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Minireview
Marsupials and monotremes sort genome treasures from junk 
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Abstract

A recent landmark paper demonstrates the unique contribution of marsupials and monotremes
to comparative genome analysis, filling an evolutionary gap between the eutherian mammals
(including humans) and more distant vertebrate species. 
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Sequencing of a variety of mammalian and other vertebrate

genomes is now proceeding apace, and one major goal of this

work is to interpret the massive amounts of data from the

Human Genome Project by aligning sequence and distin-

guishing conserved elements from the background of variable

sequence (‘phylogenetic footprinting’). Sequence data from

mammals that are more or less closely related to humans

(chimpanzee, mouse, dog) and more distantly related verte-

brates (birds, fish) span 450 million years of evolution. But

there is still an awkward gap, precisely in the region of the

tree from which genomic data are most needed: species that

are not so close that sequence comparison gives false-positive

signals and not so far that the sequences are unalignable.

Marsupials and monotremes, the earliest groups of mammals

to diverge, fill this gap (Figure 1). All mammals produce milk

and suckle their young, but marsupials and monotremes are

distinguished from eutherian (‘placental’) mammals by dif-

ferences in reproduction. Marsupials such as kangaroos and

wallabies give birth to highly underdeveloped young and

much of their development occurs while suckling in the

pouch (including of the hindlimbs, eyes, gonads and a signifi-

cant portion of the brain). Monotremes such as platypus lay

eggs that are incubated in a burrow, where the young hatch

and suckle from milk patches until they mature.

In a recent landmark paper in Proceedings of the National

Academy of Sciences USA, Margulies et al. [1] present the

sequencing and comparative analysis of a 1.9 megabase (Mb)

region from three marsupials (the North American opossum

Didelphis virginiana, the Brazilian opossum Monodelphis

domestica and the tammar wallaby Macropus eugenii) and a

monotreme (the platypus Ornythorhynchus anatinus).

Although previous studies [2] have clearly demonstrated the

utility of marsupial sequences in comparative analysis, Mar-

gulies et al. [1] have analyzed a significantly larger region,

looked at multiple marsupial species for the first time and

made the first large-scale comparison with a monotreme.

This has enabled the identification of sequences that are

conserved between multiple species, and which may there-

fore have functional significance.

The results [1] clearly confirm the prediction [3] that non-

eutherian mammals make a unique contribution to the power

of comparative analysis. Because marsupials and

monotremes diverged from eutherian mammals 180 and 210

million years ago, respectively, non-functional sequences are

expected to have diverged beyond recognition, making con-

served sequences easier to spot. Approximately 34% of the

marsupial sequence and 14% of the platypus sequence was

alignable with the human genome, compared with 45%-75%

for eutherian mammals. This smaller proportion of alignable

sequence improves the selectivity of the analysis, resulting in

rapid identification of the most conserved (and by inference

the most important) functional non-coding regions. Non-

eutherian sequence can therefore make a strong contribution

to comprehensive functional annotation of non-coding DNA,

such as is being undertaken by the ENCODE project [4]. 

The 1.26 Mb of contiguous gap-free sequence obtained from

the platypus [1] is the largest sample of high-quality



sequence available so far for a monotreme, and it provides

some early pointers to what we can expect from the platypus

genome project. As found in previous molecular studies

[5,6], a large number of core short interspersed nucleotide

elements (SINEs) were present in the platypus sequence.

The ubiquity of these small repeated elements will make the

assembly of whole genome sequence quite a challenge.

Another important observation made by Margulies et al. [1]

is that the GC content of the platypus genome is significantly

higher in than that of other mammals. Models of molecular

evolution often assume that the sequences being compared

have the same frequency of short motifs; we must allow in

such models for the difference in composition, which is

apparent at ‘neutral’ four-fold degenerate sites in codons.

The higher GC content of the platypus genome may reflect

differences in mutational processes, such as decreased rates

of CpG methylation, or different selective pressures owing to

fundamental differences in physiology between monotremes

and other mammals.

As we define the appropriate species to compare and the

techniques for identifying sequences conserved between

multiple species, we can build a comprehensive list of con-

served regions that are likely to be functional. The next chal-

lenge will be to work out how these regions function and why

they evolved to the form we see today. Valuable insights may

be provided by categorizing conserved regions by their dif-

ferent patterns of molecular evolution, and thereby inferring

the type of functional constraint. For example, about half of

the multispecies conserved sequences that are not in known

exons were found to be conserved in all of the species

examined [1]. Of those not present in all mammals, some are

specific to individual clades (such as eutherians); these could

be significant in evolution, as changes in gene regulation,

rather than in the protein products of genes, are likely to be

the major contributor to the phenotypic diversity of life. In

order to start to unravel the role of individual clade-specific

conserved noncoding sequences we will need taxonomically

rich datasets within all clades, to compensate for the reduced

discriminatory power caused by the short evolutionary dis-

tances involved and to allow reliable identification of con-

served sequences. Such analyses will therefore become more

tractable as more genome sequences become available. The

interpretation of changes in regulatory elements will also

require other genomic data, such as expression information

from a representative range of species.

The power of comparative genomics goes beyond the discov-

ery of regulatory regions in non-transcribed DNA high-

lighted by Margulies et al. [1]. We have previously proposed

[3] that the increased evolutionary distance from humans to

marsupials and monotremes will be particularly valuable in

studies of untranslated regions, as the constraints of tran-

scription increase the level of conservation (and therefore of

noise) in comparisons between more closely related species.

A recent study using four eutherian mammals by Xie et al.

[7] demonstrates the utility of comparative studies to define

regulatory elements in 3� untranslated regions; this

approach can easily be extended by the addition of marsu-

pial and monotreme sequence. Coding regions are also a rich

area for comparative genomics to which marsupials and

monotreme sequence can contribute. For instance, compari-

son of cDNA sequence of the large and complex gene

α-thalassemia and mental retardation on the X (ATRX)

between human and tammar wallaby has identified con-

served protein-binding sites [8].

Another potential application of marsupial and monotreme

sequences is shown by a study sharing the same journal

issue with Margulies et al. [1]. Sawyer et al. [9] present an

analysis of adaptive evolution of the primate TRIM5α gene,

which encodes a protein that limits retrovirus infection by an

unknown mechanism. By using evolutionary analysis they

show that TRIM5α is engaged in an antagonistic conflict

between the immune system and retroviruses (including

human immunodeficiency virus, HIV) that is at least as old

as the primate lineage. Adaptive evolution can be inferred by

comparing the ratio of mutations that change an amino-acid

sequence (Ka) to those that are in degenerate codon posi-

tions and therefore silent (Ks; for details see the commentary

by Yang in the same issue [10]). Genes that are undergoing

adaptive evolution are interesting from the point of view of

understanding the process of evolution, and they may also

be important in human disease [11,12]. Any gene that is

evolving new functions or a different mode of regulation is

likely to be more prone to error, and there is a correlation

between genes evolving adaptively and disease genes that
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Figure 1
The phylogenetic relationships of species discussed in this article [1,14].
Species used in the comparison of Margulies et al. [1] are indicated with
black lines.
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are catalogued in the Online Mendelian Inheritance in Man

(OMIM) database [12]. The addition of marsupial and

monotreme sequences will provide evolutionary depth to

whole-genome screens for adaptively evolving genes using

Ka/Ks ratios - in the style of a recent study comparing

human, chimpanzee and mouse sequences [12] - improving

their power to detect genes under positive selection. Also,

marsupials and monotremes are uniquely positioned to illu-

minate the genes and domains that were under selection in

the early mammalian radiation and that were critical in

mammalian evolution.

Mammalian comparative genomics has itself evolved from a

data-poor science, in which most effort went into the collec-

tion of data, to a science of the genomic age in which large

amounts of high-quality data are widely available. The

South American opossum genome sequence is currently in

assembly, with draft sequence now available. Platypus

genome sequencing is underway, with approximately three-

fold whole-genome shotgun coverage completed. Two-fold

shotgun sequencing of the genomes of tammar wallaby and

eight eutherian mammals, including important representa-

tives of the more distantly related eutherian lineages (shrew,

tenrec, armadillo and elephant), is starting this year [13].

The escalating comparative-genomics firepower arising

from these datasets, along with easy-to-use tools integrated

into genome browsers, is available to all researchers to

analyse their region of interest. The scale and power of

mammalian comparative genome analysis is set to take a big

leap forward.

References
1. Margulies EH, Maduro VV, Thomas PJ, Tomkins JP, Amemiya CT,

Luo M, Green ED; NISC Comparative Sequencing Program: Com-
parative sequencing provides insights about the structure
and conservation of marsupial and monotreme genomes.
Proc Natl Acad Sci USA 2005, 102:3354-3359.

2. Chapman MA, Charchar FJ, Kinston S, Bird CP, Grafham D, Rogers J,
Grutzner F, Graves JA, Green AR, Gottgens B: Comparative and
functional analyses of LYL1 loci establish marsupial
sequences as a model for phylogenetic footprinting. Genomics
2003, 81:249-259.

3. Wakefield MJ, Graves JA: The kangaroo genome. Leaps and
bounds in comparative genomics. EMBO Rep 2003, 4:143-147.

4. ENCODE Project Consortium: The ENCODE (ENCyclopedia
Of DNA Elements) Project. Science 2004, 306:636-640.

5. Kirby PJ: Investigations of the Monotreme Genome. PhD thesis.
La Trobe University, Department of Genetics, Bundoora, Australia;
2002.

6. Gilbert N, Labuda D: Evolutionary inventions and continuity of
CORE-SINEs in mammals. J Mol Biol 2000, 298:365-377.

7. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K,
Lander ES, Kellis M: Systematic discovery of regulatory motifs
in human promoters and 3’ UTRs by comparison of several
mammals. Nature 2005, 434:338-345.

8. Park DJ, Pask AJ, Huynh K, Renfree MB, Harley VR, Graves JA:
Comparative analysis of ATRX, a chromatin remodeling
protein. Gene 2004, 339:39-48.

9. Sawyer SL, Wu LI, Emerman M, Malik HS: Positive selection of
primate TRIM5alpha identifies a critical species-specific
retroviral restriction domain. Proc Natl Acad Sci USA 2005,
102:2832-2837.

10. Yang Z: The power of phylogenetic comparison in revealing
protein function. Proc Natl Acad Sci USA 2005, 102:3179-3180.

11. Huttley GA, Easteal S, Southey MC, Tesoriero A, Giles GG,
McCredie MR, Hopper JL, Venter DJ: Adaptive evolution of the
tumour suppressor BRCA1 in humans and chimpanzees.
Australian Breast Cancer Family Study. Nat Genet 2000,
25:410-413.

12. Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd
MA, Tanenbaum DM, Civello D, Lu F, Murphy B, et al.: Inferring
nonneutral evolution from human-chimp-mouse ortholo-
gous gene trios. Science 2003, 302:1960-1963.

13. New Genomic Sequencing Targets
[http://www.genome.gov/11007951]

14. Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ,
Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS: Res-
olution of the early placental mammal radiation using
Bayesian phylogenetics. Science 2001, 294:2348-2351.

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2005/6/5/218                                          Genome Biology 2005, Volume 6, Issue 5, Article 218 Wakefield and Graves  218.3

Genome Biology 2005, 6:218


