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Abstract

Purpose

To compare macular and peripapillary vessel density values calculated on optical coher-

ence tomography angiography (OCT-A) images with different algorithms, elaborate conver-

sion formula, and compare the ability to discriminate healthy from affected eyes.

Methods

Cross-sectional study of healthy subjects, patients with diabetic retinopathy, and glaucoma

patients (44 eyes in each group). Vessel density in the macular superficial capillary plexus

(SCP), deep capillary plexus (DCP), and the peripapillary radial capillary plexus (RCP) were

calculated with seven previously published algorithms. Systemic differences, diagnostic

properties, reliability, and agreement of the methods were investigated.

Results

Healthy eyes exhibited higher vessel density values in all plexuses compared to diseased

eyes regardless of the algorithm used (p<0.01). The estimated vessel densities were signifi-

cantly different at all the plexuses (p<0.0001) as a function of method used. Inter-method

reliability and agreement was mostly poor to moderate. A conversion formula was available

for every method, except for the conversion between multilevel and fixed at the DCP. Sub-

stantial systemic, non-constant biases were evident between many algorithms. No algo-

rithm outperformed the others for discrimination of patients from healthy subjects in all the

retinal plexuses, but the best performing algorithm varied with the selected plexus.

Conclusions

Absolute vessel density values calculated with different algorithms are not directly inter-

changeable. Differences between healthy and affected eyes could be appreciated with all
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methods with different discriminatory abilities as a function of the plexus analyzed. Longitu-

dinal monitoring of vessel density should be performed with the same algorithm. Studies

adopting vessel density as an outcome measure should not rely on external normative

databases.

Introduction

Optical coherence tomography angiography (OCT-A) is a recent imaging modality that allows

non-invasive, rapid, depth-resolved visualization of all the chorioretinal vascular layers. [1, 2]

OCT-A devices use different algorithms, all of which are based on the assumption that erythro-

cytes in the blood vessels are the only moving structures within sequentially acquired B-scans

and that they act as a natural motion contrast. Since its recent introduction, OCT-A has gained

increased popularity and has been applied to a broad spectrum of disease. [3] En face OCT

angiograms can be subjectively evaluated for presence of abnormalities, or can be further post-

processed to obtain quantitative, objective metrics. Vessel density, defined as the percentage of

the angiocube occupied by retinal vessels, has gained increasing popularity, and represents a

promising imaging endpoint for future clinical trials. Its reliability, however, needs to be fully

validated. [4] Previous studies demonstrated good intra- and inter-operator repeatability of

vessel density for images acquired in the same location, with the same angiocube size, machine,

and quantification algorithm. [5, 6] Vessel density results, however, can significantly differ

among various devices and depend on angiocube size, scan location, signal strength. [5, 7–9]

The reported thresholding algorithms employed to binarize OCT-A angiograms and calculate

vessel density, are highly heterogeneous. Some instruments use their own proprietary software,

these include Cirrus (AngioPlex software, Carl Zeiss Meditec, Inc., Dublin, CA, USA), [5, 10]

AngioVue software (Optovue, Inc., Fremont, CA, USA), [11, 12] and RS -3000 Advance

(Nidek, Gamagori, Japan). [6] In the majority of the studies, however, images are exported and

post-processed with a variety of different thresholding methods, including fixed cutoffs, [13–

15] dynamic cutoff (e.g., mean, [9, 16, 17] ImageJ [National Institutes of Health, Bethesda,

MD] default algorithm, [18] Otsu’s algorithm), [19, 20] prototype software, [21, 22] and more

complex methods combining preprocessing filters and multilevel thresholds strategies. [23–

26] It is still uncertain whether different algorithms lead to the same or, at least, similar results

and findings from many studies could have been influenced by the algorithm utilized.

The aims of this study were to compare macular and peripapillary vessel density values cal-

culated with seven different binarization strategies, to calculate conversion formulas between

the algorithms, and to compare their diagnostic performance in differentiating healthy sub-

jects from patients affected by diabetic retinopathy (DR) and glaucoma.

Material and methods

Study design and patients

One hundred thirty-two eyes of 84 subjects that had OCTA at the Glaucoma Unit, and Medical

Retina and Imaging Unit of the Department of Ophthalmology, University Vita-Salute, San

Raffaele Hospital, Milan, Italy, were retrospectively evaluated. The study was approved by the

San Raffaele Hospital scientific committee, and it adheres to the recommendations of the Dec-

laration of Helsinki. Informed written consent was obtained from all the subjects included.

Electronic clinical records, SD-OCT (Cirrus HD-OCT 5000; Carl Zeiss Meditec, Inc.), and
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swept source (SS)-OCT-A (PLEX Elite 9000, Carl Zeiss Meditec, Inc., Dublin, CA, USA)

images from healthy subjects, patients with DR, and patients with glaucoma were reviewed.

General inclusion criteria were age�18 years old, refractive error between -6 and +3 diopters,

and availability of structural OCT and 6x6 mm OCT-A scans with a signal strength� 7. Gen-

eral exclusion criteria included previous ocular surgery other than uncomplicated cataract

extraction and intraocular lens implantation performed >6 months before enrollment, and

artifacts on OCT-A images. Inclusion criteria specific to the DR group were: type 1 or 2 diabe-

tes, and presence of diabetic retinopathy. Inclusion criteria specific to the glaucoma group

were: (i) history of primary open-angle glaucoma; (ii) documented glaucoma damage at the

optic disc; (iii) repeatable glaucomatous perimetric damage, defined as a glaucoma hemifield

test (GHT) result outside normal limits, and a pattern standard deviation (PSD) with p value

<5% normal limits; or (iv) presence of a cluster of�3 adjacent points on the pattern deviation

plot with a probability of<5%, including at least 1 point having a probability <1% on at least

two consecutive standard achromatic visual fields; (v) peripapillary retinal nerve fiber layer

(pRNFL) thickness with p<5% in at least one quadrant. Presence of diseases other than DR

and glaucoma, respectively, in the DR and glaucoma groups was also an exclusion criterion.

Healthy subjects met the following inclusion criteria: (i) no history or evidence of any posterior

segment disease; (ii) normal-appearing optic disc and retina on dilated fundus examination;

(iii) normal foveal profile on the structural macular SD-OCT scan; (iv) average and quadrant

pRNFL thickness within 99% confidence limits; and (v) at least one reliable normal visual

field, defined as PSD within 95% confidence limits of the normative database, and a GHT

results within normal limits.

Structural SD-OCT measurements

The structural SD-OCT images consisted of the Optic Disc Cube 200x200, and Macular Cube

512x128 patterns. Control subjects and glaucoma patients had both scans, whereas diabetic

patients had only the macular scan. The manufacturer’s software was used to calculate the

average pRNFL thickness and central macular thickness (CMT) values on the peripapillary

and macular scans, respectively.

SS-OCTA device and scanning protocol

The SS-OCTA device (PLEX Elite 9000, Carl Zeiss Meditec, Inc., Dublin, CA, USA) uses a

swept laser source with a central wavelength of 1040–1060 nm (980–1120 nm full bandwidth)

and operates at 100,000 A-scans per second. The axial and transverse resolutions of the system

are*6 μm and *20 μm in tissue, respectively. The OMAG algorithm, which is based on vari-

ations in both the intensity and phase information between sequential, co-registered B-scans,

was used to generate an OCT-A image. [27, 28] The 6x6 mm angiocube consisted of 500x500

A-scans. En face images consist of a 1024x1024-pixel array with 5.9 μm spacing between pixels.

For DR eyes, all scans were centered on the fovea and automated segmentation of the layers

carried out to define superficial (SCP) and deep (DCP) capillary plexuses were reviewed. The

device’s projections removal algorithm was applied to DCP images. For the glaucoma group,

scans were centered on the optic nerve; the segmentation algorithm defined the area between

the inner limiting membrane and the outer boundary of the RNFL to isolate the peripapillary

radial capillary plexus (RCP). Healthy subjects had both macular and peripapillary OCT-A

angiograms. Anonymized raw files were downloaded from the Zeiss PLEX Elite 9000 instru-

ments and uploaded in the Advanced Retina Imaging (ARI) network portal. En face angio-

grams were then exported in PNG (Portable Network Graphics) format.
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Quantitative analysis of OCT-A images

Seven different threshold strategies were used to binarize en face angiograms and calculate ves-

sel density. The algorithms included the Macular Density algorithm v 0.6.1 developed by Zeiss,

a manual thresholding technique, three ImageJ autothresholding algorithm (i.e., mean, default,

Otsu), a semiautomatic method using a fixed threshold, and a method combining preprocess-

ing filters with multilevel threshold strategies. Besides the analysis performed with the Zeiss

macular density algorithm, all the other ones were carried out using the ImageJ software v 1.51

(National Institutes of Health, Bethesda, MD). At the end of the binarization process, the ratio

between the number of white pixels (i.e., vessels) and the number of total pixels was calculated

to obtain the vessel density. Fig 1 illustrates an example of binarization outcomes with the

employed methods.

ARI Zeiss macular density algorithm v 0.6.1. This is a prototype, proprietary algorithm

that allows quantification of vascular density both at the SCP and DCP in the macular area.

Two indices are generated: perfusion density and vessel density. The former is generated

through image binarization, while the latter relies on a skeletonization process. In this manu-

script, we included only the first index in our analysis since it is the one based on thresholding,

as the other algorithms tested. Since the algorithm was developed for quantification of macular

perfusion parameters, it was not used for measuring the peripapillary vasculature. Macular

density algorithm was run directly in the ARI portal.

Manual thresholding. Three independent operators (AR, RS, FG) independently binar-

ized all the images using a manual, semiautomatic method. Each image was opened twice in

the ImageJ software: one was not processed and used as reference, the other was binarized

using a manual threshold. Each operator arbitrary chose a cutoff for each image to obtain the

best correspondence with the one used as reference.

Mean, default, Otsu autothreshold algorithms. Each image was loaded in the ImageJ

software and processed using three different autothreshold algorithms: mean, default,

and Otsu. Specification of these algorithms can be found online (https://imagej.net/Auto_

Threshold). Briefly, the mean algorithm sets the mean level of grey in the image as cutoff. The

default is a special method used by ImageJ software, which is a modification of the IsoData

algorithm. The Otsu algorithm performs a two cluster-based binarization applying a threshold,

which minimizes and maximizes the intra-class and inter-class variances, respectively.

Fixed threshold. In this scenario, the same cutoff was utilized for every image of the same

plexus. The median level of gray of macular SCP, macular DCP, and peripapillary RCP of the

Fig 1. Example of en face angiograms and their binarization with the tested algorithms. Columns and rows show methods and segmented plexuses,

respectively.

https://doi.org/10.1371/journal.pone.0205773.g001
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control group was chosen as threshold value. For the macula centered images, we used “59”

and “32” for the SCP and DCP, respectively. For the optic nerve centered images, a value of

“74” was used as cutoff.

Preprocessing filtering with multilevel thresholds strategies. The method used was pre-

viously described. [23] Briefly, images were pre-processed using a top-white filter with a win-

dow size of 12 pixels. Then, the image was duplicated. One copy underwent binarization

through the median auto local threshold; the other one was processed with a Hessian filter and

binarized using a Huang autothreshold. The two binarized images were compared and only

pixels positive with both methods were counted as vessels.

Statistical analysis

Data were tested for normality with the Pearson-D’Agostino test. Differences for demographic

and main clinical data across groups were evaluated with analysis of variance (ANOVA) and

Kruskal-Wallis test, respectively for parametric and non-parametric variables, and Dunnet

and Dunn tests were used as post-hoc tests to compare patients with glaucoma and DR groups

to healthy subjects for parametric and non-parametric variables, respectively. Differences for

categorical variables were assessed with the chi-square test. Differences between glaucoma

patients and healthy subjects for VCDR and pRNFL were evaluated with the t-test and the

Mann-Whitney test, respectively.

Differences among the algorithms for vessel density values were evaluated with the repeated

measures ANOVA or Friedman test for parametric and nonparametric variables, respectively.

Pairwise comparisons were investigated with the Tukey test or Dunn’s multiple comparisons

as post-hoc tests for parametric and nonparametric data, respectively. Differences in vessel

density between healthy and affected eyes at each plexus and with each method were investi-

gated with a linear mixed effect model with presence of disease and age as fixed factors, and fel-

low eye as random factor.

Inter-algorithm reliability and inter-operator reliability for manual threshold selection were

evaluated with the intraclass correlation coefficient (ICC) and the 95% confidence interval

(CI) based on a single rating, concordance, 2-way mixed effect model. Values of ICC between

0 and 0.5 indicate poor reliability, moderate reliability between 0.5 and 0.75, good reliability

between 0.75 and 0.9, and excellent reliability above 0.9. [29] We used Bland-Altman analysis

to evaluate inter-algorithm agreement and limits of agreement (LOA) were set at 1.96 standard

deviations (SDs) as this gives the 95% CI.

A structural equation model was used to generate calibration equations to quantify systemic

bias between each pair of algorithms, and to elaborate conversion formulas from one method

to another.

Ability to discriminate affected eyes from healthy eyes at each plexus was evaluated with

receiver operating characteristic (ROC) curves. ROC curves were estimated on a generalized

linear model in order to adjust for age, and eyes of the same patients were considered as clus-

tered to account for correlations between eyes. [30] Area under the curve (AUROC) values

and 95% confidence intervals were calculated. AUROCs of 0.5 and 1 represent lack of and

perfect discrimination, respectively. Pairs of ROC curves were compared with the DeLong’s

test.

All statistical analyses were performed with R software (R Foundation for Statistical Com-

puting, Vienna, Austria, https://www.r-project.org), GraphPad Prism software 6.0 (Graph-

Pad Software, Inc., San Diego, CA, USA), and SPSS software 21 (SPSS Inc., Chicago, IL,

USA). A p-value <0.05, after adjustments with the Benjamini-Hochberg test, was considered

significant.
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Results

Table 1 summarizes the demographic and main clinical data of the cohort of patients. Patients

in the glaucoma groups were significantly older than those in control group (p = 0.008), and

they had increased VCDR (p<0.0001) and reduced pRNFL thickness (<0.0001). Patients with

DR had significantly greater CMT compared with controls (p = 0.001), and 18 eyes (40.9%)

featured diabetic macular edema. In the DR group, 28 and 3 patients suffered from type 1 and

2 diabetes, respectively, with a mean hemoglobin A1c of 6.9 ± 1.1%. Severity of DR was mild in

1 eye, moderate in 6 eyes, severe in 8 eyes, proliferative in 28 eyes, and unknown in 1 eye.

Fig 2 and Table 2 show the macular SCP, DCP and peripapillary RCP vessel density values

estimated with the different methods. Healthy eyes exhibited higher vessel density values at

all plexuses compared with eyes with disease regardless the algorithm used (p < 0.01). No

significant difference between diabetic eyes with and without DME estimated with every

method at both SCP and DCP was found (p-value > 0.31). Vessel density values were signifi-

cantly different among the different methods at all the plexuses (p < 0.0001). All the pairwise

comparisons for the macular SCP (Table 3) were significant (p < 0.05), except for the pairs

ARI and mean (p = 0.99), ARI and fixed (p = 0.70), mean and fixed (p = 0.10), and Otsu and

multilevel (p = 0.20). At the macular DCP level (Table 4), all the pairwise comparisons were

significant (p< 0.01), except for the pairs ARI and multilevel (p = 0.99), manual and default

(0.99), manual and Otsu (p = 0.13), manual and fixed (p = 0.49), Otsu and fixed (0.99). At

the peripapillary RCP level (Table 5), all pairs had significantly different vessel density values

(p < 0.001), except for manual and mean (p = 0.08), mean and default (p = 0.99), and Otsu

and multilevel (p = 0.99).

Inter-algorithm ICC values of the SCP, DCP, and RCP are illustrated in Tables 3, 4 and 5,

respectively. Default and Otsu algorithms had an excellent reliability at every plexus. Reliability

of ARI algorithm was good when compared with default and Otsu methods. At the SCP, a

good reliability was observed also for the pairs mean and default, mean and Otsu, and mean

and multilevel. At the DCP, the manual algorithm had a good reliability in comparison with

both default and Otsu methods. The pairs mean and multilevel, default and fixed, and Otsu

and fixed had a good reliability at the peripapillary RCP. All the other pairs exhibited a moder-

ate to poor reliability. Notably, fixed and multilevel had a negative ICC at the DCP since their

vessel density values were negatively correlated.

Results of Bland-Altman analysis for the inter-method agreement of the SCP, DCP, and

RCP are also displayed in Tables 3, 4 and 5, respectively. Limits of agreement and mean differ-

ences were wider in the DCP, indicating a lower level of agreement between methods for this

Table 1. Demographic and main clinical data of study population.

Parameters Overall Controls DR p-value Glaucoma p-value

No. Patients / Eyes 132 / 84 27 / 44 31 / 44 n/a 26 / 44 n/a

Age years, mean ± SD 54.2 ± 16.2 47.7 ± 17.9 54.6 ± 15.4 0.17 60.5 ± 13.1 0.008

Race, caucasian 84 27 31 n/a 26 n/a

Sex, male / female 37/ 47 15 / 12 11 / 20 0.79 11 / 15 0.63

Eye, right / left 63 / 69 22 / 22 20 / 24 0.91 21 / 23 0.98

CMT, μm, mean ± SD 282.9 ± 57.8 265.8 ± 21.8 310.0 ± 82.9 0.0014 268.2 ± 29.0 0.99

VCDR, mean ± SD 0.61 ± 0.17� 0.52 ± 0.17 n/a n/a 0.70 ± 0.13 < 0.0001

pRNFL, μm, mean ± SD 81.6 ± 13.8� 88.8 ± 10.9 n/a n/a 74.5 ± 12.6 < 0.0001

�This value does not include eyes belonging to DR group. BCVA: best corrected visual acuity; CMT: central macular thickness; DR: diabetic retinopathy; SD: standard

deviation; CMT: central macular thickness; VCDR: vertical cup-to-disc ratio; pRNFL: peripapillary retinal nerve fiber layer.

https://doi.org/10.1371/journal.pone.0205773.t001
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plexus. Otsu and default algorithms exhibited an excellent agreement. On the contrary, the

fixed algorithm had a poor agreement with all the other methods.

As shown in Fig 3, the inter-operator reliability for the manual method was moderate for

the DCP overall and in the subset of patients with DR, and poor for all the other groups. Vessel

Fig 2. Vessel density values calculated with the tested methods. Vessel density values calculated with the tested methods for the entire cohort, diabetic

retinopathy (DR) and glaucoma patients for the macular superficial capillary plexus (SCP) (A,B,C), deep capillary plexus (DCP) (D,E,F), and

peripapillary radial capillary plexus (RCP) (G,H,I). Processing methods differences were significant at p< 0.0001 at all levels. SCP: superficial capillary

plexus; DCP: deep capillary plexus; RCP: radial capillary plexus; DR: diabetic retinopathy.

https://doi.org/10.1371/journal.pone.0205773.g002
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density values were significantly different between each pair of operator, except the compari-

son between operator 1 and 2 at the DCP for the cohort of all patients, and between operator 3

and both operators 1 and 2 for the DCP of the patients with DR.

Table 6 displays the calibration equations for the methods. The conversion formula from

one instrument to another was available for all the tested algorithms, except for the conversion

from multilevel to fixed (and vice versa) at the DCP since observed values measured by these

two algorithms were negatively correlated. Notably, the default and Otsu algorithms at the

Table 2. Vessel density values estimated with the different methods.

Macula—superficial capillary plexus Macula—deep capillary plexus ONH—radial peripapillary capillary plexus

Overall DR patients Healthy subjects Overall DR patients Healthy subjects Overall Glaucoma patients Healthy subjects

ARI 43.9 ± 4.1 41.6 ± 3.7 46.2 ± 3.0 26.2 ± 7.6 20.8 ± 6.0 31.7 ± 4.5 n/a n/a n/a

Manual 48.6 ± 4.4 45.5 ± 4.1 51.6 ± 1.9 37.1 ± 9.0 29.4 ± 5.2 44.9 ± 3.7 49.6 ± 3.7 47.3 ± 3.5 51.8 ± 2.2

Mean 44.9 ± 1.7 43.9 ± 1.9 45.9 ± 0.8 44.3 ± 2.7 42.2 ± 2.0 46.4 ± 1.2 48.0 ± 2.1 46.7 ± 2.2 49.3 ± 0.9

Default 39.1 ± 3.6 37.1 ± 3.6 41.1 ± 2.2 38.6 ± 6.6 33.0 ± 4.3 44.2 ± 2.5 46.4 ± 5.2 43.4 ± 5.4 49.5 ± 2.5

Otsu 37.3 ± 3.3 35.8 ± 3.5 38.8 ± 2.2 35.5 ± 6.2 30.3 ± 4.3 40.7 ± 2.0 45.0 ± 5.1 41.9 ± 5.2 48.1 ± 2.5

Fixed 42.5 ± 8.3 37.5 ± 8.0 47.5 ± 4.9 33.3 ± 10.9 30.3 ± 8.1 36.3 ± 12.6 43.4 ± 9.2 37.1 ± 7.2 49.7 ± 6.1

Multilevel 34.5 ± 1.3 33.9 ± 1.5 35.1 ± 0.7 27.4 ± 9.6 22.9 ± 0.7 31.9 ± 12.1 40.0 ± 1.5 39.3 ± 1.5 40.8 ± 1.0

Data are presented as mean ± standard deviation. DR: diabetic retinopathy; ONH: optic nerve head.

https://doi.org/10.1371/journal.pone.0205773.t002

Table 3. Inter-algorithm agreement, reliability, and pairwise comparison in the superficial capillary plexus for the entire cohort of patients.

Algorithm comparison Agreement

(Bland Altman Analysis)

Reliability Pairwise comparison

Algorithm 1 Algorithm 2 MD LoA Range ICC (95% CI) P Value
ARI Manual -4.6 -11.4/2.1 13.5 0.674 (0.542–0.774) < 0.0001

ARI Mean -1.0 -6.8/4.8 11.6 0.556 (0.393–0.685) 0.99

ARI Default 4.8 0.1/9.6 9.5 0.800 (0.710–0.864) < 0.0001

ARI Otsu 6.7 1.7/11.6 9.9 0.768 (0.667–0.842) < 0.0001

ARI Fixed 1.4 -9.6/12.5 22.1 0.625 (0.479–0.378) 0.70

ARI Multilevel 9.4 3.1/15.8 12.7 0.428 (0.241–0.584) < 0.0001

Manual Mean 3.7 -2.6/9.9 12.5 0.552 (0.389–0.682) 0.0012

Manual Default 9.5 4.0/15.0 11.0 0.756 (0.650–0.833) < 0.0001

Manual Otsu 11.3 5.0/17.6 12.6 0.654 (0.516–0.759) < 0.0001

Manual Fixed 6.1 -5.3/17.4 22.7 0.620 (0.472–0.733) < 0.0001

Manual Multilevel 14.1 7.0/21.1 14.1 0.393 (0.201–0.556) < 0.0001

Mean Default 5.8 2.0/9.7 7.9 0.760 (0.655–0.836) < 0.0001

Mean Otsu 7.6 4.2/11.1 6.9 0.775 (0.676–0.847) < 0.0001

Mean Fixed 2.4 -10.9/15.8 26.7 0.351 (0.154–0.521) 0.10

Mean Multilevel 10.4 8.6/12.2 3.6 0.830 (0.751–0.885) < 0.0001

Default Otsu 1.8 0.3/3.3 3.0 0.976 (0.963–0.984) 0.0109

Default Fixed -3.4 -13.7/6.9 20.6 0.663 (0.527–0.765) 0.0220

Default Multilevel 4.6 -0.4/9.6 10.0 0.562 (0.400–0.690) < 0.0001

Otsu Fixed -5.2 -16.2/5.8 22.0 0.602 (0.449–0.720) < 0.0001

Otsu Multilevel 2.8 -1.7/7.2 8.9 0.585 (0.429–0.708) 0.20

Fixed Multilevel 8.0 -6.1/22.2 28.3 0.257 (0.051–0.441) < 0.0001

MD: mean difference; LoA: limits of agreement; ICC: intraclass correlation coefficient; CI: confidence interval

https://doi.org/10.1371/journal.pone.0205773.t003
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Table 4. Inter-algorithm agreement, reliability, and pairwise comparison in the deep capillary plexus for the entire cohort of patients.

Algorithm comparison Agreement

(Bland Altman Analysis)

Reliability Pairwise comparison

Algorithm 1 Algorithm 2 MD LoA Range ICC (95% CI) P Value
ARI Manual -10.9 -23.8/1.9 25.7 0.689 (0.561–0.784) < 0.0001

ARI Mean -18.0 -29.1/-6.9 22.2 0.502 (0.328–0.643) < 0.0001

ARI Default -12.4 -21.1/-3.6 17.5 0.804 (0.715–0.867) < 0.0001

ARI Otsu -9.3 -17.9/-0.7 17.2 0.799 (0.709–0.864) < 0.0001

ARI Fixed -7.1 -24.7/10.6 35.3 0.540 (0.373–0.673) < 0.0001

ARI Multilevel -1.2 -19.8/17.5 37.3 0.397 (0.205–0.559) 0.99

Manual Mean -7.1 -20.8/6.5 27.3 0.445 (0.260–0.598) < 0.0001

Manual Default -1.4 -10.2/7.2 17.4 0.842 (0.768–0.894) 0.99

Manual Otsu 1.6 -7.3/10.5 17.8 0.827 (0.748–0.883) 0.13

Manual Fixed 3.8 -19.8/27.5 47.3 0.274 (0.069–0.456) 0.49

Manual Multilevel 9.8 -8.0/27.5 35.5 0.525 (0.356–0.611) < 0.0001

Mean Default 5.7 -2.5/13.8 16.3 0.662 (0.527–0.765) 0.0021

Mean Otsu 8.7 1.4/16.0 14.6 0.693 (0.566–0.788) < 0.0001

Mean Fixed 11.0 -8.7/30.6 39.3 0.205 (-0.003–0.397) < 0.0001

Mean Multilevel 16.9 -0.3/34.1 34.4 0.225 (0.017–0.414) < 0.0001

Default Otsu 3.1 0.4/5.7 5.3 0.978 (0.966–0.985) < 0.0001

Default Fixed 5.3 -14.3/24.9 39.2 0.388 (0.195–0.552) 0.0008

Default Multilevel 11.2 -6.1/28.5 34.6 0.430 (0.243–0.586) < 0.0001

Otsu Fixed 2.3 -16.9/21.3 38.2 0.398 (0.206–0.560) 0.99

Otsu Multilevel 8.2 -9.1/25.4 34.5 0.408 (0.219–0.568) 0.0002

Fixed Multilevel 5.9 -27.9/39.8 67.7 -0.409 (-0.569 –-0.219) < 0.0001

MD: mean difference; LoA: limits of agreement; ICC: intraclass correlation coefficient; CI: confidence interval

https://doi.org/10.1371/journal.pone.0205773.t004

Table 5. Inter-algorithm agreement, reliability, and pairwise comparison in the peripapillary radial capillary plexus for the entire cohort of patients.

Algorithm comparison Agreement

(Bland Altman Analysis)

Reliability Pairwise comparison

Algorithm 1 Algorithm 2 MD LoA Range ICC (95% CI) P Value
Manual Mean 1.6 -3.2/6.3 9.5 0.672 (0.539–0.772) 0.08

Manual Default 3.2 -3.6/9.9 13.5 0.709 (0.588–0.800) 0.0005

Manual Otsu 4.6 -2.0/11.1 13.1 0.718 (0.599–0.806) < 0.0001

Manual Fixed 6.2 -7.3/19.7 27.0 0.518 (0.347–0.656) < 0.0001

Manual Multilevel 9.6 3.7/15.4 11.7 0.439 (0.254–0.593) < 0.0001

Mean Default 1.6 -4.5/7.7 12.2 0.690 (0.563–0.786) 0.99

Mean Otsu 3.0 -3.0/9.0 12.0 0.693 (0.567–0.788) < 0.0001

Mean Fixed 4.6 -9.8/19.0 28.8 0.390 (0.198–0.554) < 0.0001

Mean Multilevel 8.0 5.7/10.3 4.6 0.789 (0.694–0.856) < 0.0001

Default Otsu 1.4 0.3/2.5 2.2 0.994 (0.991–0.996) < 0.0001

Default Fixed 3.0 -7.0/13.1 20.1 0.765 (0.662–0.840) < 0.0001

Default Multilevel 6.4 -1.5/14.3 15.8 0.442 (0.257–0.596) < 0.0001

Otsu Fixed 1.6 -8.4/11.6 20.0 0.764 (0.661–0.839) 0.99

Otsu Multilevel 5.0 -2.7/12.7 15.4 0.452 (0.269–0.603) 0.0006

Fixed Multilevel 3.4 -12.5/19.2 31.7 0.246 (0.039–0.432) < 0.0001

MD: mean difference; LoA: limits of agreement; ICC: intraclass correlation coefficient; CI: confidence interval

https://doi.org/10.1371/journal.pone.0205773.t005
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peripapillary RCP had almost no bias, and a small bias at the other plexuses, meaning that the

systematic error between these two algorithms is extremely low. A substantial bias was evident

between many algorithms. The comparative plots for the SCP, DCP, and peripapillary RCP are

graphically shown in Figs 4, 5 and 6, respectively.

ROC curves for the identification of patients with DR (macular SCP, DCP) and glaucoma

(peripapillary RCP) are illustrated in Fig 7. At the SCP level, ARI and manual algorithms per-

formed better (p< 0.05) than all the other methods, but they did not significantly differ each

other (p = 0.6). At the DCP level, the manual, Otsu, mean, and default algorithms had higher

AUROCs than other methods, and the difference was significant (p<0.05) except for the pair

mean and ARI (p = 0.1). At the ONH level, the fixed algorithm had the best performance to

distinguish glaucomatous patients from healthy subjects, although the difference was signifi-

cant only in comparison with multilevel (p = 0.029).

Discussion

In the present study, we compared seven different methods to calculate vessel density on

OCT-A angiograms in the macular and peripapillary areas in healthy subjects, and in patients

with either DR or glaucoma. Methods tested included the ARI Zeiss proprietary algorithm v

0.6.1, a manual method, a static algorithm using the same fixed threshold for all eyes, three

dynamic autothresholds (i.e., mean, default, Otsu) adapting their values in relationship to

image properties, and a more complex algorithm employing a preprocessing filter followed by

a multilevel thresholding strategy. We evaluated the inter-algorithm differences, reliability,

and agreement. Moreover, we provided a calibration between algorithms to generate conver-

sion formulas from one method to another. Finally, we investigated the ability of the algo-

rithms to identify differences in vessel densities between healthy subject and patients with DR

or glaucoma, and we compared their diagnostic performance.

Since its commercialization, OCT-A has gained increasing popularity in the ophthalmic

community. The capability to image the retinal and choroidal vasculatures in non-invasive,

fast, three-dimensional, depth-resolved fashion represents a considerable advantage of this

technique over the traditional, dye-based diagnostic tests. Inspection of OCT-A angiograms

may be of great help for the clinician in the diagnostic process. Identification of choroidal neo-

vascularization in an asymptomatic patient with “dry” AMD or in a patient suffering from cen-

tral serous chorioretinopathy are two examples where this new technology has a significant,

Fig 3. Inter-rater reliability of the manual method for the entire cohort, DR and glaucoma patients. ���� significant at p< 0.0001; ��� significant at

p< 0.001; �� significant at p< 0.01; NS: not significant; DR: diabetic retinopathy; ICC: intraclass correlation coefficient; op: operator; SCP: macular

superficial capillary plexus; DCP: macular deep capillary plexus; RCP: peripapillary radial capillary plexus.

https://doi.org/10.1371/journal.pone.0205773.g003
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Table 6. Calibration equations to convert vessel density value from one algorithm into the equivalent from another algorithm.

Algorithm Calibration equation

Macula—SCP Macula—DCP Peripapillary RCP

ARI -2.86 + 0.96 � Manual -9.68 + 0.97 � Manual n/a

-45.51 + 1.99 � Mean -93.05 + 2.70 � Mean n/a

6.76 + 0.95 � Default -14.45 + 1.05 � Default n/a

3.02 + 1.10 � Otsu -13.34 + 1.11 � Otsu n/a

25.11 + 0.44 � Fixed -19.04 + 1.36 � Fixed n/a

-53.29 + 2.88 � Multilevel -10.49 + 1.34 � Multilevel n/a

Manual 2.97 + 1.04 � ARI 10.01 + 1.03 � ARI n/a

-44.27 + 2.07 � Mean -86.21 + 2.79 � Mean -15.83 + 1.36 � Mean

9.99 + 0.99 � Default -4.93 + 1.09 � Default 23.58 + 0.56 � Default

6.11 + 1.14 � Otsu -3.78 + 1.15 � Otsu 24.13 + 0.57 � Otsu

35.46 + 0.22 � Fixed -9.68 + 1.41 �Fixed 34.94 + 0.34 � Fixed

-54.42 + 2.99 � Multilevel -11.66 + 1.77 � Multilevel -41.82 + 2.28 � Multilevel

Mean 21.42 + 0.48 � ARI 34.53 + 0.37 � ARI n/a

21.16 + 0.49 � Manual 31.11 + 0.36 � Manual 11.62 + 0.73 � Manual

26.25 + 0.48 � Default 29.17 + 0.39 � Default 28.93 + 0.41 � Default

24.37 + 0.55 � Otsu 29.58 + 0.41 � Otsu 29.3 + 0.42 � Otsu

35.21 + 0.23 � Fixed 27.46 + 0.51 � Fixed 32.27 + 0.25 � Fixed

-4.91 + 1.45 � Multilevel 29.44 + 0.54 � Multilevel -19.08 + 1.68 � Multilevel

Default -7.10 + 1.05 � ARI 13.71 + 0.95 � ARI n/a

-10.12 + 1.01 � Manual 4.52 + 0.92 � Manual -42.10 + 1.79 � Manual

-54.97 + 2.09 � Mean -74.55 + 2.56 � Mean -70.36 + 2.43 � Mean

-3.93 + 1.15 � Otsu 1.05 + 1.06 � Otsu 0.98 + 1.01 � Otsu

19.30 + 0.47 � Fixed -4.36 + 1.29 � Fixed 20.29 + 0.60 � Fixed

-65.25 + 3.03 �Multilevel 0.06 + 1.40 � Multilevel -116.76 + 4.08 �Multilevel

Otsu -2.75 + 0.91 � ARI 11.98 + 0.90 � ARI n/a

-5.36 + 0.88 � Manual 3.29 + 0.87 � Manual -42.65 + 1.77 � Manual

-44.23 + 1.82 � Mean -71.59 + 2.42 � Mean -70.62 + 2.41 � Mean

3.41 + 0.87 � Default -1.00 + 0.95 � Default -0.97 + 0.99 � Default

20.13 + 0.40 � Fixed -5.12 + 1.22 � Fixed 19.12 + 0.60 � Fixed

-53.14 + 2.62 � Multilevel -0.22 + 1.30 � Multilevel -116.57 + 4.04 � Multilevel

Fixed -56.71 + 2.26 � ARI 14.00 + 0.74 � ARI n/a

-63.18 + 2.18 � Manual 6.88 + 0.71 �Manual -130.58 + 2.96 � Manual

-159.50 + 4.50 � Mean -54.42 + 1.98 � Mean -150.49 + 4.04 � Mean

-41.45 + 2.15 � Default 3.38 + 0.78 � Default -33.69 + 1.66 � Default

-49.89 + 2.48 Otsu 4.19 + 0.82 � Otsu -32.06 + 1.68 � Otsu

-181.59 + 6.50 � Multilevel n/a� -227.53 + 6.77 � Multilevel

Multilevel 19.22 + 0.35 � ARI -7.86 + 0.75 � ARI n/a

18.22 + 0.34 � Manual 6.58 + 0.56 � Manual 18.31 + 0.44 � Manual

3.40 + 0.69 � Mean -54.65 + 1.86 � Mean 11.38 + 0.60 � Mean

21.57 + 0.33 � Default -0.04 + 0.71 � Default 28.64 + 0.25 � Default

20.27 + 0.38 � Otsu 0.17 + 0.77 � Otsu 28.88 + 0.25 � Otsu

27.95 + 0.15 � Fixed n/a� 33.61 + 0.15 � Fixed

� Calibration equation not available since fixed and multilevel algorithms were negative correlated at the DCP. SCP: superficial capillary plexus; DCP: deep capillary

plexus; RPC: radial peripapillary capillaries.

https://doi.org/10.1371/journal.pone.0205773.t006
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clinical impact. OCT-A angiograms can be post-processed to obtain quantitative, objective

measurements. Two established indices are the vessel density and, specific to the macular

region, the fovea avascular zone (FAZ) area. The latter is a capillary-free zone corresponding

to the foveola, while the former is the percentage of angiocube occupied by retinal vessels. A

number of studies investigated changes in such indices in various ocular pathologies and their

relationship with disease severity, activity, and response to treatments in several chorioretinal

diseases, including diabetic retinopathy, [31, 32] retinal vein occlusion, [33] age-related macu-

lar degeneration, [11, 34] and retinal dystrophies. [13–15, 17] Vessel density applications are

not limited to the retinal field, and are also useful in optic nerve diseases such as glaucoma [10,

22] and anterior ischemic optic neuropathy. [12] According to Cole et al., [4] vessel density

could become a future surrogate endpoint for clinical trials. In a recent commentary, however,

Garrity and Sarraf [35] claimed the need of additional technical and clinical research to fully

elucidate properties and reliability of quantitative indices before their application in research

trials and clinical practice. There is substantial evidence that the intra- and inter-operator

repeatability of vessel density is good for images acquired in the same location, with the same

angiocube size, machine, and quantification algorithm. [5, 6, 36] Nevertheless, some other fac-

tors both in the acquisition and in the post-processing phase can negatively affect its reliability.

Some retinal diseases, such as cystoid macular edema, can profoundly disorganize the retinal

Fig 4. Comparative plots for the seven processing methods for the superficial capillary plexus (SCP). Green lines

represent the no-bias line, while black circles demonstrate the true corresponding measurement among coupled devices.

https://doi.org/10.1371/journal.pone.0205773.g004
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architecture leading to inaccurate and unreliable results. [35] Low signal strength is correlated

with lower vessel density, and this should be considered in patients with cataract or ocular sur-

face disease. [5] Corvi et al [7] evaluated the reliability of quantitative indices, including vessel

density, measured with seven different instruments in a cohort of healthy patients, and they

found a poor reliability among the tested devices. These results are not surprisingly since dif-

ferent instruments have varying properties, including wavelength of laser beam, number of A-

scans, algorithm used to detect flow, segmentation boundaries, and image resolution. In a pre-

vious study, we demonstrated that vessel density significantly differs across different angio-

cubes sizes since wider images are characterized by lower resolution compared to smaller,

denser, scans. [9] Uji and colleagues [23, 37] evaluated the impact of multiple en face angio-

grams averaging, and found that it increases the image quality and impacts on the quantitative

measurements reducing the variability. Only one study has provided some information about

the impact of different post-processing imaging. Pedinielli et al [38] observed that the same

image may lead to different macular vessel density values if quantified by means of skeletoniza-

tion, mean thresholding, or proprietary AngioVue software (Optovue, Inc., Fremont, CA,

USA). Differences between vessel density obtained by means of skeletonization and threshold-

ing were predictable since they measure different units. Skeletonization does not take into

account the vessel dimension and treats all the vessels in the same way irrespective to their

Fig 5. Comparative plots for the seven processing methods for the deep capillary plexus (DCP). Green lines represent the

no-bias line, while black circles show the true corresponding measurement among coupled devices.

https://doi.org/10.1371/journal.pone.0205773.g005
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size, so it minimizes the impact of large retinal vessels over the capillary network. On the con-

trary, image thresholding reveals the real percentage of retinal vasculature. Our results partially

corroborate and expand the previous findings. Differences among methods were highly signif-

icant, and reliability and agreement values were mostly poor to moderate, with few exceptions.

Fig 6. Comparative plots for the seven processing methods for the peripapillary radial capillary plexus (RCP).

Green lines represent the no-bias line, while black circles demonstrate the true corresponding measurement among

coupled devices.

https://doi.org/10.1371/journal.pone.0205773.g006

Fig 7. Receiver operating characteristic (ROC) curves for discrimination of diseased from healthy eyes. Legends show area under the ROC curve

and 95% confidence interval. SCP: macular superficial capillary plexus; DCP: macular deep capillary plexus; RCP: peripapillary radial capillary plexus.

https://doi.org/10.1371/journal.pone.0205773.g007
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Differences were highest at the macular DCP with Manual, Default, Otsu, and fixed showing

less differences, while ARI and Mean appear to report notably lower and higher values, respec-

tively. The calibration equations revealed that systematic differences between algorithms were

pretty consistent, and most of them exhibited a non-constant bias. A conversion formula was

present for all the algorithms except for multilevel and fixed thresholds at the DCP. These two

algorithms displayed very poor reliability and agreement, and, in the DCP, they surprisingly

exhibited a negative correlation meaning that studies based on these algorithms may poten-

tially lead to opposite results. On the other hand, we appreciated an excellent reliability and

agreement between Otsu and default algorithms. These two methods demonstrated a small

systemic bias for the macular area and, notably, no bias in the peripapillary area, suggesting

that values derived from these algorithms are almost interchangeable. Conversion formulas

provide a method to convert values from one algorithm to another, and, theoretically, longitu-

dinal monitoring could be performed with images processed with different algorithms. How-

ever, most of the most methods exhibited a substantial, non-costant bias. Performance of these

formulas should be validated in a different larger dataset before one may confidently switch

from one algorithm to another during the follow-up. In the light of these considerations, we

suggest to use the same algorithm in the longitudinal follow-up since processing methods are

not directly interchangeable.

Several authors have conducted studies on large cohorts of healthy subjects to build norma-

tive databases for quantitative metrics, including vessel density. Coscas et al [39] were the first

group to provide macular vessel density values in a Caucasian population. Iafe et al [40] also

reported vessel density values in 70 healthy subjects, and Garrity et al [41] reported results of

repeated analyses on the same cohort of patients updating the previous results based on more

sophisticated software enabling projection removal and improvement of the segmentation

algorithm with isolation of the intermediate capillary plexus. Bazvand et al [42] published a

normative quantitative database for the papillary and peripapillary area. Other studies pro-

vided macular vessel density values in different populations (i.e., in Asia, Middle-East), and

in pediatric subjects. [43–45] The results of these studies should be interpreted with extreme

caution, and are not generalizable since vessel density values are dependent on the device,

angiocube size, image averaging, and, as shown here, post-processing algorithm employed.

Although not formally demonstrated in the present study, the updates of the proprietary soft-

ware released by manufacturers could also cause changes in vessel density affecting longitudi-

nal follow-up of patients.

Several studies unequivocally demonstrated that patients with DR and glaucoma have

lower macular and peripapillary vessel density values, respectively. [2, 3, 21, 22, 24, 26, 31] In

this study, we tried to replicate these well-established findings analyzing the same pool of

images with seven different methods. All algorithms found a significant reduction in vessel

density in the patients with glaucoma and DR compared to healthy subjects. We believe this

is an important finding since it indicates that previous studies were not biased by the algo-

rithm used at least for those tested in this study. We investigated which algorithm had the

best diagnostic performance to discriminate patients from healthy subjects. No method

outperformed the others in all the retinal plexuses, but the performance depended on the

selected plexus. In the macular area, manual and ARI methods had the best AUROCs with

regard to the SCP. At the DCP level, manual and autothresholds (i.e., mean, default, Otsu)

algorithms had the best discriminating ability. As to the peripapillary RCP, all algorithms

had a similar performance except for the multilevel, which had the smallest AUROC. These

differences may be related to differences in the levels of grey in images segmented at different

plexuses. Manual algorithms had a good discrimination ability in all the three analyzed plex-

uses, and this could indicate the flexibility of this method that allows the rater to manually
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adjust the threshold value based on a visual feedback. Unfortunately, manual algorithm is

highly subjective and has a poor inter-rater reliability. Moreover, it is highly time-consuming

and it requires trained raters.

Limitations of this study should be kept in mind. The retrospective nature dictated the

fact that some variables (e.g., axial length) potentially affecting vessel density were not avail-

able. [46] Many methods to quantify vessel density have been published, and their relation-

ship with those assessed in the present study remain unknown. Nevertheless, we tested a

large number of methods using different strategies (including manual method, semiauto-

matic method with fixed threshold, semiautomatic methods with dynamic thresholds, and

multilevel methods preceded by image filtering). All the images were acquired with the same

device, and results might not be generalizable to other instruments. The calibration equa-

tions have not been tested on an external dataset, so they need to be fully validated. Also,

they were based on the vessel density values of the study sample, and the relationship

between two methods can differ for observations outside the range. Finally, our study was

limited at the retinal vascular plexuses, and does not provide information about choroidal

circulation.

In conclusion, we provide an extensive comparison of methods to quantify vessel density

on OCT-A angiograms. Absolute values calculated with different algorithms are not directly

interchangeable since methods have systemic differences, poor reliability, and poor agree-

ment. Nevertheless, all the tested algorithms revealed significant differences between healthy

and affected eyes, although they had different discriminatory abilities, which varied accord-

ing to the plexus analyzed. This study indicates that longitudinal monitoring of the vessel

density should be carried out with the same instrument, same scan pattern and location, and

same algorithm. Studies adopting vessel density as an outcome should not rely on external

normative database but include their own control groups. Knowledge of the properties for

each algorithm could help researchers to select the best algorithm according to the plexus

studied.

Supporting information

S1 Dataset. General dataset for demographic and clinical data. Readable table containing

general data of the study population, including age, sex, eye laterality, presence of glaucoma,

presence and stage of diabetic retinopathy, presence and type of diabetes, levels of hemoglobin

A1c, presence of diabetic macular edema (DME), vertical cup-to-disc ratio (VCDR), retinal

nerve fiber layer thickness (RNFL), and macular thickness. Missing or not applicable data are

indicated as “NA”.

(CSV)

S2 Dataset. Dataset for superficial capillary plexus. Optical coherence tomography angiog-

raphy processed data for the macular superficial capillary plexus. DME: diabetic macular; OP1:

operator 1; OP2: operator 2; OP3: operator 3. Missing or not applicable data are indicated as

“NA”.

(CSV)

S3 Dataset. Dataset for deep capillary plexus. Optical coherence tomography angiography

processed data for the macular deep capillary plexus. DME: diabetic macular; OP1: operator 1;

OP2: operator 2; OP3: operator 3. Missing or not applicable data are indicated as “NA”.

(CSV)

S4 Dataset. Dataset for peripapillary radial capillary plexus. Optical coherence tomography

angiography processed data for the peripapillary radial capillary plexus. DME: diabetic
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macular; OP1: operator 1; OP2: operator 2; OP3: operator 3. Missing or not applicable data are

indicated as “NA”.

(CSV)
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