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Latest studies on Vis/NIR research mostly focused on particular products. Developing a model for a specific
product is costly and laborious. This study utilized visible/near-infrared (Vis/NIR) spectroscopy to evaluate the
quality attributes of six products of the Cucurbitaceae family, with a single estimation model, rather than indi-
vidually. The study made use of six intact products, zucchini, bitter gourd, ridge gourd, melon, chayote, and
cucumber. Subsequently, the multi-product models for soluble solids content (SSC) and water content were
created using partial least squares regression (PLSR) method. The PLSR modeling produced satisfactory results,
the coefficient of determination in calibration set (R2c) was discovered to be 0.95 and 0.92, while the root mean
squares error of calibration (RMSEC) was found to be 0.41 and 0.61, for SSC and water content, respectively.
These models were able to accurately predict the unknown samples with coefficient of determination in pre-
diction set (R2p) of 0.96 and 0.92, as well as root mean squares error of prediction (RMSEP) of 0.32 and 0.58,
while the ratio of prediction to deviation (RPD) was found to be 5.68 and 3.69 for SSC and water content,
respectively. This shows Vis/NIR spectroscopy was able to quantify the SSC and water content of six products of
Cucurbitaceae family, using a single model.
1. Introduction

Cucurbitaceae, often referred to as cucurbits, is the largest tropical
vegetable group and is widely cultivated in various parts of the world.
The cucurbits are consumed daily by numerous people, and are therefore
regarded as essential food products. Nowadays, consumers are have a
diverse option of products in the market. Therefore, products are ex-
pected to have high value, reliability and consistency. Meanwhile, the
agricultural industry is faced with the challenge of examining food
products and ensuring the demands of consumers are met. The inspection
of fruits/vegetables involves internal constituents, including sugar con-
tent, water, and firmness, and external properties, including color, sur-
face defects, shape, and size. However, the quality of agricultural goods is
not fully assessable based on visuals, as this does not account for internal
characteristics, including soluble solids content (SSC) and water content.
These two attributes are very important aspects of consumers' acceptance
of agricultural goods because both are associated with taste (Park et al.,
2018). The measurement SSC and water content is generally performed
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through laboratory evaluation. For SSC, the standard method of mea-
surement is the refractometric approach (Hadiwijaya et al., 2020b). This
technique computes the refractive index of the juice sample using a
refractometer. Meanwhile, conventional determination of water content
is the sample drying method, using an oven, at a specific temperature and
duration (Scalisi&O'Connell, 2020; Hadiwijaya et al., 2020a). Currently,
the methods used to assess these food product properties seem
time-consuming, and destructive, as products subjected to analyses are
no longer sellable.

Several investigations have been conducted regarding non-
destructive approaches to measure the quality parameters in agricul-
tural goods, mostly fruits and vegetables, as an alternative to these
conventional methods. These approaches include nuclear magnetic
resonance (NMR) (Kamal et al., 2019), hyperspectral imaging (HSI) (Lu
et al., 2017) and mid-infrared spectroscopy (Bureau et al., 2019).
Non-destructive internal quality monitoring allows producers to provide
the best product for consumers, and increases the product's selling value.
In addition, this technique measures internal quality in a rapid and
ly 2021
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non-destructive manner. The HSI application for the SSC detection on
kiwi fruit resulted in a coefficient of determination (R2) and ratio of
prediction to deviation (RPD) of 0.95 and 3.12, respectively (Zhu et al.,
2017). Another study successfully created an excellent calibration model
for water content evaluation in apples using HSI (R2 ¼ 1.00, root mean
squares error (RMSE) ¼ 0.04) (Crichton et al., 2017). Visible and
near-infrared (Vis/NIR) spectroscopy is also a possible non-destructive,
rapid, and precise technique for estimating the internal quality of
various products. The Vis/NIR region (380–1050 nm) is promising as this
is usually attributed to the 3rd and 4th overtones of O–H and C–H bands
in sugar molecules (Cen and He, 2007). Numerous studies on Vis/NIR
application in SSC quantification have also been conducted on citrus
fruits (P. Li et al., 2020; Song et al., 2019), apple (Fan et al., 2020; Lan
et al., 2021; Xia et al., 2020), pear (Mishra et al., 2021), melon (M. Li
et al., 2019), grape (Fern�andez-Novales et al., 2019) and tomato (Huang
et al., 2018). This technique was also able to accurately predict water
content in pomelo (Xu et al., 2020), dates (Alhamdan and Atia, 2017),
plum (Mulisa Bobasa et al., 2020; Posom et al., 2020), maize seed (Zhang
and Guo, 2020) and olives (Lee et al., 2018).

The recently published studies on Vis/NIR research are about specific
products. Creating a model for particular product is expensive and time-
consuming. A possible solution involves collecting a diverse spectra
dataset in a bid to produce one unique pattern for diverse applications in
various products. Several researches have been conducted on the
development of global multivariate models for rapid quality evaluation.
In one study, an investigation was conducted to determine water content
in freeze-dried drug products using NIR (Clavaud et al., 2017), while
another study utilized NIR spectroscopy was utilized to build global
models for the assessment of amylose, cellulose, and starch content in
various tuber and root products (Masithoh et al., 2020). However, no
research has been conducted on multi-product prediction based on
Vis/NIR, in the Cucurbitaceae family. This study therefore aimed to
develop a multi-product and Vis/NIR-based calibration model in a bid to
quantify the SSC and water content of six products in the Cucurbitaceae
family, zucchini, bitter gourd, ridge gourd, melon, chayote, and
cucumber.

2. Materials and methods

2.1. Sample collection

The samples included six intact products in the Cucurbitaceae family,
zucchini var. Jacky z-6, bitter gourd var. Hokian, ridge gourd var.
Figure 1. Illustration of
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Primavera, melon var. Mekarsari sh-1, cucumber var. Wulan, and a local
variety of chayote. The melon and ridge gourd samples were harvested
from potential product orchards in Sumedang, while the zucchini, bitter
gourd, chayote, and cucumber samples were obtained from Bandung,
Indonesia. These samples were collected at the harvesting stage, packed
into fruit-plastic-baskets, and transported to the Horticulture Laboratory,
Universitas Padjadjaran. The harvesting stage was determined based on
the optimum maturity level usually harvested by farmers. At same day,
the analysis of the samples was carried out (acquisition of spectra and
reference data). Each product was represented by 50 samples. Therefore,
a total of 300 samples were used in this research. The samples were
cleaned and numbered prior to the analysis, and 200 were grouped into
the calibration set, while the prediction set consisted of the remaining
100 samples.
2.2. Instrument

Vis/NIR spectra were obtained using a NirVana AG410 (Integrated
spectronics Pty, Ltd, Australia) spectrometer in the diffuse reflectance
mode, and this was then automatically transformed into absorbance.
Each spectrum contains sample absorbance at a wavelength between 381
and 1065 nm (3 nm pixel spacing and spectra resolution of 8–13 nm) for a
total of 229 data points per spectrum. Subsequently, the absorbance
spectra were captured by a vertical scan in the both opposite sides of the
upper, middle, and lower part of sample. The sample absorbance data is
calculated as the average of the six measurements per samples. Mean-
while, spectra collection was performed in the laboratory at room tem-
perature (26 �C). The recorded spectra were then transferred to a
computer for further analysis, while the spectra acquisition and actual
data of SSC as well as water content evaluations were conducted on the
same day. Figure 1 shows the illustration of spectra collection.
2.3. Determination of soluble solid content and water content

After spectra acquisition, the sample was cut across the circumference
at the scanned area. Subsequently, SSC analysis was done on extracted
samples and acquired using a digital refractometer (Atago, Japan) to
enable %Brixmeasurement. The sample SSCwas then evaluated based on
the average value of three consecutive observations. Meanwhile, for the
water content assessment, 30 g of sliced sample were placed on a small
glass container. The water content was determined by oven-drying the
sample at 60 �C, and weighing until a constant weight was achieved, and
the data acquisition.



Table 1. Mean of SSC and water content data of samples being analyzed.

Samples SSC (%Brix) Water content (%)

Zucchini 3.76 93.99

Bitter gourd 4.05 90.28

Ridge gourd 3.23 92.16

Melon 8.48 95.76

Chayote 3.81 89.80

Cucumber 3.17 91.76

Combined data 4.42 92.29

SSC: soluble solids content.
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was calculated based on the percentage reduction in the sample weight
due to drying.
2.4. Data analysis

Spectra analysis was completed using Microsoft Excel 2019 and The
Unscrambler X 10.4 (trial version). These are appropriate for spectra
interpretation, developing calibration models, and predicting indepen-
dent samples. Meanwhile, spectra preprocessing was performed to
reduce the effects of noise, scattering, and background interference. The
original spectral data, as well as data previously processed using standard
normal variate (SNV), moving average (MA), savitzky-golay smoothing
(SGS), area normalization (AN), mean normalization (MN), first deriva-
tive (dg1) and second derivative (dg2) savitzky-golay, de-trending (DT),
as well as orthogonal signal correction (OSC), were employed for
modeling and evaluated to increase the regression result's efficiency. In
addition, the principal component analysis (PCA) is used to eliminate
correlated spectra variables, giving rise to new, simple and uncorrelated
variables, and to visualize the spectra information. The model was cali-
brated using a partial least squares regression (PLSR) method, and vali-
dated using cross-validation technique. Cross-validation is useful for
calculating the optimum PCs and avoiding overfitting in the calibration
model. The datasets were split into two groups, the calibration and
prediction set, as stated above. Each set comprised adequately distrib-
uted datasets representing the entire the SSC and water content varieties.
The prediction set was designed to evaluate the predictive ability of a
calibration model in determining the unknown samples. Subsequently,
the model output was reported for the coefficient of determination in
calibration (R2c), cross-validation (R2cv), and prediction (R2p), as well as
the root mean square error of calibration (RMSEC), cross-validation
(RMSECV), and prediction (RMSEP), and the ratio of prediction to de-
viation (RPD). The acceptable models ought to provide lower error,
Figure 2. Original spectra data of samples (a) Exampl
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higher R2c, and RPD, but a slight gap in RMSEC and RMSEP (Khosh-
noudi-Nia and Moosavi-Nasab, 2019; Cheng and Sun, 2015). Further-
more, only a few principal components (PCs) are also desirable in
selecting the best calibration model.

3. Results and discussion

3.1. Analysis of reference data

Table 1 shows the descriptive actual data statistics of six products for
each quality attributes. The SSC is assumed to be the constituent for the
assessment of sugar content in agricultural products (Hadiwijaya et al.,
2020b). In addition, the water content in food is also an important
attribute because of the relation to the product's physical and chemical
characteristics of the product, and the effect on food shelf-life (Hadiwi-
jaya et al., 2020a). According to the data obtained, cucumbers had the
lowest SSC mean value (3.17 %Brix), while chayote samples (89.80%)
had the lowest mean water content. Meanwhile, the melon samples were
discovered to have the highest mean SSC (8.48 %Brix) and water content
(95.76%). The multi-product samples showed an extensive range in both
attributes, and the distribution peak between 3.17 – 8.48 %Brix (SSC)
and 89.80–95.76 % (water content) was due to the broad variation in the
samples used. This is in line with the report by Rambo et al. (2016)
stating various products ought to be combined in order to obtain a large
range of chemical composition values in a single calibration model.
3.2. Spectral features

Figure 2 (a) is an example spectrum for each product, while Figure 2
(b) shows the absorbance spectra of the all acquisitions. The Vis/NIR
spectra obtained in this study had a similar pattern with the tomato
absorbance data reported by Acharya et al. (2017). These sample spectra
were relevant to fruit components involving the response of C–H and
O–H molecular bonds. The samples belong to the same family and have
many similarities, however, the six products possessed different spectra
properties. This is possibly due to the differences in sample surface
roughness, skin thickness, color, and chemical composition. The varia-
tion in absorbance within the visible region (381–700 nm) is mainly due
to sample color. A wide peak was observed in each spectrum, around 630
nm, due to the absorption of chlorophyll (Zhang et al., 2019a). This peak
was more prominent in the spectra of the green-skinned zucchini, bitter
gourd, ridge gourd, chayote, and cucumber samples, compared to the
yellow melon samples. A study by Zhang et al. (2020) described the
valley in the spectrumwas correlatedwith the C–H band's 4th overtone at
700 nm, and is useful for predicting fruit SSC. Meanwhile, the spectra
e of spectrum of each product (b) All acquisitions.



Figure 3. PCA scores plot extracted from the spectra data of multi-products samples.
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absorbance at approximately 970 nm represented the O–H second
overtone of carbohydrates and water (Guo et al., 2015). Information
about the sample spectra's peaks and valleys are crucial in the modeling
stage for either classification or forecasting. In this case, the chemo-
metrics played a significant role in the spectral interpretation, including
spectra preprocessing, PCA, and PLSR modeling.

The PCA offers insight on how explored spectra cause specific samples
to differ or be identical. In this study, the dataset was composed of 300
observations (50 samples x 6 products) x 229 spectra variables. Prior to
the PCA computation, MSC was applied to reduce the interference effect
in the original spectra. Thus, for each sample, the light scattering of
diffuse reflectance spectroscopy was approximated and adjusted to the
ideal selected sample by averaging the spectra data (Rinnan et al., 2009).
Table 2. The statistical results of multi-products models for soluble solids content an

Quality attribute Spectra preprocessing PCs R2c

Soluble Solids Content Original 3 0.92

SNV 3 0.91

MA 3 0.92

SGS 3 0.92

AN 10 0.91

MN 10 0.91

dg1 3 0.92

dg2 4 0.93

DT 3 0.92

OSC 1 0.95

Water Content Original 5 0.88

SNV 8 0.90

MA 5 0.88

SGS 5 0.88

AN 6 0.88

MN 6 0.88

dg1 7 0.90

dg2 5 0.89

DT 4 0.87

OSC 1 0.92

SNV: standard normal variate, MA: moving average, SGS: savitzky-golay smoothing,
golay, dg2: second derivative savitzky-golay, DT: de-trending, OSC: orthogonal sig
calibration set, R2cv: coefficient of determination of cross-validation, R2p: coefficient
RMSECV: root mean square error of cross-validation, RMSEP: root mean square error
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Figure 3 shows the plot of PCA scores obtained using the first and two
components (PC1 and PC2), extracted from the original spectra coupled
with MSC. PC1 and PC2 compensated for 99 % of the spectral variation.
The PCA scores indicated the presence of several different products
(although of the same family) influenced the features of the Vis/NIR
spectra. Furthermore, the samples are classified into three perceivable
groups. The first group comprised zucchini and ridge gourd, the second
consisted of bitter gourd, chayote and cucumber, while the third
comprised melon samples. From the PCA scores plot, combining different
products into a single model was observed to lead to broad spectral
variations. This is in line with the study by Zhang et al. (2019b), on the
inspection of eight different apple cultivars, producing wide-ranging
spectra.
d water content determination.

R2cv R2p RMSEC RMSECV RMSEP RPD

0.91 0.94 0.54 0.55 0.43 4.24

0.91 0.93 0.56 0.58 0.47 3.95

0.91 0.94 0.54 0.56 0.43 4.24

0.91 0.94 0.54 0.55 0.43 4.24

0.89 0.94 0.56 0.65 0.45 4.11

0.88 0.94 0.56 0.65 0.45 4.11

0.92 0.94 0.52 0.54 0.41 4.45

0.92 0.94 0.50 0.53 0.43 4.30

0.92 0.95 0.52 0.54 0.40 4.58

0.95 0.96 0.41 0.42 0.32 5.68

0.87 0.86 0.76 0.78 0.78 2.73

0.89 0.91 0.67 0.72 0.61 3.51

0.88 0.87 0.74 0.77 0.76 2.80

0.88 0.86 0.76 0.76 0.78 2.73

0.86 0.84 0.76 0.81 0.83 2.55

0.86 0.84 0.76 0.81 0.83 2.55

0.89 0.91 0.67 0.73 0.61 3.49

0.88 0.92 0.71 0.76 0.59 3.61

0.86 0.87 0.80 0.83 0.76 2.82

0.92 0.92 0.61 0.61 0.58 3.69

AN: area normalization, MN: mean normalization, dg1: first derivative savitzky-
nal correction, PCs: principal components, R2c: coefficient of determination in
of determination in prediction set, RMSEC: root mean square error of calibration,
of prediction, RPD: the ratio of prediction to deviation.
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3.3. Development of calibration models for SSC and water content

Prior to further modeling, several methods were selected to improve
the original spectra. The spectra preprocessing stage was an essential
aspect of multivariate calibration, majorly aimed at eliminating irrele-
vant background signal or distortion in the original spectra, in a bid to
enhance predictive accuracy or data interpretation, thus, maximizing the
correlation to the desired quality parameters (Schoot et al., 2020; Sing-
poonga et al., 2020) Meanwhile, PLSR was used to correlate the inde-
pendent variables (absorbance spectra) with the dependent variables, the
SSC and water content of intact zucchini, bitter gourd, ridge gourd,
melon, chayote, cucumber (desired quality parameters). A single model
was adopted for to evaluate the SSC of all samples, while another cali-
bration model was employed to estimate the water content. The PLSR
model development was completed using the full original and pre-
processed spectra between 381 and 1065 nm. Table 2 shows the PLS
analysis summary, describing PCs, R2c, R2cv, R2p, RMSEC, RMSECV,
RMSEP, and RPD. The most suitable SSC model was determined by
applying the OSC with R2c of 0.95, RMSEC of 0.32, and PCs of 1. In a bid
to examine the effectiveness and reliability of the established model, the
model was tested to predict the unknown samples (prediction set), and
this resulted in an R2p of 0.96, RMSEP of 0.32, and RPD of 5.68.
Meanwhile, in the water content evaluation, OSC was also appointed to
correct the original spectra, thus producing the optimum model (R2c ¼
0.92, RMSEC¼ 0.61, and PCs¼ 1), able to predict the water content with
satisfactory results (R2p¼ 0.92, RMSEP¼ 0.58, and RPD¼ 3.69). Rambo
et al. (2016) investigated a broad dataset model covering coconut, ba-
nana, and coffee biomasses, using a spectra range of 400–2500 nm. The
calibration model of the quality parameters associated with this study,
obtained satisfactory results, with water content and total sugar R2c ¼
0.82 and 0.87, and RPD ¼ 7.40 and 12.13, respectively. In another study
Figure 4. Scatter plot of multi-products calibration set (blue) and prediction se
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by Clavaud et al. (2017) on the development of a global model, NIR
(4000–10000 cm�1) was used to quantify the moisture content in various
freeze-dried medicines. Satisfactory correlation between spectra and
moisture content reference data was indicated by an R2c of 0.97 and RPD
of 6. Masithoh et al. (2020) also conducted multi-product modeling with
a large dataset, to determine the polysaccharide content. The maximum
R2c and RPD obtained in starch content assessment, were 0.95 and 4.47.
This is in line with the current research, as the R2c and RPD calculated
were above 0.80 and 3.00, respectively, indicating the multi-products
model yielded excellent performance.

The high accuracy of the model attained in this study, was due to the
broad datasets used. Large data variability in spectroscopic techniques
possibly enhances the model robustness. Therefore, the results obtained
were better, compared to the report by Li et al. (2019), estimating SSC in
melons with R2c and RPD of 0.83 and 2.39, respectively. Basically, all the
calibration models listed in Table 2 are able to determine SSC and water
content. However, the model generated from the OSC spectra is most
suitable for application in the agricultural industry, due to performance,
as the OSC minimizes any variables in the original spectra unorthogo-
nally associated with the desired quality parameters. This is in line with
the previous research by Hemrattrakun et al. (2020) on the use of Vis/-
NIR and OSC to detect SSC, ascorbic acid, and firmness in persimmon
fruit (correlation coefficient (R) ¼ 0.86, 0.89, and 0.87, respectively).
The results of the conventional method of assessment was graphed
against the Vis/NIR observation counterpart, to provide a detailed model
reliability image. Figure 4 shows the scatter plots of calibration and
prediction sets for SSC and water content. The sample appears to be
scattered throughout the regression line in both groups, indicating the
Vis/NIR prediction did not differ from the measured water content and
SSC. This confirmed the calibration models in this experiment were
suitable for further application (Nicolaï et al., 2007). Therefore, the
t (red) for SSC (a) and water content (b), developed using PLSR and OSC.



Figure 5. The regression coefficients of the soluble solids content (SSC) and water content multi-products calibration models.

Table 3. The absorption bands identified from the regression coefficient plot in the multi-products calibration models of SSC and water content.

Quality attribute Sensitive wavelength (nm) Wavelength (nm) reported from other
studies

Bond vibration Structure

SSC 450, 480, and 504 443 and 490 (Bantadjan et al., 2020b) Starch

636 635 (Ziba et al., 2019) Starch, amylose

915 890 (Phetpan et al., 2018)
873, 910, and 913 (Posom et al., 2020;
Maraphum et al., 2020; Phuphaphud et al.,
2020)

3rd overtone of band C–H Carbohydrates, starch

Water content 423, 480 443 and 490 (Bantadjan et al., 2020b) Starch

759 755 (Phetpan et al., 2018) 3rd overtone of band O–H Water

870 890 (Phetpan et al., 2018) 3rd overtone of band C–H Carbohydrates, starch

915 910 and 913 (Posom et al., 2020;
Maraphum et al., 2020; Phuphaphud et al.,
2020)

975 970-975 (Posom et al., 2020; Bantadjan
et al., 2020a)

2nd overtone of band O–H Water

SSC: soluble solids content.
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Vis/NIR technique was concluded to be a reliable replacement for the
conventional methods of quality evaluation in agricultural products.
However, the developed models in this study were discovered to have a
few limitations. These models are applicable to the products previously
calibrated. This means a different product must be included in the cali-
bration set and regression modeling, prior to assessment.
3.4. Regression coefficient and sensitive wavelengths

Figure 5 shows the regression coefficient (RC) for predicting SSC (a)
and water content (b) of six products, zucchini, bitter gourd, ridge gourd,
melon, chayote, and cucumber. The RC on the PLSR calibration model
defines the bands correlated with SSC and water content. Furthermore,
each wavelength with a high RC (positive/negative) peak has a signifi-
cant impact on model development. Table 3 shows the absorption band
data derived from the RC plots. The RCs both display different trends,
however, the two quality parameters were discovered to have similar
peaks, specifically at 915 nm, and this correlates with the third overtone
of the C–H band. This waveband is characteristic of carbohydrates, and is
defined as the main structure of starch content (Maraphum et al., 2020).
In addition, identical sharp peaks were observed around 480 nm for both
quality parameters. Absorption peaks characteristic of starch content
were also found at 423, 450, 480, and 504 nm. Meanwhile, SSC related
6

peaks were discovered at 636 nm, and this was the amylose waveband
(Bantadjan et al., 2020b). The RC peaks for water content appeared at
759 nm (third overtone of the O–H band) and 975 nm (second overtone
of the O–H band), corresponding to water molecules (Phetpan et al.,
2018; Posom et al., 2020; Bantadjan et al., 2020a). This confirmed the
SSC prediction was influenced by the C–H band, while the water content
determination referred to the bond vibration of O–H and C–H.

4. Conclusions

This experiment showed Vis/NIR spectroscopy is able to quantify SSC
and water content in six fruits and vegetables of the Cucurbitaceae
family, including zucchini, bitter gourd, ridge gourd, melon, chayote, and
cucumber. The multi-products models obtained R2c and RMSEC values of
0.95 and 0.41 for SSC, as well as 0.92, and 0.61 for water content.
Subsequently, the calibration model was used to estimate different
samples, and R2p of 0.96 and 0.92, RMSEC of 0.32, and 0.58, as well as
RPD of 5.68 and 3.69 were obtained for SSC and water content, respec-
tively. These statistical calculations confirm the development of multi-
product calibration models is suitable for the prediction of SSC and
water content in members of the Cucurbitaceae family.

The idea of lead time reduction is still a concern in the agricultural
sector. As a result, innovative technologies are used to expedite the
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quality control of foods. The potential to use a single model across
multiple products to perform a rapid and non-destructive evaluation of
SSC and water content represent a significant advancement in the anal-
ysis of in-lab samples. Therefore, development of multi-product models
are time and cost-effective, compared to the single product analysis.
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