).
Additionally, Eomes+T-betlow CD8 T cells exhibit functional
impairment in leukaemia patients, partly attributable to Eomes
binding to the promoter of the inhibitory receptor TIGIT and
positively regulating its expression (52). Interestingly, a recent
study reported that T cell exhaustionmay not simply be defined by
the overall T-bet and Eomes expression, but rather that high
nuclear Eomes:T-bet ratio is key in defining T cell exhaustion in
both chronic LCMV infection as well as in human melanoma
patients (53). This provides further insights into the biology of
how these T-box transcription factors regulate T cell exhaustion.

However, whether an altered balance of T-bet and Eomes
affects NK cell function and exhaustion in cancer, and whether
dysfunctional NK cells show a similar expression pattern of T-bet
and Eomes compared to that of exhausted T cells, remain less
clear. Circulating healthy human NK cells were reported to
express high T-bet and low Eomes, and an intricate balance
between T-bet and Eomes seems to characterise NK cell function
(54). In the context of cancer, a study in 2012 reported a murine
model of cancer where loss of NK effector functions was
accompanied by a rapid downregulation of both T-bet and
Eomes (55). In another study involving exhausted murine NK
cells characterised by high expression of inhibitory receptors,
TIM-3 and PD-1, reduced Eomes expression was similarly
observed, although this was also accompanied by increased T-
bet (56). Studies on melanoma patients showed that both T-bet
and Eomes were downregulated in NK cells (31). However, in
lung cancer patients, only reduced Eomes expression was found
to correlate with cancer progression and NK cell dysfunction
(57). Furthermore, overexpression of Eomes in NK cells (55) or
adoptive transfer of Eomeshi NK cells (57) was able to reduce
tumour burden in mice (55). These reports suggest that beyond
NK cell surface receptor expression, altered expression of both T-
box transcription factors and their corresponding transcriptional
programs also play a role in mediating NK cell cytotoxicity
against cancer, and could be used to assess NK cell dysfunction.
Although the role of T-bet in mediating NK cell function against
cancer remains less clear, increased Eomes expression appears to
be consistently implicated in improved antitumour activities of
NK cells, both in human and murine models.
Frontiers in Immunology | www.frontiersin.org 4
Reports have suggested that T-bet and Eomes have
cooperative or partially redundant functions (58), given that
they both share a homologous DNA binding sequence (41).
However, their specific contributions and mechanisms in
regulating NK cell function, exhaustion and/or activation await
further studies and elucidation. Interestingly, recent work
confirms that while T-bet and Eomes do indeed compete for
the same T-box consensus sequence, increasing the
concentration of one transcription factor can displace and
reduce binding of the other to the same consensus sequence
(53). Additionally, binding of T-bet or Eomes results in
differential transcriptional control. For example, in T cells, T-
bet is a strong repressor of PD-1 (59), however, Eomes binding to
the same T-box sequence upstream of the PD-1 gene results in a
much weaker repressive activity (53). Whether or not such
a mechanism is relevant to NK cells and whether it could be a
contributor to NK dysfunction is still unknown.

In recent years, it has been reported that NK cells can be
converted to ILC1-like cells, which display poorer cytotoxic
capabilities (60), as evident from reduced control over tumour
burden andmetastasis (61, 62).Distinct fromNK cells, the ILC1s do
not express Eomes (60), further implicating this T-box transcription
factor inmarking functional andmatureNKcells rather than its less
cytotoxic ILC1 counterpart. It is also possible that previous studies
showing the downregulation of Eomes (31, 55) and the
corresponding reduction in NK cell function could have been the
result of NK cells acquiring an ILC1-like phenotype, although this
remains to be further proven. Early studies initially usedCD49a and
CD49b to distinguish between both cell types, with NK cells
characterised as CD49a-CD49b+ and ILC1s as CD49a+CD49b-

(60). However other groups have also reported the expression of
CD49a+ NK cells in the liver as well as in lung and blood (63, 64),
thus complicating the use of these two markers in distinguishing
between NK cells and ILC1s. Much subsequent data also suggested
the difficulty and lack of any distinct marker in delineating ILC1s
from NK cells, due to overlapping phenotypes in different tissues
and contaminating cell types based on gating strategies (65).
Despite the difficulty in differentiating between NK cells and
ILC1s through the use of CD49a/b, it is perhaps still worth
noting that peripheral NK cells from prostate cancer patients also
express CD49a, along with high levels of the inhibitory receptors
PD-1 and TIM-3, and exhibit impaired degranulation (66).
Tumour-infiltrating NK cells with poor cytotoxicity and
upregulated inhibitory receptors were also found to express
CD49a in hepatocellular carcinoma patients (67, 68). Hence,
regardless of whether or not the observed cell subsets are indeed
NK or actually ILC1, these studies suggest that CD49a could
possibly be used as a marker of dysfunctional NK cells. Therefore,
it might be necessary and useful to study other possible markers of
ILC1s, for example CD127 and CD69, although these markers
should still be used with caution as they appear to be differentially
expressed in ILC1s in various tissues (69, 70). Further exploration of
this controversy and insights into the plasticity of the NK cells and
ILC1s could provide new perspectives on how the pro-tumorigenic
factors and physicochemical conditions in the tumour
microenvironment (TME) might shape the NK cell response.
September 2021 | Volume 12 | Article 734551
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In summary, we propose that the characterisation of
dysfunctional NK cells goes beyond functional impairment and
an altered surface receptor phenotype. An all-encompassing
definition for NK cell exhaustion may thus include the
expression of surface markers such as CD49a/b as well as
expression of key T-box transcription factors (Figure 1),
although this should be studied in greater detail in the context
of NK cells and in cancer.
4. CONTEXT-SPECIFIC MECHANISMS
DRIVING ALTERED NK CELL
PHENOTYPES IN THE TUMOUR
MICROENVIRONMENT

The altered surface receptor expression and transcriptional
programs observed in cancer-associated NK cells are known to
perturb the downstream signalling programs mediated by these
Frontiers in Immunology | www.frontiersin.org 5
receptors, such as the proinflammatory DNA-PKCs-Akt-NF-kB,
MAPK, AKT and ERK signalling pathways (19). The proper
regulation of these signalling cascades in healthy NK cells drives
appropriate NK cell gene expression, target cell conjugation,
degranulation, cytokine release and cytotoxicity (19). The loss of
NK cell function has been shown to occur progressively,
correlating with disease severity in cancers (71, 72). Since the
functions of NK cells are regulated by signals from activating and
inhibitory receptors, with many of these receptors converging
onto the same pathways regulating NK cell cytotoxicity [as
mentioned (19)], it is thus likely that any alteration in
signalling will drive progressive impairment of NK cell
function. The restoration of NK cell function and cytotoxicity
upon targeting these receptors through blockade or
overexpression (Table 1) have also firmly established that these
phenotypic differences play a crucial role in mediating NK
effector functions. Despite such attempts at reviving NK
functions, the lack of a singular consistent exhausted
phenotype reported by various groups suggests that
FIGURE 1 | A dysfunctional or exhausted NK cell may be characterised by more than an alteration of surface receptor expression. Functionally impaired NK cells
are commonly observed in cancer to exhibit reduced anti-tumour activity, including secretion of cytokines and cytotoxic molecules. There is currently a lack of
consensus as to what constitutes an exhausted NK cell. NK cell dysfunction exists over a spectrum, and various aspects that may define exhaustion have been
researched thus far. Beyond the well-discussed upregulation of inhibitory receptors such as TIGIT, NKG2A, and downregulation of activating receptors such as
NKG2D, DNAM-1, we propose that the exhausted NK cell can also be marked by the altered expression of the T-box transcription factors, T-bet and Eomes.
Additionally, exhausted NK cells exhibit a phenotype resembling that of the less cytotoxic ILC1 cells, which are additionally marked by the expression of CD49a.
September 2021 | Volume 12 | Article 734551
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dysregulation of NK cell function is likely modulated in a
tumour- and context-specific manner. The heterogeneity in the
TME in different cancer types, as well as between individuals
harbouring the same cancer would demand an array of NK
phenotypes to cater to varying contexts. Thus, while strategies to
restore NK to a healthy phenotype are poised as promising new
avenues to be further explored for cancer immunotherapy, it is
imperative to understand the specific mechanisms in the TME
contributing to such phenotypic and functional alterations.

4.1 Loss of Tumour Cell Immunogenicity
Prevents NK Cells From Recognizing
Cancer Cells
Tumour progression is associated with the presence of a TME
that is tolerant and immunosuppressive, which results in the
evasion of cancer cells from immune surveillance. The
heterogeneity of tumour cells in the TME such as differential
ligand profile and secreted factors (73), further contributes to the
downregulation of NK cell function against cancer. NK cell
engagement with target cells and ligand-receptor interaction
are thought to be the first steps leading to the formation of the
immune synapse (contact point between cancer cell and NK cell)
and subsequent activation of NK cytolytic capability (74).
Therefore, it is deemed that the mechanisms of immune escape
by cancer cells would occur largely through the modification of
cancer cell ligands or NK surface receptors, or both.

The downregulation of activating ligands and upregulation of
inhibitory ligands in immune responsive cells are associated with
tumour progression, which is accompanied by a loss of tumour
immunogenicity. Thus, the increased engagement with inhibitory
ligands, or lack of engagement with activating ligands on cancer
cells shifts the NK cell towards an inhibited state, resulting in failed
tumour clearance. Some mechanisms underlying the alteration of
ligand expression in tumour cells include the dysregulation of
microRNA (miRNA), which has been observed in many cancers
(75). miRNA dysregulation decreases the expression of activating
ligands, MICA/B (76, 77) and ULBP2 (76), and increases the
expression of inhibitory ligands, PD-L1 (78) and MHC class I
molecules (79, 80) on tumour cells, which can limit the
immunosurveillance capabilities of NK cells. Furthermore, post-
translational modifications such as ubiquitination and
SUMOylation of ligands expressed in cancer cells can alter the
localization and activities of the ligands (81). For example,
downregulation of PVR, the activating ligand for the receptor
DNAM-1, is attributable to its SUMOylation in multiple
myeloma, resulting in its intracellular localisation (82).
In Kaposi’s sarcoma-associated herpesvirus infection, MICA,
which is a ligand for NKG2D activating receptor, undergoes
ubiquitination, which prevents its cell surface localization (83).
The observation of similar intracellular compartmentalisation and
regulation occurring with the NK cell ligand MICA in Kaposi’s
sarcoma (83) shows that such a mechanism of regulation may be
generalizable across different disease contexts. These observations
(e.g., ubiquitination of NK receptor ligands) also increase the
possibility that the expression and compartmentalisation of other
ligands for NK cell receptors may be similarly regulated through
different mechanisms of post-translational modifications.
Frontiers in Immunology | www.frontiersin.org 6
The above-mentioned mechanisms are non-exhaustive and,
on the whole, traditionally enable tumour escape from NK
immunosurveillance through shifting the balance of ligand
expression towards generating a decreased activating signal in
NK cells. However, high expression of activating ligands has been
observed in some tumours, although this causes the unexpected
downregulation of the corresponding NK cell receptors, leading
to NK cell dysfunction instead of augmenting tumour
surveillance. For example, the high and sustained expression of
NKG2D ligands on many tumours results in downregulation of
NK cell NKG2D receptor through endocytosis (84, 85), which is
believed to be a feedback mechanism regulating NK cell
tolerance (86). Current anti-cancer chemotherapy regimens
may also cause the upregulation of NKG2D ligands (87, 88),
and while this may transiently upregulate NK cytotoxicity, a
sustained and prolonged period of high ligand expression for
cancer immunotherapy could exhaust NK cytotoxicity and pose
an area of concern for long-term efficacy of NK cell function. The
recognition of tumour cells and subsequent regulation of NK cell
activity is thus not simply based on a straightforward interaction
of a receptor with its cognate ligand leading to receptor
activation. Thus, the robustness of NK cell phenotype in
response to cancer cells are important considerations in the
design of future therapeutic strategies targeting NK cell receptors.

4.2. Downregulation of Intrinsic NK Cell
Function by Factors in the TME
Apart from a lack of tumour immunogenicity, soluble factors in
the TME may also alter intrinsic NK cell function, thus further
contributing to poor NK cell antitumour activity. For example,
this can occur through the regulation of NK cell surface
receptors, NK cell gene expression and metabolism, and will be
discussed in this section.

The well-studied immunosuppressive cytokine, TGF-b, is key
for cancer progression and it is known to elicit responses from
stromal cells in the TME (89). Various cancer types secrete high
levels of TGF-b with wide-ranging effects on NK cells in the
TME. Recent studies indicate that a high level of TGF-b in the
TME further promotes expression of TGF-b receptors on NK
cells resulting in a positive feedback loop (90). Prolonged
exposure to TGF-b significantly downregulates expression of
NK cell activating receptors NKG2D, CD16, and NKp30, while
upregulating the death ligand FasL and inhibitory receptor
NKG2A in healthy donor NK cells (91), which dulls the
recognition of target cells. This regulation of NK cell receptors
by TGF-b has been shown to occur via various miRNA pathways
(92). Additionally, TGF-b reduces T-bet expression through
SMAD3 signalling, resulting in decreased expression of its
target gene IFNg (93), which would contribute to a reduction
in NK cell function. Indeed, upon continuous stimulation with
TGF-b, NK cells from healthy donors demonstrated reduced
cytotoxicity against osteosarcoma cell lines, despite increased
degranulation (91). Such chronic exposure to TGF-b is likely to
be an accurate representation of TGF-b secretion by cancer cells
in the TME.

The mammalian target of rapamycin (mTOR) forms two
complexes known as mTORC1 and mTORC2. While mTORC1
September 2021 | Volume 12 | Article 734551
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integrates signal from growth factors and metabolism, mTORC2
is mainly involved in growth and proliferation (94). In NK cells,
it was demonstrated that priming by dsRNA mimetic poly (I:C)
or IL15 activates mTORC1 and 2, which results in enhanced
metabolism (95). The enhanced metabolism in NK cells
characterised by enhanced glycolysis correlates positively with
the production of cytolytic molecules such as granzyme B (96).
Interestingly, TGF-b in the tumour microenvironment is able to
cross-talk with mTOR signalling pathway. Recently, TGF-b has
been shown to induce early inhibition of mTOR activity in NK
cells by opposing the phosphorylation of mTOR substrates S6,
4EBP1 and AKT. Furthermore, the inhibitory effects of TGF-b
were comparable to the mTOR inhibitor rapamycin, thereby
limiting metabolic activities in activated NK cells (97). This was
one of the few studies that directly investigated the molecular
mechanism of TGF-b inhibition on NK cells. However, there are
still discrepancies on whether TGF-b signalling and mTOR
inhibition (e.g. by rapamycin) converges. For instance, TGF-b
induces TRAIL expression while mTOR inhibition does
otherwise (97). Furthermore, it was previously demonstrated in
other cell types that TGF-b/Smad3 signalling activates mTOR to
promote collagen production by increasing HIF-1a expression
(98). Hence, it is possible that there exists an unknown scaffold
protein that spatio-temporally regulates TGF-b inhibition of
mTOR in NK cells.
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Other than TGF-b, tumour cells also secrete many other
immunosuppressive factors, for example, PGE2, PCLP1, IDO,
which have been found to inhibit NK cell function and
downregulate activating receptor expression (99, 100).
However, unlike TGF-b, the mechanisms through which these
cytokines function to regulate NK cells, and whether and how
they drive other phenotypic changes beyond altered receptor
expression, are unclear and still await further studies. A more
detailed review on these soluble factors in the TME, and their
suppressive effects on NK immunosurveillance capabilities has
been provided by Melaiu et al. (101).

4.3 Inhibition of NK Cell Cytotoxicity by
Other Immune Cells in the TME
The TME harbours a diverse repertoire of immune cells from
innate and adaptive immune systems. Various soluble factors
produced by these cells and cross-talks between them are a
major contributor towards the suppressive conditions that allow
for tumour progression and the impairment of NK cell
function (Figure 2).

Macrophages are typically categorised into the classical M1 or
the alternatively activated M2 macrophages, and this differential
polarisation occurs as a result of different activation stimuli
(102). M1 macrophages secrete pro-inflammatory cytokines
and kill pathogens, whereas M2 macrophages are anti-
FIGURE 2 | Inhibition of NK cell cytotoxicity by other immune cells. Immune suppressive cell types in the TME interact directly with NK cells to inhibit their function
through both contact-dependent and contact-independent downregulation of NK cell activating receptors, typically mediated by TGF-b. TAMs promote the
maintenance of membrane-bound CD16, which reduces NK activation. NK cell function can also be modulated indirectly through multiple interactions between these
different cell types. Cytokine secretion by MDSCs promote the expansion of Tregs, which apart from directly inhibiting NK cell functions, also limits the availability of
IL-2 from CD4+ T cells, thus preventing NK cell stimulation. Platelets in the TME also interact with tumour cells directly, shielding them from NK cell recognition and
killing; cleaving activating ligands on the tumour cell surface; and equipping tumour cells with MHC Class I molecules to facilitate immune evasion.
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inflammatory and tumour-promoting (103). Tumour-associated
macrophages (TAMs) make up the majority of immune cells
found in the tumour site (104). Unsurprisingly, TAMs express an
M2-like phenotype in solid cancers, and large numbers of M2
TAMs correlate with poorer prognosis (105). M2 TAMs inhibit
NK cell function via the secretion of immunosuppressive TGF-b
(refer to section 4.2 for details) and in a contact-dependent
manner, to reduce the production of IFNg and TNFa (106, 107).
Additionally, it has also been proposed that under specific
chronic inflammatory conditions of cancer, TAMs protect
tumour cells from NK cytotoxicity by preventing the shedding
of membrane-bound CD16 (108). CD16 is an Fc receptor whose
shedding indicates NK cell activation and increases NK
engagement with target cells (109). While the maintenance of
surface CD16 indicates inhibition of NK cell function, it is worth
noting that simultaneously, CD16 acts as an important activating
receptor in antibody-dependent cytotoxicity, and it is a well-
explored therapeutic target (110). Engagement of CD16 with
therapeutic antibodies has been shown to improve NK cell
response to restimulation and result in higher cytotoxicity
towards tumour cells (111). Thus, despite being a seemingly
tumour-protective mechanism, the maintenance of CD16 on NK
cells by TAMs may instead present a window of opportunity
when viewed from a therapeutic intervention perspective.

Myeloid-derived suppressor cells (MDSCs) consist of
progenitors and precursors of myeloid cells (112), which are
found in significantly higher numbers throughout tumour
progression (113). MDSCs express membrane-bound TGF-b,
which has been found to impair NK cell functions (113). In vitro,
coculture with NK cells revealed a downregulation of NK cell
cytotoxicity through STAT5-mediated activity (114). Interaction
between MDSC and NK cells also downregulates NK cell
receptor, NKp30, and blockade of NKp30 relieves the MDSC-
induced inhibitory effects on NK cells (115). These observations
suggest that MDSCs express ligands that inhibit NK cell
functions through a cell-cell contact-dependent manner.
Although generally accepted to be immunosuppressive, it
appears that whether MDSCs function to activate or inhibit
NK function, is context-dependent. Indeed, another study
identified RAE-1 expression on MDSCs to induce NK
activation in part through the NKG2D receptor (116).
Furthermore, a plethora of cell types and soluble factors in
vivo also contributes to the complexity of NK activation.

Regulatory T cells (Tregs) are the immunosuppressive subset
of CD4+ T cells, and their upregulation is typically correlated
with poor prognosis and cancer progression (117). In healthy
individuals, crosstalk between Tregs and NK cells is an important
self-tolerance mechanism (118). However, in cancer patients,
elevated Treg levels are often found to correlate with low
frequency and poor function of NK cells (119), suggesting a
disrupted Treg-NK cell-cell balance or interaction. Tregs have
been found to limit the availability of CD4+ T cell-derived IL-2,
which is required to stimulate NK cells (120). Similar to MDSCs,
membrane-bound TGF-b on Tregs was also suggested to
suppress NK cell cytotoxicity and downregulate the expression
of activating receptor, NKG2D (121, 122). However, the inhibitory
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effects of Treg membrane-bound TGF-b on NK cells appear to be
distinct from the effects of MDSCmembrane-bound TGF-b (113),
as discussed above (section 4.2). This suggests important
distinctions between the mechanisms contributing to NK cell
exhaustion by different immune cell types in the TME.

Platelets have also been increasingly recognised as another
key player contributing to cancer progression and metastasis
(123). The inhibition of NK cell function by platelets was first
discovered to be through providing a physical barrier to tumour
cells, directly protecting them from contact-dependent NK
killing (124). Beyond a physical barrier, platelet cloaking also
modulates the expression of NK cell receptors and
corresponding tumour cell ligands (125). For example, they
promote the loss of the NKG2D ligands like MICA/B on
tumour cells, possibly through upregulating the expression of
ADAM19, a protease responsible for MICA/B cleavage (126).
The release of MICA/B into the TME further inhibits NK cell
activity, since soluble NKG2D ligands are known to suppress
NKG2D receptor expression on NK cells (127). Downregulation
of other NK cell activating receptor ligands, CD112 and CD155,
was also observed in platelet-cloaked breast cancer cells, along
with their corresponding activating receptor, CD226 on NK cells
(126). This was further shown to be attributable to the presence
of platelet-derived TGF-b (126). Interaction and contact between
platelets and tumour cells also promotes the transfer of platelet
MHC class I molecules to tumour cells via trogocytosis (128).
This facilitates tumour evasion of immune response as tumour
cells are no longer recognised via the ‘missing self’ mechanism.
Additionally, like all other cell types in the TME, platelets release
a large variety of chemokines and soluble factors, which can serve
to recruit other adaptive and innate immune cells to the tumour
site (129), many of which interplay with NK cells with potentials
for immunomodulating NK cytolytic functions.

4.4 Altered Cytoskeletal Dynamics in Both
NK and Cancer Cells – A ‘Tug-of-War’
As essential players in initiating and regulating NK cell function,
NK cell surface receptors and their corresponding ligands have
understandably been the subject of intense scrutiny and research.
Here, we highlight the often-overlooked roles of the cell
cytoskeletal network in the regulation of NK cell effector
function, which arguably, is largely accountable for NK cell
dysfunction in the TME.

The cell cytoskeletal network consists of long filamentous
components represented by the microtubule and actin. Apart
from modulating and organising the internal architecture of the
cell, these cytoskeletal components along with their accessory
proteins are instrumental in the generation of intracellular forces
for mechanotransduction and signalling. The coordinated efforts
of NK cytoskeleton in response to transformed cancer cells serves
at least three functions: (i) the formation and organization of
immune synapse for lytic granule secretion, (ii) the
establishment of cell polarity through microtubule-organizing
centre (MTOC) and (iii) the modulation of NK receptor
nanoscale organization and interaction with tumour ligands.
These processes amplify into a multitude of indispensable
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arsenal for NK cells to fight cancer cells and will be reviewed in
more detail in the following sections.

4.4.1 Microtubules – Beyond a Roadmap for
Granule Trafficking
The microtubules are helical lattices that are assembled from
repeating units of polymerized a and b tubulin monomers. They
originate from the MTOC, which consists of the centrosomes
and pericentriolar material. In eukaryotic cells, microtubules
function as an architectural framework that augments
structural organization of internal organelles (e.g., the nucleus
and cytoskeletal components). In addition, they are the internal
transport network which motor proteins such as kinesin and
dynein traffic along. In the context of NK cells, much has been
focused on how MTOC organization and orientation regulates
NK cytotoxicity.

The reorientation of MTOC to the immune synapse is a rapid
event that may occur as quickly as 5 minutes after receptor
engagement/stimulation (130). Unfortunately, there is a lack of
mechanistic understanding of MTOC orientation in NK cell
response to cancer cells. Limited data suggests that activating
receptors (e.g. NKG2D, NKp46 and NKp30) on NK cells activate
two non-redundant signalling pathways, the PI3K ! ERK2 and
the PLCg ! JNK1 pathways for MTOC polarization (131). The
integrin, LFA-1 on NK cells was also identified to facilitate the
adhesion of NK to target cells and mediate polarization of lytic
granules containing perforin through the engagement of ICAM-
1 ligand expressed in target cells (132). However, NK cells in the
TME often lack or downregulate one or more activating
receptors, and whether there exists receptor redundancy for
MTOC polarization, remains poorly defined. Interestingly, the
overexpression of ICAM-1 is observed in several cancer cells e.g.
breast and lung cancers (133, 134). Hence, it has been construed
that LFA-1 expression on NK cells is the main driver of MTOC
polarization during NK-antitumor immunosurveillance.
Subsequently, it was found that the accumulation of PKCϵ,
PKCh, and PKCq in NK cells precedes MTOC reorientation
since siRNA knockdown of these proteins disrupted MTOC
reorientation (135). Simultaneously, lytic granules move
towards the MTOC with the help of the motor protein dynein
to facilitate the convergence of lytic granules to the immune
synapse (136). The exact motor protein that lytic molecules
traffic along the microtubule is under debate. In the context of
NK-cancer immunomodulation, much less is known on whether
and howNK-resistant cancer cells can affect microtubule function,
viz whether cancer cells affect lytic granule trafficking, convergence
and/or MTOC polarization. A recent study provided evidence of
defective granule polarization (but not granule clustering) in NK-
92 cells upon encountering NK-resistant breast cancer cells (137).
These findings in part suggest and support previous reports that,
(i) granule convergence/clustering precedes MTOC polarization
towards the immune synapse in the context of NK-cancer
immunosurveillance and (ii) cancer cells immunomodulate NK
signalling by the perturbation of MTOC orientation signals (e.g.
PLCg ! JNK1 pathways). Indeed, the PLCg pathway that
promotes MTOC polarization was shown to be triggered by NK
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activating receptors (131), which are often downregulated in the
tumour microenvironment.

4.4.2 Actin Dynamics for NK Cytotoxicity
The actin network provides the structural basis for immune synapse
formation and function. Along with actin associated proteins (e.g.
ARP2/3, WASp, Wave1 Cdc42 etc.), the actin complexes are the
major drivers of NK cell effector function against foreign entities
(138). Hence, it is unsurprising that proper regulation of actin
polymerization, dynamics and organization is key for the formation
of the immune synapse and subsequent release of cytotoxic
molecules, as well as for promoting NK cell motility and effective
migration and infiltration into tumour sites (136).

De novo actin accumulation and rearrangement at the
immune synapse marks the start of the effector stage of NK
degranulation and this is a critical step towards eliciting an
effective cytotoxic response. Indeed, actin targeting drugs such as
cytochalasin (139), lantrunculin (140) or jasplakinolide (141)
limit NK cytotoxicity. A study utilizing live-cell super-resolution
microscopy overcame the spatio-temporal resolution limitations
of NK cells (142) and demonstrated that the stochastic clearance,
formation and disappearance offilamentous actin (F-actin) at the
immune synapse is critical for size permissive degranulation of
cytolytic components (142). In addition, various actin associated
proteins were shown to be important for NK lytic function. For
instance, the hematopoietic cell-specific action associated protein
coronin 1A colocalizes with F-actin at the immune synapse and
regulates F-actin density for size permissive granule penetrance
to the membrane (143). The non-muscle myosin IIa generates
contractility and is also important for degranulation (144).
Dysregulation of contractility did not affect lytic granule
conjugation but increased actin density at the plasma membrane
and severely limited degranulation (142). There are more than 100
actin associated proteins that regulate NK cytotoxicity against
cancer cells, which are beyond the scope of this review. A detailed
review on these actin associated proteins and how they affect NK
immune synapse formation and function can be found in a recent
review by Ben-Shmuel et al. (136).

4.4.3 Spatio-Temporal Cytoskeletal Co-Ordination of
NK Cytolysis
There is limited information based onNK-cancer co-culture models
or in vivo research on how cancer cells can directly affect NK
immune synapse and actin dynamics. A recent study suggested that
activating signals at the immune synapse promote fast actin
retrograde flow and reduces b-actin, SHP-1 interaction, thereby
enhancing NK cytotoxicity (138). In addition, actin polymerisation
has been established to be a downstream event of NK activating
receptor signalling (145), which is often dysregulated in cancers.
Wilton et.al., showed that the actin regulatory protein Ena/VASP-
like (EVL) is recruited to the immune synapse by NKG2D-DAP10
complex and involves the DAP10-dependent Grb2-VAV1
associated pathway (145). Looking forward, there are evidences
suggesting that actin-mediated intracellular contractility could alter
nuclear mechanotransduction (146), which results in chromatin
remodelling and impacts the intracellular localisation of
September 2021 | Volume 12 | Article 734551

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lee et al. NK Functional-plasticity in Tumour Microenvironment
transcription factor co-activators (147). If applied to the T-box
transcription factors, the actomyosin based contractility could be
conversely altered with implications on the expression and
localisation patterns of T-bet and Eomes, which are key in
regulating NK cell functions and their antitumour activities, as
discussed above (Section 3). In addition, since the TME is known to
be hypertonic (148), there is an underappreciated link to how the
TME regulates NK cell function through altering its contractility,
independent of NK surface receptors.

In cancer cells, actin remodelling has also been found to aid
evasion fromNK killing. For example, accumulation of actin at the
immune synapse in breast cancer cells encountering NK limited
the accumulation of the cytotoxic molecule granzyme B in the
cancer cells, protecting them from lysis and resulting in lowered
apoptosis of the tumour cell (149). The cancer cell lines used in
this study (149) exhibited different levels of actin accumulation at
the immune synapse, and it was suggested that compared to
epithelial-like cancer cells, mesenchymal-like cancer cells had a
higher capacity to generate actin accumulation at the immune
synapse, thus contributing to differential and greater resistance to
NK killing. The cellular cytoskeletal dynamics on both sides of the
immune synapse, which influences the contact-dependent nature
of NK-mediated killing, appears to play a pivotal role in the
success or failure of NK cell elimination of target cells. This can
occur as a result of factors inherent to the cancer type itself, but
may also be attributable to the hypertonicity of the TME (148)
which can induce cellular contractility.

Thus far, many studies have focused on the functional
consequences of cytoskeleton dynamics in regulating NK cell
function. It is therefore pertinent for future studies to unravel the
molecular and biophysical mechanisms that regulate a dynamic
cytoskeletal network for NK cytotoxicity against cancer cells. For
instance, to ask whether scaffold proteins exist to spatio-
temporally coordinate lytic granule trafficking, MTOC
polarization and actin dynamics at the immune synapse. Such
information will be helpful for understanding whether and how
NK exhaustion can be phenotypically characterised by altered
cytoskeletal components. Furthermore, ex vivo perturbation of
the cytoskeletal network in NK cells may hold promising future
therapeutic opportunities.
5. LOOKING BEYOND TARGETING
NK CELL RECEPTORS FOR
THERAPEUTIC ADVANCES

Many studies have thus far focused on elucidating the effects of
individual TME players on NK cell function, which has provided
valuable insights into the various mechanisms underlying NK cell
exhaustion. As reviewed herein, these mechanisms tend to converge
on the alteration of NK cell surface receptors, hence much emphasis
is currently placed on targeting of these surface receptors in an effort
to restore NK cell function. However, given the large number of NK
cell receptors, the complexity of the TME and the numerous players
exerting their inhibitory effects on NK cells viamultiple receptors, it
is challenging for current therapies targeting specific receptors to
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contend with the inhibitory effects of the TME in vivo. Therefore,
along with current developments in targeting NK cell receptors,
alternative approaches for the revitalisation of NK cells should also
be taken into consideration. For instance, the T-box transcription
factors in NK cells have been shown to be key for NK cell function
and development, and several reports thus far have suggested their
expression levels to be dysregulated in exhausted NK cells. Given
that significant progress has been made in developing drugs to
target transcription factors (150), further study on how these
transcription factors are precisely regulated by the TME may
open up a new avenue of treatment to restore NK cells to their full
cytotoxic capacity. To this end, whether and how transcriptional
signals can be desensitized for ‘self-tolerance’ in response to
persistent stimulation by cancer cells, could be addressed.
Additionally, an increasing interest and understanding on how
cytoskeletal dynamics shape NK cell cytotoxicity is anticipated to
shed new insight into the regulation of NK cell function through
its impact on transcription factor expression, receptor expression,
and/or other yet to be elucidated mechanisms. The integration of
these areas of knowledge will be key to the advancement of novel
therapies that will holistically target multiple aspects of the
exhausted NK cell.

The use of CAR-NK cells in immunotherapy has yielded
optimistic results, and provides several advantages over CAR-T
cells, such as improved tolerance, reduced toxicity as well as
multiple sources from which NK cells can be derived (151).
However, CAR-NK cells are still associated with various technical
and biological limitations, such as difficulties in CAR delivery into
NK cells, the short lifespan of NK cells in the absence of additional
cytokine treatment, the requirement for ex vivo expansion prior to
infusion, low tumour infiltration capacity and reduced cytotoxicity
in vivo (151, 152). While strategies to engineer NK cells for
improved performance are being studied, other areas of therapy
are now also being explored for potential use in combination with
established cancer therapy. One such area of interest is the use of
nanomaterials such as liposomes and nano-emulsions to enhance
NK cell activation as well as to modify the immunosuppressive
TME (153). Additionally, other studies are also looking beyond the
traditional checkpoint inhibition targets of NK surface receptors,
towards proteins such CEACAM, chemokine receptors and even
growth factors found in the TME; drugs targeting these molecules
are already in early stage clinical trials (154). When used in tandem
with existing NK cell-based therapy and other immune cell-based
therapy or chemotherapy, there is greater hope that these emerging
treatment options will provide increased synergy and efficacy,
moving us towards achieving greater success in exploiting NK
cells for cancer treatment.

Furthermore, recent advances in single cell studies involving
genotyping and phenotyping have identified various NK cell
phenotypes in the body (155, 156). These studies highlight the
functional plasticity of NK cells, which results in a blurred boundary
between ‘young’, ‘mature’ and ‘exhausted’ NK cells. For example,
NK cells in the lungs have a more mature phenotype compared to
those in other tissues. In mice, lung NK cells express high levels of
mature markers NKp46, CD49b, CD11b, and Ly49 receptors (157).
Systemic therapeutic interventions disregard the diverse subset(s) of
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NK cells (e.g. periphery NK cells) and this could affect premature
upregulation and/or downregulation of NK cell activities. Moreover,
the jury is still out on whether and how NK cells can interchange
their phenotype to adapt to a more effective killer phenotype in
different tissues. Hence, future precision-guided medicine should be
open to embrace omics to nail down a targeted approach for NK-
cancer immunomodulation.

This article has highlighted the uncertainty in characterising
NK cell dysfunction, as well as recent studies made to widen our
understanding of NK exhaustion. However, we also note the
complex cell-cell interaction and molecular crosstalks occurring
in the TME that contribute to, and shape NK cell function in
distinct and complementary ways. With these large number of
factors at play, it is clear that successful cancer immunotherapy
should involve the use of combinatorial treatments, targeting
Frontiers in Immunology | www.frontiersin.org 11
different players in the TME, while also being mindful of the
crosstalks between the various cell types present (Figure 3).
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