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Turbulent current sheet frozen 
in bursty bulk flow: observation 
and model
L. Q. Zhang1, Chi Wang1*, L. Dai1, W. Baumjohann2, James L. Burch3, Yu. V. Khotyaintsev4 & 
J. Y. Wang5

Utilizing four-point joint observations by Magnetospheric Multiscale Spacecraft (MMS), we investigate 
the main features of the current sheet frozen in (CSFI) the bursty bulk flow. Typical event on the 
steady long-lasting BBF on July 23, 2017 shows the enhanced dawn-dusk current (Jy0) in the CSFI 
(β ~ 10). The magnitude of the Jy0 in the CSFI is about 5.5 nA/m2. The CSFI is highly turbulent, with 
the ratio of ∆J/J0 of ~ 2 (where ∆J is perturbed J). The turbulent CSFI is characterized by intermittent 
current coherent structures. The magnitude of the spiky-J at coherent structures is typically above 
30 nA/m2. Spectrum analysis exhibits that BBF turbulence follows distinct dissipation laws inside and 
outside the CSFI. Based on MMS observations, we propose a new model of the BBF in the framework 
of magnetohydrodynamics. In this model, the BBF is depicted as a closed plasma system with the 
localized current sheet frozen at the center of the flow (Taylor’s hypothesis). In the light of principle 
of Helmholtz-decomposition, the BBF motion in the tail plasma sheet is explained. The model also 
predicts the thermal expansion of the BBF after leaving the reconnection source region.

Bursty bulk flow (BBF) is a common phenomenon in the Earth’s magnetotail1–3. It is widely accepted that the 
BBF is generated by near-Earth magnetic reconnection4,5. BBF undertakes the main task of energy transport in 
the tail plasma sheet. As the main energy carrier, plenty of energy would be released during BBF deceleration. 
Part of flow energy is converted into magnetic energy piled up in the deceleration region6,7. Part is converted 
into wave energy propagating away from deceleration region8,9. Many magnetospheric activities are linked to 
BBF deceleration, such as magnetic dipolarization in the near-Earth tail region10,11, Alfvénic auroral formation 
in the ionosphere12,13, and Pi2 on the ground14.

Recent observations show growing evidence of the BBF as a complex plasma flow15–18. Firstly, the BBF has a 
complex flow structure. The direction of the flow relative to magnetic field has a gradual transition from predomi-
nantly perpendicular in the current sheet to predominantly parallel at the plasma sheet boundary layer (PSBL)19. 
Secondly, the BBF is almost permanently turbulent. Utilizing four-point observation from MMS spacecraft, 
Zhang et al. investigated in details the vorticity ( ω = ∇ × V ) within the BBF20–22. They found that the strength 
of the ω-field depends highly on the BBF velocity. The higher the BBF velocity, the stronger the vorticity. In 
addition, the ω-field of the BBF has strong anisotropy. The ω-field is predominantly perpendicular, both in the 
current sheet and near the PSBL.

Historically, the BBF is explained by the depleted flux tube model23,24. In the depleted flux tube model, the flux 
tube is closed with two footpoints located at the ionosphere. The depleted flux tube model is initially developed 
to solve the problem of “pressure disaster”25. The “pressure disaster” arises from the large-scale magnetosphere 
convection, i.e., the slow earthward moving flux tube with typical velocity of several tens kilometer per second26. 
Later, the depleted flux tube is invoked to interpret the fast flow with enhanced normal field in the plasma 
sheet27,28. However, “flux tube” fails to explain the flow structure internal of the BBF, neither earthward flow with 
positive Bz nor tailward flow with negative Bz.

In the present paper, we propose a new physical model of the BBF based on four-point joint observation by 
Magnetospheric Multiscale Spacecraft (MMS)29. While operating in the Earth’s magnetotail, the measurement 
data has the time-resolution of 4.5-s for Fast Plasma Investigation (FPI)30, 0.125-s for fluxgate magnetometers 
(FGM)31, 0.03-s resolution for 3D Electric Field Double Probe (EDP)32. Geocentric solar magnetospheric (GSM) 
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coordinates are adopted. Curlometer analysis33 from four-point MMS measurements of the magnetic field is 
used to calculate the current density. Besides, the median filter (cut-off frequency of 0.003 Hz) is used to separate 
the unperturbed field ( B0/E0 ) and the perturbed field (∆B/∆E). Then, the perturbed fields are used to calculate 
Poynting vector ( P = �E ×�B ). In calculations of the Poynting flux, both electric and magnetic fields are 
interpolated to match the 4.5 s time cadence of the FPI data. Typical event confirms the enhanced dawn-dusk 
current in the current sheet frozen-in (CSFI) the BBF. Our BBF model highlights the potential significance of the 
CSFI on the nonlinear energy cascade of the BBF turbulence. On the basis of Helmholtz-composition principle, 
the motion of the BBF in the tail plasma sheet and its acceleration/deceleration is explained. Besides, the model 
predicts the thermal expansion of the BBF after its leaving reconnection source region.

Theoretical fundamental.  The Helmholtz decomposition is a fundamental theorem in fluid analysis34,35. 
In the light of Helmholtz-decomposition principle, the velocity of any fluid element can be decomposed into: 
V = V0 + ω× δr + ε · δr . Thus, the velocity field is separated into an irrotational (V0) and rotation (ω) parts. 
In the plasma environment, the velocity of fluid element: V =

miVi+meVe

mi+me
≈ Vi , where Vi and Ve are the convec-

tive velocity of ion and electron, and mi and me are the mass of ion and electron. Applying Helmholtz-decompo-
sition principle to plasma flow, the velocity of a fluid element is that:

where Vi0 is the translation velocity of ion flow, ( ωi = ∇Vi ) is ion vorticity, and εi is the ion transformation 
tensor coefficient. At MHD scale, there has Vi = Ve and ωi = ωe . Here,ωe

According to magnetohydrodynamic (MHD) theory, the translation velocity Vi0 in Eq. (1) obeys the motion 
equation

The first and second terms at the right hand are the gradient of the plasma pressure and magnetic tension 
force, respectively. This equation decides the flow acceleration/deceleration process.

Case study.  A steady long-lasting BBF is recorded on July 23, 2017 by MMS1 spacecraft. Associated evolu-
tions of the plasma and field from 16:10 to 16:50 UT are shown in Fig. 1. Prior to the flow, MMS1 is posited at the 
boundary layer of the plasma sheet (β ~ 0.2). The BBF appears at 16:19 UT. After entering into the BBF, MMS1 
rapidly moves into the current sheet. Ion temperature increases from ~ 1.7 to ~ 4.5 keV and ion density increases 
from 0.15 to 0.2 cm−3. Correspondingly, high-energy ion flux exhibits a prominent enchantment above 10 keV 
(Panel A).

From 16:23 to 16:35 UT (marked by the two vertical lines), the flow is quite steady. The flow velocity 
is ~ 500 km/s which is above Alfvénic velocity (VA = 455 km/s). The super-VA BBF, with small Vy and Vz compo-
nents, is slightly fluctuated. During this interval, MMS keeps staying in the current sheet (β ~ 10). At 16:38 UT, 
MMS1 shortly dips into the boundary layer of the plasma sheet. Then, it turns back to the flow. After the flow 
pass-by, the current sheet recovers to be quiet. Comparing to the CSFI, the post-BBF BCS has a higher density 
but a lower temperature.

Current variations in the CSFI and BCS are plotted in Fig. 2. The Bz0 in the CSFI is quite small and the normal 
field of the CSFI is illegible. The CSFI is characterized by a positive Jy0 (within two vertical lines). This confirms 
the dawn-dusk current in the CSFI. The magnitude of the Jy0 in the CSFI is about 5.5 nA/m2, which is much higher 
than the BCS. The CSFI is highly turbulent. The amplitude of the perturbed current (∆J) is ~ 10 nA/m2, and the 
ratio of ∆J/J0 is close to 2. The turbulent CSFI is characterized by intermittent coherent structures36. Typically, 
the magnitude of the spiky current at coherent structures is above 30 nA/m2.

Panel 2(H) shows pressure variation inside and outside the flow. The BBF is characterized by higher thermal 
pressure (Pth) and lower magnetic pressure (Pm). The total pressure is higher inside the flow than outside the 
flow. This implies the ongoing thermal expansion of the BBF. The PE in the pre-flow plasma sheet and PT in the 
post-flow plasma sheet are almost equal. As a consequence, the pressure at the two sides of the flow is basically 
balanced.

Figure 3 exhibits the B-spectrum inside CSFI (B < 10 nT) and outside CSFI (B > 10 nT). It can be seen that 
the BBF turbulence follows different law inside and outside the CSFI. Below 0.4 Hz, the two spectra have similar 
evolutions follow the slope of − 5/3. Above 0.4 Hz, the two spectra spilt into two different slopes. The B-spectrum 
tends to have a steeper slope in the PS (− 2-like) than in the CSFI (− 2.5-like).This implies a faster energy transfer 
and dissipation toward small scale inside the CSFI than outside the CSFI.

Physically, the CSFI can be treated as the current vortex sheet37,38. The current vortex sheet supports both 
fluid-type (Kelvin–Helmholtz) instability and non-fluid (tear-mode) instability. In this sense, the CSFI behaves 
as the boundary layer internal of the flow and contributes to mediate the nonlinear energy cascade process of 
the BBF turbulence. The distinct power laws inside and outside the CSFI could be related to the different BBF 
cascade near and far away from the current boundary layer.

Statistical result.  Case study shows the potential thermal expansion of the BBF. The thermal evolution of 
the BBF depends only on the difference of the plasma pressure inside and outside the flow, The BBF expands 
if Pin > Pout, and contracts if Pin < Pout. The thermal expansion has substantial effect on the evolution of the 

(1)Vi = Vi0 + ωi × δr + εi · δr

(2)
ρ
dVi0

dt
= J× B−∇P

= −∇

(

P+
B
2

2µ0

)

+
(B · ∇)B

2µ0
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BBF.  Firstly, the thermal expansion decides the spatial scales of the BBF. Secondly, the thermal expansion 
dominates the properties of the BBF, including its ion density and temperature. Thirdly, the thermal expansion 
changes the property of the BBF turbulence from incompressible to compressible.

Utilizing MMS data collected from May 2017 to Oct 2018, we perform a statistical and comparative study 
on the plasma pressure of the BBF with that of the BPS. The BBF is selected by the criterion of the duration 
of V⊥x > 200 km/s for longer than 20 s. The selection region is confined in the box of -25 RE < X < − 10 RE, − 15 
RE < Y < 15 RE and − 5 RE < Z < 5 RE. There are totally 831 BBF events selected. For each BBF, the plasma pressure 
is averaged over BBF time. The obtained average value is used to be Pin of this BBF. For each flow, the plasma 
pressure in the pre-BBF BPS is averaged over 10 min (before the approach of the BBF). Obtained average value 
is used to be Pout of that BBF. Figure 4 plots BBF Pin versus pre-BBF Pout. The ratio of BBF P to pre-BBF P varies 
mainly in the range of 0.1 to 5, with the peak at 0.8. In particular, about 15% of the BBFs have a higher ratio than 
1.5. This strongly suggests the thermal expanded of the BBF.
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Figure 1.   Continuous fast flow embedded turbulent current sheet on 23 July, 2017 by MMS1 spacecraft (GSM 
coordinates). (A) plots ion energy spectrum. (B) shows measured Bx, By, Bz, and B total. (C) is measured Vx, 
Vy, and Vz. (D) is parallel velocity (V//) and perpendicular velocity (V⊥). (E–J) are the three components of the 
current density (calculated by J = ∇ × B∕μ0). (H,J) show ion density (n) and temperature (T). Panel J is plasma β 
(ratio of thermal pressure to magnetic pressure).
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Discussion
With four-point joint observation by MMS spacecraft, we present the different turbulent characteristics of the 
BBF in the frame of time series and frequency domain. This is very important to understand the mechanics 
related to our earth environment system as well as space plasma environment. The BBF turbulence is intrinsi-
cally the superposition of flow and wave. The interaction between the eddy and wave is unavoidable within the 
BBF turbulence. Associated studies in the fluid turbulence39–41 show that the interaction between eddy and wave 
could substantially affect the nonlinear energy cascade process. Study on the BBF turbulence is expected to bring 
new knowledge on the interaction between eddy and wave in turbulence theory.

To further study the BBF turbulence, the primary thing is to construct the proper fluid model of the BBF. 
The key is to reconcile the main body of the flow with the current sheet frozen in the flow42,43. In classical MHD 
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theory, the electric current is always closed ( ∇ · J = 0 ). Thus, the enhanced dawn-dusk current in the localized 
current sheet frozen in the BBF must be closed. A natural way to close it is via electric current at the surface of 
the flow. Figure 5A shows the closed current system of a BBF in the meridian profile. At the dusk-side boundary 
of the BBF, the cross-tail current is split into two equivalent branches. One branch flows along the top of the 
BBF. The other flows along the bottom of the BBF. The two branches reach to the dawn-side boundary where 
they meet together and turn back to the current sheet. The closed current system separates the BBF from the 
background plasma and magnetic field. In this way, the BBF forms an isolate plasma system traveling in the 
background plasma sheet.

Now, we consider the BBF motion in the plasma sheet. The motion of the BBF in the background plasma 
sheet is illustrated in Fig. 5B. We know that the motion of the bulk flow could be simplified to the motion of the 
mass center. Assuming that the CSFI has small normal component (the Harris-type current sheet as observed in 
this study)43,44, the magnetic tension force (quantified by JY × Bz ) in Eq. 3) could be neglected. Thus, the motion 
of the BBF, its acceleration and/or deceleration, depends only on the plasma pressure gradient at the two sides 
of the flow. If the background current sheet (BCS) has a positive pressure gradient (PE > PT), the BBF would be 
decelerated. Vice versus, if there has PE < PT, the BBF would be accelerated.
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As a summary, we propose a new physics model of the BBF, i.e., the CSFI model. In this model, the BBF is 
depicted as a closed plasma system with the localized current sheet frozen at the center of the flow. The model 
highlights the contribution of the CSFI to mediate the nonlinear energy cascade process of the BBF turbulence. 
Finally, it is worthy to point out that the CSFI-BBF model is applicable to the popular reconnection jet in the 
Sun-Earth space, such as the surface of the Sun and the magnetosheath region downstream the bow shock as well.
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