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Population-scale peach genome analyses unravel
selection patterns and biochemical basis underlying
fruit flavor
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A narrow genetic basis in modern cultivars and strong linkage disequilibrium in peach (Prunus
persica) has restricted resolution power for association studies in this model fruit species,
thereby limiting our understanding of economically important quality traits including fruit
flavor. Here, we present a high-quality genome assembly for a Chinese landrace, Longhua
Shui Mi (LHSM), a representative of the Chinese Cling peaches that have been central in
global peach genetic improvement. We also map the resequencing data for 564 peach
accessions to this LHSM assembly at an average depth of 26.34x per accession. Population
genomic analyses reveal a fascinating history of convergent selection for sweetness yet
divergent selection for acidity in eastern vs. western modern cultivars. Molecular-genetics
and biochemical analyses establish that PPALMT1 (aluminum-activated malate transporter 1)
contributes to their difference of malate content and that increases fructose content accounts
for the increased sweetness of modern peach fruits, as regulated by PpERDL16 (early
response to dehydration 6-like 16). Our study illustrates the strong utility of the genomics
resources for both basic and applied efforts to understand and exploit the genetic basis of
fruit quality in peach.
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ruits are an indispensable component of healthy human

diets, providing vitamins, minerals, dietary fibers, anti-

oxidants, and calories!. Sweetness and acidity are two of the
important flavor determinants which influence consumer pre-
ference and acceptability?. Current genome researches have
strengthened the genetic basis underlying these two internal
quality properties for fruit flavor improvement in many fruit
crops>~7.

Domesticated peach (Prunus persica (L.) Batsch), a model for
genetics and genomics of the genus Prunus and other related
Rosaceae perennial fruit crops® especially in study on the for-
mation mechanism of fruit quality?, originated in China over two
million years ago (MYA)!®!! and had undergone thousands of
years™ cultivation and improvement, particularly for fruit quality
in China!?>!3. Chinese peach germplasm has been foundational in
the development of virtually all modern peach cultivars!2. Two
phases of peach dispersal from China have together profoundly
impacted the genetic diversity of modern cultivars worldwide: an
initial dispersal of primitive peach landraces (presumably) from
northwestern China (dating from the final centuries BC) and the
later dispersal of landraces with excellent fruit quality (particu-
larly low-acid and sweet peaches) from eastern China (dating
from mid-19th century) to locations around the world!214-17_ Tt
is notable that current preferences for peach flavors differ sub-
stantially around the world, forming two typical flavor types:
sweet, low-acid vs. sweet, acid taste, respectively favored by
eastern and western consumers'®1°. However, molecular
mechanisms that explain how past genetic improvement had
shaped such alternative fruit flavors are still not well
characterized.

Recent genomic studies of cultivated peaches and some of their
wild relative species have identified specific genome regions tar-
geted by human selection, some of which are related to fruit taste
flavor, clarifying that such selection occurred both during
domestication!120 and subsequent improvement efforts20-21,
However, much remains unknown about how specific
improvement-related loci/genes have contributed to peach fruit
flavor. Although previous studies in peach have reported some
QTLs and/or candidate genes for fruit sweetness and acidity
flavor-related traits®2-2%, their actual genetic determinant(s)
underlying these QTLs have not been identified. Partially
accounting for difficulties in advancing from the peach QTLs
down to the gene level, the resolution power for linkage studies
has been restricted in peach by its narrow genetic basis and high
level of linkage disequilibrium (LD)!°. Ultimately, these are
related to its long-generation time and self-compatibility>0—few
recombinant events and the small sizes of examined segregating
populations for linkage analysis—as well as the relatively limited
number of examined germplasm collections used in GWAS
(genome-wide association study) analysis!>27.

The current peach reference genome Lovell v2.0 (227.4 Mb,
assembled based on Sanger sequencing data)3!32 is from the
doubled haploid PLOV2-2N of a western cultivar Lovell that has
been widely used as rootstock33. Notably, the Chinese Cling
peaches are regarded as the most influential germplasm in the
history of global peach breeding!>34, yet the absence of the
genome assembly of this fundamental material has hindered full
exploration of the genetic basis of peach improvement.

Here, we present a high-quality P. persica reference genome
(257.2 Mb) of Longhua Shui Mi (hereafter referred to as LHSM)
(Supplementary Table 1), a typical eastern “juicy honey peach”
(Shui Mi Tao in Mandarin Chinese) and a representative of the
Chinese Cling peaches that feature a pleasant sweet and low-acid
taste flavor®>. We also collect genome data for a total of 548
diverse P. persica accessions representing Chinese landraces as
well as modern eastern and western cultivars, and 15 close wild

relative P. kansuensis accessions. Population genomic analyses of
these genomes identify a set of improved landraces (ILs), notable
for their obviously contributions as elite germplasm for modern
peach breeding worldwide, and our analyses show a clear trend of
eastward dispersal of these landraces in the historical period
before formal modern peach breeding was initiated. We also
perform GWAS based on multi-year fruit flavor-related pheno-
typic data, and identify loci underlying the sweetness- and
acidity-related flavor traits of peach fruits. Biochemical analyses
of candidate genes using peach mesocarp tissues confirm that the
PpALMT]I (aluminum-activated malate transporter 1) promotes
malate accumulation and that PpERDLI16 (early response to
dehydration 6-like 16) increases fructose content during peach
improvement.

Results
A high-quality LHSM reference genome. The genome of LHSM
was de novo assembled using 30.90 gigabases (Gb) of PacBio long
reads (~120.13x coverage), 27.71 Gb of Illumina short reads
(~107.73x coverage), and 37.87 Gb (~147.25x coverage) of Hi-C
data (Supplementary Fig. 1 and Supplementary Table 2). Based
on a k-mer analysis using all Illumina reads, the LHSM genome
size was estimated to be ~271 Mb, with a heterozygosity of 0.32%
(Supplementary Table 3). The final assembled genome size
reached up to ~257.2 Mb, covering ~95% of the estimated gen-
ome (Table 1), and the assembly comprised 243 contigs with a
contig N50 of 5.17 Mb. A total of 145 contigs, which accounted
for 95.7% (~246.0 Mb) of the total assembled genome, were
anchored into eight pseudo-chromosomes using the Hi-C reads
(Fig. 1a, Supplementary Fig. 2, and Supplementary Table 4).
The LHSM genome assembly exhibited a significantly high
Pearson correlation coefficient (R) (ranging from 0.95 to 0.99 for
different chromosomes) with the recently reported peach genetic
map3® (Supplementary Fig. 3), suggesting an excellent linear
agreement between the physical and the genetic map. The
accuracy and completeness of the LHSM genome were supported
by a high mapping rate for the Illumina reads (98.63% of
185,951,324) and the expressed sequence tags (ESTs) (94.11% of
80,805) of P. persica from NCBI (Supplementary Tables 5 and 6).
The LHSM genome assembly exhibited a high LAI (LTR
Assembly Index) score (20.67) and 97.4% (2066 out of 2121) of
complete BUSCO genes could be aligned to the assembly, similar

Table 1 Summary statistics for the LHSM genome assembly
in comparison with the Lovell v2.0 reference genome.

Genomic feature LHSM Lovell v2.0
Sequenced genotype Diploid Double haploid
Total assembly size 257.2 Mb 227.4 Mb¢
Number of contigs 243d 2,525¢

Largest contig 18.8 Mbd 1.5 Mb¢
Contig N50 length 5.17 Mbd 255.4 kb
Largest scaffold - 28.8 Mb¢
Scaffold N50 - 7.3 Mb¢
Sequences anchored to 246.0 Mb 225.7 Mb¢
chromosomes

GC content 37.57% 37.05%
Number of gaps? 137 1,828
Complete BUSCOsP 97.4% 96.8%

LTR assembly index, LAl 20.67 21.29
Repetitive sequences 118.35 Mb/46.01%  101.99 Mb/44.85%

Protein-coding genes/ 35,215/40,072 31,972/47,089

transcripts
Average transcript length

2175 bp 2215 bp

2 Gaps defined as >10 Ns.

b The analysis from comparisons with the eudicotyledons_odb10 database.
¢ The statistic values taken from the previous publication32,

d Contigs assembled using HERA method.
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Fig. 1 LHSM genome assembly. a Genomic features and variation landscape across the LHSM and Lovell v2.0 genome assemblies. The outer gray (left)
and yellow (right) tracks represent the chromosomes of the LHSM and Lovell v2.0 genome assemblies, respectively, with unit in Mb. b Genomic synteny
map and three misorientations (I, I, lI) and the adjacent misordering (IV-1 and IV-2) on Chr3 between these two genome assemblies. ¢ Validation of the
misorientations and the misordering by aligning Hi-C data of the LHSM genome to the Lovell v2.0 genome. The arrangements of |, II, ll, IV-1, and V-2
regions (highlighted by distinct color lines or boxes) on the LHSM genome are supported by contacts. The color intensity of the Hi-C heatmap represents

the number of links between two 40-kb windows.

to the level obtained for the Lovell v2.0 genome (LAIL 21.29;
BUSCO: 96.8%, 2054 of 2121) (Supplementary Table 7).

We predicted a total of 35,215 protein-coding genes and 40,072
transcripts (Table 1 and Supplementary Table 8), which were
comparable with those of the Lovell v2.0 genome (31,972 genes
and 47,089 transcripts) using the same integrative strategy
combining in silico de novo gene prediction, protein-based
homology searches, and transcript data from RNA sequencing
analysis of various tissues (Supplementary Table 9). An analysis
of TEs overlap with CDS regions indicated TEs overlap for 10,118
protein-coding genes; the percentage of CDS overlapped by TEs
was 28.7% on average (Supplementary Table 10). Apart from the
different methodologies used, the large difference in the number
of protein-coding genes between the LHSM and Lovell v2.0
genome assemblies is likely due to a conservative selection
criterion against TEs in the Lovell genome: their pipeline used an
overlap value of less than 20% for TEs overlap of CDS regions3!.

The annotated protein-coding genes in the LHSM genome
covered 94.1% (1996 out of 2121) of the complete BUSCO genes
(Supplementary Table 7), and 88.29% of these genes could be
annotated by at least one of public database (Pfam, InterPro, NR,
GO, and KEGG) (Supplementary Table 11). Notably, we also
annotated 118.35 Mb repetitive elements accounting for 46.01%
of the LHSM assembly (Supplementary Table 12), a level slightly
higher than that (44.26%) of the Lovell v2.0 genome. Collectively,
these multiple lines of evidence attest to the high-quality of our de
novo LHSM genome assembly, supporting its utility as an
excellent reference for genomic-variation mining and genome-
wide comparative analyses in peach.

We next performed analyses for genome evolution for 12 dicot
plant species including seven Rosaceae (including peach) and five
other species based on their 367 single-copy gene families
(Supplementary Fig. 4). The maximum-likelihood phylogenetic
tree revealed that P. persica and cultivated almond (P. dulcis)
diverged about 4.6-16.6 MYA, consistent with the previous

reports! 137, We found 425 significantly expanded gene families
(P<0.01) comprising 4104 genes in peach as compared to the
common ancestor of peach and almond (Supplementary Data 1);
intriguingly, these expanded genes were significantly enriched in
categories associated with defense response, ATPase activity,
response to auxin, pollination, pectinesterase activity, and malate
transport (Supplementary Fig. 5). Also notably, the aluminum-
activated malate transporter (ALMT) gene family (gene family
0G0000394 in Supplementary Data 1), which have made large
contributions to fruit acidity by affecting malate content in some
fruit crops, such as apple, tomato, and grapevine>®38-40, was
found to have higher copy number in peach (seven copies) than
that (four copies) in almond.

A total of 705,879 SNPs and 181,788 InDels were identified
between the LHSM and Lovell v2.0 genomes (Supplementary
Table 13), potentially exerting effects on 10,234 (29.06%) protein-
coding genes through the detected non-synonymous substitu-
tions, frameshift insertions/deletions, and other large-effect
mutations (stop gain, stop loss, and splicing) (Supplementary
Table 14). We also identified 2309 LHSM-specific genomic
segments (2.01 Mb) and 910 Lovell-specific genomic segments
(0.74 Mb) (Supplementary Data 2), as well as a total of 263
LHSM-specific PAV (presence-absence variation) genes and 141
Lovell-specific PAV genes positioned within these specific
segments (Supplementary Data 3). Compared with the Lovell
v2.0 genome, among the syntenic regions, a total of 2653
deletions and 2068 insertions were found to affect 2.24 and 2.17
Mb genomic regions, respectively; among the rearranged regions
in the LHSM genome assembly, we found 45 inversions (6.10
Mb), 391 translocations (11.22 Mb), and 1320 duplications (8.60
Mb) (Supplementary Table 15). Notably, we found a region at
Chr3: 13.31—18.86 Mb, including the top-three ranked largest
inversions (0.87, 0.83, and 1.27 Mb) and the adjacent transloca-
tions (0.71 and 1.53 Mb for two translocated segments); ~9%
(3193) of protein-coding genes were located within or overlapped
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with these InDels and rearranged regions (Supplementary Data 4
and 5). Thus, we further examined this region through
comparison between the Hi-C contact matrices of the LHSM
and Lovell v2.0 assemblies constructed using LHSM Hi-C data
(Fig. 1b, ¢), and through synteny analysis between LHSM genome
assembly and scaffolds of Lovell v2.0 genome. Beyond showing
the complexity of this region in the Lovell genome which—was
highlighted by Verde et al.32—these results supported the putative
misordering or misorientation of some scaffolds in the corre-
sponding region of the Lovell v2.0 genome; for example, the
Super_27 and Super_451 were misordered, and their order in the
pseudomolecule should be inverted in a future release (Supple-
mentary Table 16).

In addition to variations in genomic sequences, we also explored
the gene copy number variations between the LHSM and Lovell
v2.0 genomes. Based on clustering analysis of orthologous genes,
we found 22,166 species-conserved orthogroups covering 23,726
genes, and 2419 and 944 species-expanded orthogroups covering
7727 and 2988 genes for the LHSM and Lovell v2.0 genomes,
respectively (Supplementary Table 17). GO functional enrichment
analysis revealed that genes in the species-expanded orthogroups of
the LHSM genome were enriched for functions related to defense
response, whereas there was enrichment for genes involved in
proteolysis and reproduction process in the Lovell v2.0 genome
(Supplementary Fig. 6).

Peach population structure and pre-breeding improvement in
fruit quality. We identified a total of 6.97 million SNPs and 1.23
million InDels across 548 P. persica genomes from various geo-
graphic regions and 15 closely wild relative (P. kansuensis) gen-
omes with an average depth of 26.34x based on mapping to
the LHSM reference genome (Supplementary Data 6-8). Using the
P. kansuensis accessions as the outgroup, a neighbor-joining (NJ)
phylogenetic tree for all P. persica accessions provided a first
separation of group I (including all ornamental peaches and most
of landraces) and group II (mainly including most of the modern
cultivars) (Fig. 2a). Group II was further classified into two sub-
groups (group II-1 and II-2); group II-1 mainly contained eastern
cultivars (ECs) from China and other Asian regions and group II-2
mainly contained western cultivars (WCs) notably from the
Americas and Europe (Supplementary Data 6). These classifica-
tions were also supported by the principal component analysis
(PCA) (Fig. 2b), the model-based clustering analysis (K= 3 and 4)
using ADMIXTURE (Fig. 2a), and a previous study?’.

Group II-1 showed clear admixture within some ILs; another
NJ-tree for all the landraces and ornamental peaches supported
that these ILs from eastern China (Fig. 2¢), including most of the
famous Chinese Cling peaches from the Yangtze River Delta
region and some elite landraces from the adjacent Huang-Huai
region, are genetically derived from the primitive landraces (PLs)
across western, central, and eastern China in group I. Regarding
their fruit quality traits, ILs displayed remarkable improvement in
higher fructose content and lower fruit acidity relative to PLs
(Fig. 2d), suggesting selection of ILs by agriculturalists (an early
improvement process) prior to modern peach breeding programs.
A multiple sequentially Markovian coalescent (MSMC) analysis
showed that PLs had an earlier expansion as well as a lager
effective population size than ILs (Fig. 2e and Supplementary
Fig. 7). Moreover, ILs had markedly elevated LD and reduced
genetic diversity (6n) compared to PLs (Fig. 2f), suggesting that a
bottleneck (Bnpr/Omy = 1.37) occurred during the early improve-
ment along with the eastward dispersal. Notably, the protein-
coding genes within the selective sweep regions in the comparison
of ILs and PLs showed enrichment for GO terms including
sucrose biosynthetic process (GO:0005986), sugar-phosphatase

activity (GO:0050308), malate metabolic process (GO:0006108),
malate dehydrogenase activity (GO:0046554), organic acid
biosynthetic process (GO:0016053), and regulation of pH
(GO:0006885) (Supplementary Data 9 and 10), indicating the
potential alteration towards fruit flavor during this early
improvement process.

We compared each accession of the modern cultivars for
signatures of introgressed fragments inherited from the PLs or ILs
based on rIBD (relative identical by descent) analysis?!-43
(Supplementary Fig. 8a). The result indicated that the modern
cultivars had larger proportions of genomic introgressions from
the ILs than from the PLs. Through investigations of the genomic
segments introgressed from the ILs into modern cultivars (ECs or
WCs), we found genes putatively encoding enzymes or proteins
known to function in the synthesis or transport of major organic
acids (e.g, ALMTs®, NADP-malic enzyme*, isocitrate
dehydrogenases®>, and H-ATPase’) and sugars (e.g, SWEET
sugar transporters46, tonoplast monosaccharide transporter47,
sugar transporter, polyol/monosaccharide transporter48, sucrose
synthase, phosphofructokinase?®, beta-galactosidase, and beta-
glucosidases) (Supplementary Fig. 8b and Supplementary
Data 11-14). These findings suggest that potential genetic source
from IL peaches contributed to the fruit flavor-related traits
during modern peach breeding.

Divergent selection for fruit acidity during modern peach
breeding. Given the genetic divergence between ECs and WCs
(Fig. 2a), we performed selective sweep analysis to search for the
genome regions bearing strong selective signatures in the com-
parisons between ECs and WCs; we were also interested in
identifying possible genes under selection in such regions
(Fig. 3a). Notably, we found enriched GO terms related to malate
(dicarboxylic acid) transport (GO: 0015743), citrate (tricarboxylic
acid) metabolic process (GO: 0006101), dicarboxylic acid meta-
bolic process (GO: 0043648), and tricarboxylic acid metabolic
process (GO: 0072350) among the protein-coding genes within
the selective regions, indicating potential alteration of malate and
citrate accumulation (Supplementary Data 15 and 16). Moreover,
we found genes encoding putative ALMT>®, ATP citrate lyase
(ACL)*, lactate/malate dehydrogenases (LDH/MDH)>, iso-
citrate/isopropylmalate dehydrogenases (IDH/ISDH)>2, and H-
ATPase’ (Fig. 3a and Supplementary Data 17 and 18) among the
enriched GO terms; homologs of these proteins have been pre-
viously implicated in the metabolism or transport of organic acids
in fruit crops. These findings suggesting divergent selection for
fruit-acidity-related traits during peach breeding promoted us to
quantify acidity-related phenotypes in ripe fruits, including the
content of the organic acids: quinic acid and shikimic acid, as well
as the two major contributors for peach fruit acidity: malate and
citrate®3. We examined these phenotypes for accessions over two
consecutive years (2016 and 2017), and found significantly higher
levels of both malate and citrate in WCs compared to ECs (Fig. 3b
and Supplementary Fig. 9). We further measured the pH of their
ripe fruits, and also collected titratable acidity (TA) data for all
accessions in 2017. Our phenotypic analysis for fruit acidity, as
measured by TA and pH, showed that WCs have significantly
higher TA level and lower pH compared to those of ECs, multiple
lines of empirical evidence supporting the divergent selection for
fruit acidity in ECs vs. WCs.

We noted that malate, which is the predominant organic acid
in peach!8, showed the strongest correlation with pH (R = —0.62,
P <0.001 in 2017) and TA (R=0.76, P<0.001 in 2017) among
the examined organic acids (Supplementary Data 19), apparently
accounting for a large extent of the divergence in fruit acidity
between ECs and WCs. Of particular note, we found that five
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Fig. 2 Population structure and genetic divergence of primitive landraces and improved landraces. a Phylogenetic tree and model-based clustering of
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Significant divergence of the pH and fructose content of the PL and IL accessions. The number (n) of individuals for each peach type is shown below. In the
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genetic diversity (Brn) for the four different types of P. persica. Source data underlying Fig. 2f are provided as a Source Data file.

putative ALMT encoding genes were among the genes located in
selective sweep regions (Fig. 3a). We examined the expression of
these ALMT genes in mesocarp tissues at 48 DAA (days after
anthesis), a period corresponding to the primary phase for malate
accumulation in peach based on our data (Supplementary Fig. 10)
as well as a previous study!®. One ALMT gene (Pp.LH.06G01819)
was expressed at a significantly higher level (P = 0.004, two-sided
Student’s t-test) in fruits of three high-malate WC accessions
compared to fruits of three low-malate EC accessions (Fig. 3c).
Phylogenetic analysis showed that Pp.LH.06G01819 was clustered
into the corresponding Arabidopsis ALMT clade I with the
previously reported TaALMT], as a malate channel in wheat>*
(Supplementary Fig. 11). We named Pp.LH.06G01819 as
PpALMT1, and peach mesocarp tissues transiently overexpressing
PpALMTT1 had significantly increased malate content compared
to vector control mesocarp tissues (Fig. 3d). These results indicate
that PpALMT1 functions to increase malate content in peach
fruit and supports the inference that differential expression of
PpALMT1 has likely contributed to the divergence of ECs and
WCs in fruit acidity during modern peach breeding.

To further explore whether the genetic loci associated with
acidity have undergone divergent selection, we performed GWAS
analysis of four acidity-related traits including pH, TA, malate
content, and citrate content. For pH, malate, and citrate, we
respectively detected 11, 8, and 4 significant loci in 2016 and 20,
11, and 3 loci in 2017, and for TA, a total of 16 significant loci
were detected in 2017 (Supplementary Table 18 and Supplemen-
tary Data 20). One strongly associated locus (Chr5:
21,714-1,812,811 bp) explained a large proportion of the

phenotypic variance across these four traits (ranging from 9.43
to 38.04%) (Supplementary Fig. 12); this overlapped with the
known D locus of chromosome 5, which has been variously
reported to exert a large-effect on TA or pH2223252829 [p
addition to this locus on chromosome 5, there were other
significant loci with relatively high PVE (phenotypic variance
explanation) values (6.46-27.11%), results implying a compli-
cated genetic regulation mechanism underlying fruit acidity. In
particular, a significantly associated locus (Chr2: 29,927,641 bp)
was among the very top-ranking loci in terms of both P and PVE
values for all four traits in at least 1 year, findings clearly
suggesting its potential contribution to fruit acidity. It also bears
mention that 26.7% to 100.0% of the peak SNPs for each trait
positioned within acidity-associated loci shared overlap (or were
nearby; <100 kb) with the selective sweep regions between ECs
and WCs (Supplementary Table 19 and Supplementary Data 20).
Beyond clearly indicating that these genetic loci have contributed
to the divergent selection of fruit acidity traits between ECs and
WCs, these GWAS results provide an empirical basis for
investigating causal variations for fruit acidity, a major organo-
leptic determinant of fruit flavor quality.

Genetic loci associated with major sugars underlying peach
fruit sweetness. Another major organoleptic aspect of fruit flavor
is sweetness, which is determined by both the type and content of
soluble sugars, including for example sucrose, fructose, glucose,
and sorbitol?”->>. We quantified the content of these four major
sugars for the ripe fruits of the P. persica accessions over two
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consecutive years (2016 and 2017). Specifically, for 2016 and 2017
data, we found that sucrose accounts for ~76.93 and 75.10% of
the examined sugar content at average, followed by glucose (8.65
and 12.16%), fructose (9.98 and 9.58%), and sorbitol (4.44 and
3.16%) (Supplementary Fig. 13), similar trends as in previous
studies?”-°6:7,

We performed GWAS to identify significantly associated loci for
the content of these four sugars based on 1,067,831 SNPs with minor
allele frequency (MAF) >0.05 (Supplementary Fig. 14). A major locus
on chromosome 5 (Chr5: 614,754—1,109,368 bp) explained 8.6 and
7.6% of the phenotypic variance for sucrose content in 2016 and
2017, respectively (Fig. 4a), and this overlapped with previously
reported QTLs for sucrose content on chromosome 5 identified by
using the hybrid populations?2->* (Supplementary Data 21). It is
notable that a gene (PpTST1) encoding a tonoplast sugar transporter
(TST) is positioned adjacent to this locus from our GWAS. TST
proteins can load soluble sugars into the vacuole®®, and the
PpTST1 was recently reported to affect sucrose content in peach
fruit®®. We identified four loci significantly associated with glucose
content in 2017 (Fig. 4b) (Chrl: 30,732,072—30,732,099 bp, Chr3:
15,707,662—15,707,662 bp, Chr4: 10,736,973—12,413,438 bp, and
Chr8: 14,342,373—14,343,414 bp), respectively explaining 7.1, 6.8,
12.5, and 7.1% of the phenotypic variance for glucose content. The
major locus on chromosome 4 was found to overlap with a
previously reported glucose-related QTL (Supplementary Data 21).
Within this major locus (Chr4: 10,736,973—12,413,438 bp), Pp.
LH.04G02050 encoding a putative [-glucosidase that catalyzes
hydrolysis of B-D-glucoside or oligosaccharide substrates®! may
regulate glucose accumulation. Sorbitol is universally found in stone
fruits and is a significant contributor to sweetness in peaches!>92. We
detected two significant signals on chromosome 6 associated with
sorbitol content in 2016, and one signal each for chromosome 1 and
chromosome 3 in 2017 (Supplementary Fig. 14); these respectively

explained 7.5, 8.1, 7.9, and 7.7% of phenotypic variation, thus
identifying candidate loci for investigations about the genetic
determinants of sorbitol accumulation. Of these, one signal on
chromosome 6 (Chré: 22,350,242—22,451,210) was found to overlap
with a recently reported QTL for sorbitol®® (Supplementary Data 21).

Fructose has a higher sweetness impact (1.7-fold as compared to
sucrose) compared to sucrose, glucose, or sorbitol®. Selection for
the elevation of fructose content in tomato has been applied to
develop sweeter cultivars®>6, In this study, we identified a major
GWAS locus (Chrl: 11,738,129— 12,006,040 bp) for fructose
content (Fig. 4c); this overlapped the previously reported FRU
QTL on chromosome 1 identified by using a hybrid population?4
(Supplementary Data 21). The peak SNP (P =6.49-16) in the
major locus could explain up to 13.87% of phenotypic variation for
fructose content in our panel. It was notable that this locus showed
a strong selection signature, supported by significantly reduced
nucleotide diversity (6n) from primitive (PLs) to improved (ECs,
WCs, or ILs) (Fig. 4d). This finding is particularly interesting when
considering the results of our comparative sugar content analyses
collectively: our data support that only fructose content has been
elevated during the peach improvement (Fig. 4e and Supplementary
Fig. 15). Accordingly, the raised sweetness levels of improved peach
germplasm have resulted from elevated accumulation of fructose.
This conclusion agreed with the previous suggestion that
commercial high-quality peaches have higher fructose content as
compared to native peach accessions?7%7,

Identification of the PpERDLI6 gene and its contribution to
increased fructose accumulation during peach improvement.
The haplotype blocks were estimated using PLINK in our can-
didate region for fructose content; this effort further narrowed
this region into only two haplotype blocks harboring significantly

6 | (2021)12:3604 | https://doi.org/10.1038/s41467-021-23879-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a Sucrose content
.~ PVE=765%
o © - — MAD26A ®
=< qSUC.BT: ©]
o
T o ~
~-
o
o

0123456
Expected -log, ,P

Glucose content

PVE = 12.56%
© Pp.LH.04G02050

PVE =7.06%
\.

o |PVE=7.13% PVE=6.84% - Glc_56_Z

/

012345686
Expected -log, ,P

—log,,P
0 4 8 12

o

Fructose content

© .« PVE=1387%
PC102

15

10

\

=log, P

0 234

1 56
Expected -log, ,P

a
om)
o

0.004

— PL
IL Sucrose 75.17 | 75.18
— EC 1.0
-0.0
Fructose

Nucleotide diversity (
0.002

--1.0
- Sorbitol -
O O & P P O
RO R R () PL IL EC WC

Fig. 4 Genetic loci associated with the content of sucrose, glucose, and fructose affecting peach fruit sweetness. GWAS results from analyses of data
for sucrose (a), glucose (b), and fructose (€) content in 2017, respectively. The horizontal lines depict the Bonferroni-adjusted significance threshold (red)
and Permutation threshold (blue) in the Manhattan plot. The indicated PVE (phenotypic variance explanation) value is for the lead SNP at the major locus
for each trait. The green bar at the bottom of each Manhattan plot represents previously reported QTLs27: 68 129 oyerlapping the major loci of these three
traits. d Reduced nucleotide diversity (6r) in the specific genome region, corresponding to the major locus of fructose content on Chrl, of the ILs, ECs, and
W(Cs, as compared to PLs. e Representation of fruit sugar profiles in the different peach types representing the course of peach improvement (*P < 0.05,
**P<0.01 in two-sided Student's t-tests). Among the four examined sugars, only fructose content has been significantly elevated during peach

improvement. The scaled value of sugar content is shown at the right side.

associated SNPs (blockl: Chrl: 11,735,344—11,784,598 bp and
block2: Chrl: 11,912,057—11,962,326 bp) (Fig. 5a). A qPCR
analysis of ripening fruits showed that one gene (Pp.
LH.01G01754) out of all the 13 protein-coding genes found
within these two blocks had notably higher expression in the
three tested low-fructose accessions compared to the three high-
fructose accessions (Supplementary Fig. 16). We also found that
its expression level was significantly negatively correlated with
fruit fructose content (R = —0.56, P = 3e-04, two-sided Student’s
t-test) in a larger panel of 37 peach accessions (Fig. 5b), helping to
explain the earlier report that the FRU QTL region displayed a
strong negative effect on fructose content throughout fruit
development®8,

Phylogenetic analysis showed that Pp.LH.01G01754 belongs to
the ERD6-like subfamily of monosaccharide transporters and it
has the closest relationship with ERD6-like 16 (early response to
dehydration 6-like 16) protein of Arabidopsis (Supplementary
Fig. 17), so it was designated as PpERDLI6. Previous studies
showed that AtERDL6 in Arabidopsis and MAERDL6-1 in apple
are symporter proteins that function in glucose export from the
vacuole into the cytosol®®”?, and transgenic Arabidopsis lines
overexpressing AtERDL6 showed lower levels of glucose and
fructose in leaves as compared to wild type plants®®. We
confirmed the tonoplast localization of the PpERDL16-GFP
fusion protein in tobacco leaf cells using the Aty-TIP-mCherry
fusion protein as the positive control (Fig. 5¢). We also examined
peach mesocarp tissues transiently overexpressing PpERDLIS6,
and found that mesocarp tissues infiltrated with the PpPERDLI6
vector had significantly reduced levels of both glucose and
fructose compared to empty vector control mesocarp tissues
(Fig. 5d). Viewed collectively, these results support that
PpERDLI6 is very likely the causal gene underlying the previously
reported major FRU QTL locus for fruit fructose accumulation.

We found that the 6n values of PpERDLI16 (both its CDS and
the upstream (~5kb) region harboring potential cis-regulatory
elements) were lower among the modern cultivars (ECs or WCs)
compared to PLs (Supplementary Fig. 18), which could
hypothetically have resulted from selection for PpERDLI16. This
motivated an additional detailed analysis of the PpERDLI6

throughout peach improvement. After filtering 17 low frequency
haplotypes (i.e., only carried by one accession), all 76 SNPs in the
genic region of PpERDLI6 could be classified into eight
haplotypes for all peach accessions (including 15 P. kansuensis
accessions) (Fig. 5e). Haplotype network analysis showed that the
primitive haplotypes (Hap6-8) were only carried by wild relative
P. kansuensis (Fig. 5e and Supplementary Fig. 19), whereas
Hapl-5 occurred in ornamental peaches, peach landraces, and
cultivars, with the highest frequency (86.5%) for Hap4, followed
by Hapl (8.7%), Hap5 (5.4%), Hap2 (1.7%), and Hap3 (0.2%)
(Fig. 5e). Moreover, the fructose content of the accessions
carrying Hap4 (average 9.58 mg/ml) or Hap5 (average 8.61 mg/
ml) was significantly higher than those carrying haplotype Hapl
(average 2.39 mg/ml), Hap2 (average 3.89 mg/ml), and Hap3
(average 2.39 mg/ml) (Fig. 5f). The frequencies of the Hap4 and
Hap5 were increased among ILs, ECs, and WCs, as compared to
ornamental peaches and PLs (Fig. 5g). Finally, consistent with our
speculations about PpERDL16’s function, the result that Hap4
was carried by 92.8% of ECs and 98.3% of WCs highlighted
apparently convergent selection for increased fructose content in
both ECs and WCs.

Discussion

We present a high-quality LHSM reference genome and mapped
resequencing data for a large natural population comprising 564
peach accessions to this genome. These resources collectively
explain the extent of genetic variations in peach substantially,
thereby supporting peach genetic studies by augmenting resolu-
tion power for association studies. This is significant, because the
resolution power has long been dragged down owing to the
narrow genetic basis and high levels of LD in peach!>?7. It is
notable that our study revealed a historical eastward dispersal and
continuous improvement trend for domesticated peaches that
occurred before modern peach breeding efforts. It was these early
efforts which led to the low-acid and sweet ILs, including the
typical Chinese Cling peaches, that have subsequently served as
elite germplasm, a situation reflected in the overwhelming con-
tribution of the ILs to the modern cultivars as compared to PLs.
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Nevertheless, our data also show that the PLs have much higher
genetic diversity than the ILs, supporting their utility for breeding
and improvement applications requiring an expanded genetic
basis for introducing economically important traits into modern
peaches (e.g., the potential for resistance to viral pathogens, etc.).
Additionally, our LHSM genome, as a typical IL genome, will
surely facilitate mining of valuable genomic information for
peach genetic improvement generally and specifically for efforts
to modulate fruit quality traits.

Eating quality is an important aspect for the improvement of
fruit-bearing crops as well as seed crops like rice, maize, wheat,
and soybean’!. Sweetness and acidity are understood as the two
most impactful organoleptic attributes for fruit flavor. In peach,

the common consumer demand for sweeter taste, coupled with
differentiated cultural preferences for acidity, has resulted in the
formation of two typical flavor types: sweet, low-acid taste vs.
sweet, acid taste, respectively favored by eastern and western
consumers'$19. Similar preferences are evident for apple culti-
vars: North Americans and Europeans favor sweet, sub-acid
apples, whereas sweet apples with barely any acid flavor are
preferred in Asia and India’2. Our data revealed signatures of
selection in the peach genome that underlie the divergent selec-
tion for fruit acidity that has occurred between eastern and
western peach breeding programs. And we used these detected
differences to pursue specific acidity-related loci and/or candidate
genes. Among candidate genes, a PpAMLTI gene was found to
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affect accumulation of malate, the predominant acid in peach
fruits, thus illustrating the utility of our data and providing spe-
cific information to support genetic improvement towards acid-
ity. Despite the dominant role of malate in contributing to the
divergence of fruit acidity between ECs and WCs, it is bears
mention that the significantly increased citrate content in WCs, as
compared to the PLs (Supplementary Fig. 9), could also serve as a
non-ignorable factor in elevating the fruit acidity in WCs.

We show that PpERDLIG6 is a casual gene that controls fructose
accumulation in peach fruit and haplotype analysis clearly
highlighted how this locus has driven the elevation of sweetness
that has advanced during multiple stages of peach improvement.
Our study also provides an excellent example for how a single
phenotype (sweetness) desired by consumers can be obtained via
separate selection trajectories in multiple fruit crop species
involving distinct biochemical mechanisms. For example, the
selection of CITST2 which encodes a TST, led to the increased
accumulation of sucrose and hexoses in watermelon®’, whereas
the increased sweetness in peach and some tomato varieties®
result from elevated fructose content as controlled by PpERDL16
and SIFgr (encoding a tomato SWEET transporter), respectively.
More broadly, the differentiation of maize into field corn and
sweet corn varieties resulted from altered starch biosynthesis as
mediated by a mutation in ZmSUGARYI (encoding an
isoamylase-type starch-debranching enzyme)73.

In summary, our study shows how harnessing a high-quality
genome assembly for a long-prized improved Chinese landrace
ultimately supported development of additional genome-scale
germplasm diversity resources at a population scale. Beyond
providing valuable genomic resources for peach genomic and
genetic research, our study provide insight into the improvement
of peach flavor, revealing genetic basis underlying fruit flavor.
Our findings also provide a genomic framework for fruit crops
that can deepen understanding of fruit quality trait physiology
and that suggests strategies for flavor improvement.

Methods

Plant materials. The sequenced peach (P. persica) accessions used in this study
were obtained from the Beijing and the Nanjing National Peach Germplasm
Repositories, China. The 15 P. kansuensis accessions were collected in the Gansu
province of China. A representative Chinese Cling peach (cv. Longhua Shui Mi
(LHSM)) was collected from the Nanjing National Peach Germplasm
Repository, China.

DNA extraction and sequencing. Extraction and purification of high molecular
weight DNA was performed using the DNeasy Plant Maxi Kit (Qiagen, Germany).
DNA concentration was measured using a NanoDrop spectrophotometer (Thermo
Fisher Scientific, USA) and the Qubit 2.0 Fluorometer (Invitrogen, USA). Illumina
short-read data were obtained using the Illumina NovaSeq platform, which gen-
erated a total of 184.73 million reads with a total length of 27.71 Gb. Single-
molecule real-time (SMRT) cells were sequenced on the PacBio Sequel platform
(Pacific Biosciences, CA, USA), generating a total of 3.54 million reads with a total
length of 30.90 Gb. Hi-C libraries were created from young leaves, which were fixed
with formaldehyde and then lysed before the cross-linked DNA was digested
overnight with DpnII. Sticky ends were biotinylated and proximity-ligated to form
chimeric junctions that were enriched for, and then physically sheared to a size of
500—700 bp. Chimeric fragments representing the original cross-linked long-dis-
tance physical interactions were processed into paired-end sequencing libraries.
This allowed us to generate a total of 126.25 million paired-end reads and 37.87 Gb
of sequencing data on an Illumina NovaSeq platform. The alignment of the Hi-C
reads was implemented using the HiC-Pro program’4 and revealed a high pro-
portion (82%) of valid interactions that confirmed the high quality of the Hi-C data
(Supplementary Fig. 20).

Genome assembly. In order to estimate the genome size of LHSM, the Illumina
short reads were recruited to determine the k-mer distributions using the Geno-
meScope software””. The PacBio long-read data were de novo assembled into
PacBio contigs using Canu version 1.97%, generating a total of 2212 contigs with a
N50 of 686.03 kb. We then used the Highly Efficient Repeat Assembly (HERA)
method”” based on the Canu-corrected PacBio long-read data in order to extend
the PacBio contigs to 243 contigs (HERA contigs v1) with a N50 of 5.17 Mb. The

Illumina short-read data were used for error correcting the contigs using Pilon’8.
Subsequently, and in order to anchor the corrected contigs (HERA contigs v2) into
chromosomes, we aligned the Hi-C sequencing data into these contigs using Juicer
v1.8.97. The contigs were finally linked into eight distinct chromosomes by 3D-
DNAS®0,

Repeats and gene annotation. The annotation of transposable elements was
performed using RepeatMasker (http://www.repeatmasker.org). The repeat librar-
ies included the RepBase-20170127 and the de novo repeat library created using
RepeatModeler (http://www.repeatmasker.org) (with the parameter -LTRStruct).
The LTRharvest®! and the LTR_FINDERS®? programs were used to identify intact
LTRs in the genome assembly and to calculate the LAI index3.

The pipeline for ab initio gene annotations included de novo gene predictions of
the repeat-masked genome using AUGUSTUS® and SNAP%, as well as evidence-
based gene annotations using MAKER28¢. For de novo gene prediction, we used
the AUGUSTUS and SNAP programs trained on the homolog protein-coding
genes of Arabidopsis thaliana, Oryza sativa, and P. persica. The homolog sequences
were collected from the Swiss-Prot database. Transcript evidence included
transcripts assembled from RNA-Seq data obtained from different tissues (root,
leaf, flower stages, and fruit; see Supplementary Table 9) using HISAT and
StringTie®”. This evidence was submitted to MAKER2, and the output was refined
by the AED metric (AED <0.7). Gene functional annotation was achieved using
BLASTP (—evalue < le — 5) against the Swiss-Prot, Pfam®8, and the NR
databases®, as well as using InterProScan version 5.27-66.0° against the InterPro
database®!. Gene Ontology terms were obtained for each gene from the
corresponding InterPro entries. The pathways associated with each gene assigned
by BLASTP?? against the KEGG database’, with an E-value cut-off of le — 5.

Evaluation of genome assembly. The flanking sequences of the molecular mar-
kers obtained from the high-density and the multi-population consensus genetic
linkage map for peach3® were mapped against the LHSM genome assembly using
BLASTN. The Pearson correlation coefficient was computed between the genetic
distance and the physical position of the uniquely aligned markers. The Illumina
short-read data were also used to evaluate assembly accuracy and completeness
using BWA-MEM version 0.7.17-r1188%. The completeness of the genome
assembly and the gene annotations were assessed with a plant database composed
by 2121 conserved plant genes (eudicotyledons_odb10) using BUSCO version
3.0.2%. The EST sequences that were retrieved from NCBI were aligned to the
genome assembly using GMAP (version 2019-09-12)%.

Gene families and phylogenetic analysis. We used OrthoFinder (v2.3.9)%7 to
identify shared gene families between peach and 12 other plant species, including
six Rosaceae (almond, apricot, European pear, apple, black raspberry, and wood-
land strawberry), one Brassicaceae (Arabidopsis), one Rutaceae (orange), one
Salicaceae (Populus trichocarpa), one Vitaceae (grape), one Solanaceae (tomato),
and one monocot (rice). Based on the protein sequences of 367 single-copy
ortholog families, the phylogenetic relationship among these species was estimated
using RAXML (v8.2.12)%. Divergence times were estimated by the MCMCtree
program embedded in PAML (v4.9)%°. We measured the expansion and contrac-
tion of orthologous gene families based on the maximum likelihood tree using the
software CAFE v4.2 (https://github.com/hahnlab/CAFE).

Comparative genomics. Genome alignment between LHSM and Lovell v2.0 was
performed using the NUCmer program embedded in MUMmer!% with the
parameters “~-mumreference -g 1000 -c 90 -1 40”. The delta-filter program was used
to remove the mapping noise and to determine the one-to-one alignment blocks
with parameters “-r -q”. SNPs and InDels were identified using the show-snps
program (-ClrT -x 1). Gene synteny analysis was performed using the MCScanX
package!®! and BLASTP with the parameters “-evalue < le-10, -v 5, -b 5” in order
to determine the pairwise similarity between the protein sequences of the LHSM
and the Lovell v2.0 genomes.

To identify the presence/absence variations (PAVs) in the LHSM genome, we
divided it into 500 bp overlapping windows with a step size of 100 bp. Each 500 bp
window was then aligned against the Lovell v2.0 genome using BWA-MEM with
the parameters “-w 500-M”. The genetic sequences within the different windows
that failed to align with the Lovell v2.0 genome, or those that aligned with less than
25% coverage, were defined as LHSM-specific sequences. Overlapping windows
that could not be aligned were merged together. The Lovell-specific sequences were
then identified following the same method.

In order to identify structural rearrangements, we used Minimap2 v2.17-r941102
to align the LHSM assembly to the reference Lovell v2.0 genome with the following
parameter setting “-ax asm5 —eqx”. Structural rearrangements and local variants
(>50 bp) were detected using SyRI!?3. To identify gene copy number variation, we
first performed the gene family clustering using OrthoFinder version 2.3.9%7 based
on the protein sequences from the LHSM and the Lovell v2.0 genomes, and
identified CNVs using a PERL script developed in-house.

SNP and small InDel calling. We collected Illumina resequencing data for 564
peach accessions (Supplementary Data 6) with an average depth of 26.34x. These
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included 379 newly sequenced accessions. The quality control for the raw re-
sequencing data was performed using fastp version 0.20.1104 with default settings.
For SNP calling, Illumina short reads were aligned to the LHSM genome using
BWA-MEM; PCR duplicates were removed using Picard version 1.118 (http://
broadinstitute.github.io/picard/). SNPs and InDels were identified using Haploty-
peCaller available from the Genome Analysis Toolkit (GATK, version 4.1.5.0)10%,
and subsequently filtered following ref. 3. SNPs with a read depth <5 and non-
biallelic SNPs were removed from further analyses.

Phylogenetic and population structure analyses. A total of 337,386 SNPs with a
MAF 20.05, missing rate <50%, and with a Hardy-Weinberg Equilibrium (HWE)
P value >1e-6 was used to build a maximum likelihood phylogenetic tree, as well as
to perform population structure and PCA. The phylogenetic tree was built using
the FastTree2 program (version 2.1.10)!0%, Population structure was investigated
using ADMIXTURE!Y7 and evaluating each K from 2 to 12. PCA was performed
using the smartPCA program embedded in the Eigensoft package version 7.2.1108.

Relative IBD and introgression analysis. To investigate introgression from the
PLs and ILs to each accession of the modern peach cultivars, we performed
pairwise IBD analysis by first phasing the genotypes using Beagle (v5.1)1%° and
then detecting shared IBDs tracks between any two accessions using RefinedIBD
(v17Jan20.102)110, After this, we counted the number of shared IBD tracks in
10-kb sliding windows (in steps of 5-kb) between each modern cultivar and PLs or
ILs. These counts were then normalized as nIBD = shared IBD number/number of
PLs or ILs), and the rIBD was calculated as rIBD = nIBDy;, — nIBDp;.. Average rIBD
values of individuals in ECs or WCs were calculated along each window and then
normalized following a standard normal distribution. Windows with Z-scores
greater than 2 were considered as putative introgressed regions.

Multiple sequentially Markovian coalescent analysis. MSMC2 (v2.1.1)!1! was
used to infer the demographic history of peach. To improve reliability, genome
regions were masked with SNPable tool (http://lh3lh3.users.sourceforge.net/
snpable.shtml) when the coverage depth was <15x after removing reads with
mapping quality <20. First, we split the reference genome into overlapping 35-mers
and then mapped these back to the reference genome using BWA (bwa aln -R
1000000 -O 3 -E 3). Only regions where the majority of 35-mers were uniquely
mapped and without mismatch were retained for further analysis. We selected the
top ten samples in each population with the highest coverage after masking. The
eight most frequent haplotypes were randomly selected from the ten samples in
order to infer the demographic history of each population. We repeated this
procedure 20 times. Scaled times were converted to years by assuming a generation
time of 3 and 4 years, respectively and a mutation rate of 7.7 x 10~ per site per
generation for peach, following Xie et al.!12,

Linkage disequilibrium. To estimate and compare the patterns of LD decay in
each population, we computed the mean squared correlation coefficient (r2) values
between any two SNPs within 500 kb using the software PopLDdecay (v3.41)!13.
To eliminate the potential effects of sample size, we randomly sampled ten
accessions for each population (we repeated this procedure 100 times). We used a
500 bp bin size to generate the plot.

Genetic diversity. Genetic nucleotide diversity (6n, the average number of pair-
wise nucleotide differences per site between any two randomly chosen DNA
sequences from the population) was calculated using VCFtools (v0.1.17)114 on
20 kb sliding windows (with a step size of 10 kb) across the peach genome.

Selective sweeps. We used multiple methods to detect regions and genes under
positive selection. SNPs with MAF below 5% were removed from this analysis. To
identify potential selective sweeps between population A and population B, log,(rtp/m4)
and Fgy was calculated together using VCFtools (v0.1.17)114 on a 20 kb sliding window
with step size of 10 kb. Windows that contained less than ten SNPs were excluded
from further analysis. The windows that were simultaneously (1) in the top 5% of
Z-transformed Fsy values and (2) in the bottom 5% of log, (rz/74) were considered as
candidate selective regions in population A. XP-CLR!!® is a method that uses allele
frequency differentiation at linked loci between two populations to detect selective
sweeps. Each chromosome was analyzed using the XP-CLR (v1.0) program with
parameters “-w1 0.0005 200 200 1 -p1 0.9”. The average XP-CLR scores were calculated
for each 20 kb sliding window with a step size of 2 kb. The windows in the top 1% of the
XP-CLR scores were considered as candidate selective regions. XP-EHH!!¢ was
implemented using the program Selscan (v1.1.0)!!7. The results were normalized on a
20 kb window basis and the ratio of extreme scores (|score| = 2) were calculated in each
window. The top 1% of windows (with the highest ratio of extreme scores) were
considered as candidate selective regions. Subsequently, the results from each of the
above methods were combined. The genes contained within the merged candidate
selective regions along the peach genome were considered as candidate selective genes.

GO enrichment. R package ClusterProfiler (v3.18.0)!118 was used to perform GO
enrichment analysis. The GO terms showing a P value < 0.05 were considered as
significantly enriched.

Phenotypic analysis for fruit flavor related traits. We harvested ten matured
peach fruits per plant and prepared the crushed mixed fruit juice for phenotypic
analysis. SSC, pH, sugar (sucrose, fructose, glucose, and sorbitol), and organic acid
(malate, citrate, quinate, and shikimate) contents were measured in 2016 and 2017,
and the TA was detected in 2017. The pH was measured using a pH electrode
(Sartorius, PB-10). The TA was measured by titrating 25 ml of fruit juice with 0.1
mol/L NaOH to a pH = 8.1, according to “Fruit and vegetable products—Deter-
mination of titratable acidity” (GB/T 12456, 2008)!1°. High performance liquid
chromatography (HPLC) was used to determine the sugar and organic acid con-
tents following Filip et al.!20. The fruit juice was mixed with ethanol (in a pro-
portion of 3:7 (v/v)) prior to centrifugation at 8050 x g for 5 min. The resulting
supernatant was forced through PVDF 0.22-um syringe filters and then injected
into the HPLC system (LC-20A, Shimadzu). The organic acid contents were
detected using a photo diode array detector (SPD-M20A) and an InertSustain C18
column (250 mm x 4.6 mm ID, 5 um, GL Sciences Inc.). The samples were eluted
with 20 mM monopotassium phosphate (KH,PO,, pH = 2.6) at 40 °C and injected
at a flow rate of 1 mL/min. The eluted compounds were detected by UV absorbance
at 210 nm. The sugars were detected using a refractive index detector (RID-10A)
and Luna® 5um NH2 100 A column (250 mm x 4.6 mm, Phenomenex). The mobile
phase was 80% acetonitrile with a flow rate of 3 mL/min for peak separation at 40 °
C. Organic acids and sugar contents were calculated from calibration curves
obtained from the corresponding external standards.

Transiently overexpression assay. Transient overexpression analysis in peach
mesocarps was performed following previously described procedures!2!. Briefly,
the two pairs of primers (see Supplementary Table 20) were designed to amplify the
full-length coding sequence of PpALMTI and PpERDL16 and the PCR products
were then inserted into a pGreen0029 62-SK vector. The recombinant constructs
and the vector control were then chemically transformed into Agrobacterium
tumefaciens GV3101 (pSoup). The flesh slices were taken from the peel-off
mesocarps and then precultured on a MS medium at 24 °C for 24 h. The flesh slices
were submerged in an A. tumefaciens suspension and subjected to vacuum con-
ditions (—70 kPa). After vacuum infiltration, the flesh slices were rinsed with sterile
water and cultured on a MS medium in a growth chamber (24 °C, RH 85%) for 48
h. The flesh slices were then used for phenotypic and gene expression analyses.

GWAS analysis. We retained peach SNPs with a MAF >0.05 and a missing rate
<50% to perform the GWAS analysis. After imputation using Beagle (v4.1)!10° with
default parameters, the GWAS analysis was performed based on a linear mixed
model using the program Fast-LMM v2.06.20130802!22. The P value threshold for
significance was estimated as 0.05/n (where n corresponds to the SNP number).
The phenotypic variance that was explained by each SNP was estimated!?3. The
haplotype blocks were estimated using the default parameter (-hap) in Plink
v1.90b6.10124,

Validation and quantification of gene expression. qRT-PCR analysis was used to
quantify the expression levels of the 13 candidate genes within the two significantly
associated haplotype blocks from six peach accessions (three with the highest
fructose content and three with the lowest fructose content as measured in 2017). A
total of 37 peach accessions were used to quantify the expression of PpERDLI6.
Total RNA was extracted from the mesocarp of pre-ripened fruits using the Tre-
lief™ RNAprep Pure Plant Kit (polysaccharides and polyphenolics-rich) (Tsingke,
China). The first-strand cDNA was synthesized using a PrimeScript™ RT Reagent
Kit with gDNA Eraser (Takara, Japan). Quantitative PCR was performed using the
TSINGKE Master qPCR Mix (SYBR Green I with UDG) (Tsingke, China), on a
StepOnePlus™ Real-Time PCR System (Applied Biosystems, USA) following the
manufacturer’s instructions. cDNA transcript levels were normalized to those of
the reference gene actin using the 2-2ACT method!2>126, The entire set of primers
(see Supplementary Table 20) was designed to span an intron in order to avoid the
amplification of genomic DNA. PCR reactions were performed in triplicate for
each biological replicate; three or more biological replicates were used in all of the
PCR reactions.

Analysis of the subcellular localization of PpERDL16. The Aty-TIP coding
region lacking the stop codon (At2g36830), which encodes a vacuolar membrane
protein!?’, was synthetized and cloned into the pMD85-mcherry between the
CaMV35S promoter and the mCherry coding sequence in order to generate the
35S-y-TIP-mCherry construct. The PpERDLI6 full-length CDS lacking the stop
codon was amplified from the cDNA of Redhaven fruit using PF2 primer pairs and
subsequently introduced into the pMD85-GFP vector. The resulting fusion vector
pMD85-PpERDL16-GFP was co-transformed with pMD85-y-TIP-mCherry into
tobacco (Nicotiana benthamiana) leaves via A. tumefaciens (strain EHA105). The
infected tissues were analyzed under a fluorescence microscope (A1R; Nikon,
Japan) 72 h after infiltration.
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Haplotype analysis and median-joint network. PpERDLI16 haplotypes were
constructed using the entire set of SNPs present in the gene. SNPs were phased
using Beagle (v5.1)!9°. Haplotypes with frequency less than 2 were removed.
Median Joining Networks for the PpERDL16 haplotypes were built using PopART
(v1.7.1)128 with default parameters.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. The datasets and plant materials generated and analyzed
during the current study are available from the corresponding author upon request. The
raw resequencing data have been deposited in the Sequence Read Archive of the National
Center for Biotechnology Information (NCBI) under BioProjects PRINA715782 and
PRJNA663114. The genome assembly has been deposited at GenBank under the
accession JAGEPH000000000. The raw PacBio data and Hi-C data are available in the
NCBI Sequence Read Archive under BioProject PRINA707388. Online tools used in this
paper include: Pfam [http://pfam.xfam.org/], InterPro [https://www.ebi.ac.uk/interpro],
NR [https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/], GO [http://
geneontology.org], KEGG [https://www.genome.jp/kegg/]. Source data are provided with
this paper.
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