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Abstract

Technological development led to an increased interest in systems biological approaches to characterize disease mechanisms and 
candidate genes relevant to specific diseases. We suggested that the human peripheral blood mononuclear cells (PBMC) network can be
delineated by cellular reconstruction to guide identification of candidate genes. Based on 285 microarrays (7370 genes) from 98 heart trans-
plant patients enrolled in the Cardiac Allograft Rejection Gene Expression Observational study, we used an information-theoretic, reverse-
engineering algorithm called ARACNe (algorithm for the reconstruction of accurate cellular networks) and chromatin immunoprecipitation
assay to reconstruct and validate a putative gene PBMC interaction network. We focused our analysis on transcription factor (TF) genes and
developed a priority score to incorporate aspects of network dynamics and information from published literature to supervise gene discov-
ery. ARACNe generated a cellular network and predicted interactions for each TF during rejection and quiescence. Genes ranked highest by
priority score included those related to apoptosis, humoural and cellular immune response such as GA binding protein transcription factor
(GABP), nuclear factor of � light polypeptide gene enhancer in B-cells (NF�B), Fas (TNFRSF6)-associated via death domain (FADD) and c-
AMP response element binding protein. We used the TF CREB to validate our network. ARACNe predicted 29 putative first-neighbour genes
of CREB. Eleven of these (37%) were previously reported. Out of the 18 unknown predicted interactions, 14 primers were identified and 11
could be immunoprecipitated (78.6%). Overall, 75% (n � 22) inferred CREB targets were validated, a significantly higher fraction than
randomly expected (P � 0.001, Fisher’s exact test). Our results confirm the accuracy of ARACNe to reconstruct the PBMC transcriptional
network and show the utility of systems biological approaches to identify possible molecular targets and biomarkers.
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Introduction

Heart transplantation is complicated by different forms of cardiac
allograft rejection [1]. The immune response against a trans-
planted heart is a complex and heterogeneous process mediated

by various cellular pathways that depend on factors related to the
recipient, the donor, ischemia-reperfusion injury and to the viola-
tion of the natural human barriers by the surgical procedure and
the donor–recipient interaction [2]. To deal with this immune
response, transplant physicians use a combination of drugs to
impair the immune system in recognizing, eliciting and sustaining
a response [3]. Three major forms of rejection have been recog-
nized [1]. It is common to identify more than one type of rejection
in the same biopsy specimen [1, 4]. Moreover, there are forms of
graft dysfunction, which are assumed to be episodes of rejection,
but for which no specific mechanism can be identified [5]. Despite
this, therapy of these episodes follows classic approaches to
rejection; in some cases, the clinical response is favourable.
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A systems biological approach to the acute rejection process
involves a hypothesis that the response against the transplanted
graft is the result of a constellation of events mediated by various
cellular pathways. These may polarize into a manifestation at the
organ and system levels with a complexity related to the
processes that act together. We identify these processes as
modules with a specific size and a specific relationship between
the modules or joint configuration. We envision that the 
rejection process, usually referred to as a single entity (i.e. acute
cellular rejection or antibody mediated rejection), is the result of
combinations of modular structures with different sizes and
spatial configurations.

This hypothesis proposes that there is not a specific form of
rejection but a constellation of biological processes that promote
the development of a specific phenotype, which emerges from the
complexity of the underlying biology. Questions that need to be
asked are: (1) Do those modules exist? (2) Can we characterize
them? (3) Do they have a specific plasticity that emerges as a
phenotypic condition?

The answers to these questions are most likely not going to be
resolved in the short term, and certainly not by us, but at least
these questions can be explored by taking advantage of evolving
technologies. Such answers, albeit still partial, have already
proven useful as guides for therapeutic intervention [6]. They are
expected to become drivers in the development of new personal-
ized, diagnostic and therapeutic strategies [7].

The publication of the human genome sequence opened an
avenue to understanding, in an unprecedented way, the acute
rejection process by the application of high-throughput technolo-
gies [8]. Microarray expression profiles provide the capacity to
study the activity of thousands of functionally characterized and
uncharacterized genes; their use has advanced the field of trans-
plantation [9]. Many of the limitations, challenges and solutions
of studies related to gene expression profiles have been
addressed [10–12].

Approaches involving systems biology can be used to observe,
through quantitative measures, multiple components simultane-
ously. By rigorous data integration with mathematical models, as
opposed to the study of single aspects of the system under lim-
ited conditions, the technique can be used to identify ‘emergent
properties’. A systems biological approach suggests that dysreg-
ulation of modules in the regulatory network of the cell is ulti-
mately responsible for the differential expression patterns of indi-
vidual gene transcripts and of their protein products associated
with the clinical phenotype. The property on the organ level is
‘emergent’ from the pattern of regulation on the molecular and cel-
lular levels. By examining the joint behaviour of a set of related
genes, coherent changes can be detected, even in cases where the
expression of individual genes is not significantly different [13].
Systems approaches have been used in life and social sciences
[14–18]. By use of a variety of data, including microarray expres-
sion profiles, they are being increasingly applied to the dissection
of molecular pathways that are active or deregulated in specific
cellular contexts [19]. In this report, we describe a retrospective
study, involving technologies currently available [10, 19, 20], that

allowed us to identify and characterize specific genes and modules
associated with the problem of rejection using a systems biologi-
cal approach.

Materials and methods

This project involved retrospective analysis of gene expression data gen-
erated by a large multicenter study, entitled the ‘Cardiac Allograft
Rejection Gene Expression Observational’ (CARGO) Study. This study
used gene microarrays as one of the steps to develop a molecular classi-
fier [9]. Results of the CARGO study have been published elsewhere. In
this retrospective analysis, we used gene expression analysis and a cellu-
lar reconstruction method to identify and characterize genes and gene
modules that are components of the acute cellular rejection process. A
summary of the steps followed in this study is shown in Table 1 and
described below.

Patients

Patients in this study were selected from the CARGO study database. After
heart transplantation, all patients were routinely evaluated with endomy-
ocardial biopsies (EMBs) at specific time intervals or at the time of an
adverse event. Samples of peripheral blood mononuclear cells (PBMC)
were obtained each time a patient had a biopsy for microarray analysis.
Results of PBMC microarrays were used to correlate with pathologic find-
ings and for purposes of gene discovery. A total of 98 patients provided
285 PBMC samples that were used for microarray analysis. For the study
population, donor and recipient characteristics were equivalent to those
reported by the United Network for Organ Sharing for 2003 and have been
described elsewhere [9].

Endomyocardial biopsy

EMBs performed by standard techniques were graded by local pathologists
and by three independent ‘central’ pathologists, blinded to clinical informa-
tion, following the 1990 classification of the cardiac allograft EMB [21].
This classification assigns different degrees of rejection depending of the
severity of an inflammatory infiltrate and other factors. For the present
analysis, we divided the EMBs into two major groups, ‘quiescent’
[International Society of Heart and Lung Transplantation (ISHLT) grade 0]
or ‘rejection’ (ISHLT grades 1A or higher).

Blood samples

PBMCs were isolated from 8 ml of venous blood by use of density 
gradient centrifugation (Cell Preparation Tube, Becton-Dickinson,
Franklin Lakes, NJ, USA). Samples were frozen in lysis buffer (RLT)
(Qiagen, Valencia, CA, USA) within 2 hrs of phlebotomy. The integrity of
the purified RNA was tested by a bioanalyser; only the samples demon-
strating an adequate 28S-to-18S ratio were used for microarray
hybridization.

© 2011 The Authors
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Microarray expression profiling

We used a custom leucocyte-focused, 7370 gene microarray (TeleChem
International, Inc., Sunnyvale, CA, USA) that was utilized in the initial phase
of the multicenter CARGO study [9]. This microarray was developed by use
of RNA sequences expressed in stimulated and resting human leucocytes
(PCR Select, Clontech Laboratories, Inc., Mountain View, CA, USA) and
from publicly available sequence databases. Any gene arrays showing sig-
nificant systematic variations were eliminated. All resulting microarray data
were utilized as submitted to the National Center for Biotechnology
Information’s Gene Expression Omnibus [22] (GSE2445). Genes with more
than 30% missing values were removed, leaving a set of 4688 genes to be
analysed. Because the correlation metrics used in network generation can-
not tolerate missing data, the remaining instances of missing data were
imputed using the k-nearest neighbours algorithm as implemented in sig-
nificance analysis of microarrays (http://www-stat-class.stanford.edu/sam)
[23]. The resulting matrix was then imported for reverse engineering into
a bioinformatics platform (geWorkbench, http://gforge.nci.nih.gov/frs/
?group_id=78) for the cellular network reconstruction procedure.

Cellular network reconstruction

For inference of the cellular network, we used an algorithm called ARACNe
(algorithm for the reconstruction of accurate cellular networks).
Applications of this algorithm have been published by others [7, 19, 24],
and the detailed description of the cellular network reconstruction process
has been published elsewhere [20]. Briefly, ARACNe is an information-
theoretic, reverse-engineering algorithm introduced for the whole-genome
inference of human cellular networks [19]. ARACNe computes regenera-
tion of cellular networks in two distinct steps. In the first step, candidate
interactions are identified by calculating the mutual information (I [gi ;gj])
for all gene–gene pairs, retaining only those pairs exceeding a mutual
information threshold, I0, corresponding to the desired P-value, P0, for
rejecting the null hypothesis that the two genes are statistically independ-
ent, i.e. I [gi ;gj] � I0. In the second step, ARACNe eliminates most indirect
interactions by use of the data-processing inequality [25] (DPI), a property
of information theory. The DPI states that if genes g1 and g3 interact only
through a third gene, g2, the following relationship holds: I [g1;g3] �

min(I [g1;g2], I [g2;g3]). ARACNe proceeds by identifying each three-edge
loop from the first step, removing all (g1 – g3) interactions that satisfy the
previous DPI formula. Ultimately, ARACNe imputes a genetic ‘consensus’
network, which requires further exploration and validation.

Network visualization

Graphical representation of the reconstructed cellular network was
created in Cytoscape [26]. Cytoscape is an open source bioinformatics
software platform for visualizing molecular interaction networks and bio-
logical pathways and for integrating these networks with annotations,
gene expression profiles and other data relating to the state of cells
(http://www.cytoscape.org).

Identification of genes to focus the initial study

After reconstructing the cellular network, the first challenge is to determine
how to approach its study. One approach to find a starting point is to focus

on genes with a central role in general biology [27, 28]. Among these, tran-
scription factor (TF) genes, which are highly connected and regulate
numerous processes within the cell, are relevant to multiple processes.
Therefore, we chose to focus on TFs. To identify the TFs within the microar-
ray, we used the gene ontology term ‘TF activity’ (GO:0003700) according
to the Gene Ontology Consortium classification [29]. The next question
was how these TFs are differentially regulated during rejection or quies-
cence. We used ARACNE to perform cellular network reconstruction dur-
ing rejection and quiescence (because of small sample size only in an
exploratory intention) and used this information for our algorithm, as
described below.

Exploration of the cellular network

To identify a candidate group of genes to focus on in our initial study, we
created an empirical score which we called the ‘priority score’. This score
is a quantitative measure that summarizes properties of the reconstructed
network and integrates published biological information underlying a spe-
cific gene as it relates to the process under study. This priority score is
estimated as follows:

For a given gene, the overlap term [1] measures the differential con-
nectivity across both phenotypes; the connectivity term [2] measures the
connectivity degree (number of first neighbours or connected edges) and
the plausibility term [3] measures biological plausibility in immune
response based on published literature. All three factors are scaled
between 0 and 1 and are multiplied by a weighting factor to produce a total
priority score that is also scaled between 0 and 1. The weighting factors
allow flexibility in determining the relevance of each of these factors. In the
overlap term [1], i is the number of overlapping connections between the
two phenotypes of quiescence and rejection; a is the number of total 
connections for the quiescence phenotype and b is the number of total
connections for the rejection phenotype. We use the minimum of a and b
to weight the overlap, i, in order to scale the whole factor between 0 and 1.
We use the rejection and quiescence networks to estimate which TF has the
greatest differential connectivity. This allows us to identify TFs whose net-
work might serve as important genetic modules mediating rejection versus
quiescence. Thus, this score is higher for TF genes that undergo a signifi-
cant change in connectivity between the two states.

In the connectivity term [2], k is the connectivity degree of the gene of
interest, found by summing the number of targets across phenotypes and
subtracting the overlap, such that only unique targets are counted towards
the score. kmax is the maximum connectivity degree to establish that a TF
is highly connected.

In the plausibility term [3], l is measured by the amount of relevant lit-
erature for the gene as it relates to rejection and immune system activation
compared to the maximum amount found among TFs being studied. As it
is difficult to measure the success of search recall (retrieval), this factor
can not easily be determined. In this case, we used the GeneCards inter-
face to determine the number, l, of relevant publications associated with
the TF and normalized this by lmax, a constant representing the maximum
amount of literature required to establish that a TF has been well studied.
GeneCards is an integrated database of human genes that automatically
mines genomic, proteomic and transcriptomic information and is publicly
available at http://www.genecards.org/index.shtml. Through this tool, we
searched PubMed using available aliases and the additional search terms,
‘immune’, ‘immunity’ and ‘inflammation’.

© 2011 The Authors
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Validation

We performed two steps of validation: in silico using previously
published data and in vitro using the chromatin immunoprecipitation
(ChIP) assay.

Validation in silico

For validation in silico, the necessary information was available as pub-
lished data from identified genes searched through PubMed using each
gene name and ‘chromatin immunoprecipitation’ as key words. Among the
genes identified as candidates (see the ‘Results’ section), information was
available for the c-AMP response element binding protein (CREB).
Therefore, for validation, we selected this gene, which is included in a tar-
get gene database available at http://natural.salk.edu/CREB/ [30]. Genes
that have been identified as first neighbours of CREB were compared with
our findings by use of the Fisher exact test. A P-value �0.01 was consid-
ered significant.

Validation in vitro

ChIP assays were accomplished for PBMCs obtained from buffy coats
(New York City Blood Bank, New York, NY, USA) and subjected to cross-
linking with formaldehyde [31]. Briefly, cells were lysed and sonicated to
generate small fragments of genomic DNA. After preparation of the cellular
extract and chromatin fragmentation, proteins together with cross-linked
DNA were immunoprecipitated. Protein-DNA cross-links in the immunopre-
cipitated material were then reversed, and the DNA fragments were purified.
For association of a specific genomic region in vivo, DNA fragments of this
region should be enriched in the immunoprecipitate compared to other por-
tions of the genome. The presence of the relevant genomic regions in the
immunoprecipitate was determined by PCR amplification with specific
primers from the region in question and reference region [24]. Primers
were designed using the Transcriptional Regulatory Element Database
(http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home) by searching
4000 bp upstream and 250 bp downstream from the transcription initiation
site for the CREB-binding site (TGACGTCA) using geWorkbench v1.0.4
(http://gforge.nci.nih.gov/frs/). For all targets, the binding site with the
highest probability of matching the putative binding site sequence was
chosen. The primers flanking most closely to the binding site were chosen
by Primer3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi),
with the product size between 150 and 250 bp.

Results

Reconstruction of the cellular network

Reconstruction of the cellular network was accomplished in two
steps. In the first step, a consensus network (phenotype inde-
pendent) was established. In the second step, a phenotype-spe-
cific network was reconstructed in an exploratory intention. This
network was constructed to predict independently the possible
interactions of the genes as they relate to each phenotype.
Following this procedure, ARACNe reconstructed the network
using all microarray 4688 genes retained for the analysis, inde-
pendent of the biology of the genes. For each gene, we obtained
a list of ‘first-neighbour’ genes that, based on this algorithm,
were predicted to interact directly with each gene. This network
generation process is resource intense. It incorporates limited
information about the biology of the gene and the behaviour of
the gene in the presence or absence of rejection. Nevertheless, it
reflects the so-called putative consensus or average network
found for the combination of all the gene expression profiles,
which we validated to assess its accuracy (see below). After
assessing the reproducibility of the generated network, we
explored it further.

Reconstruction of the TF network

We first focused on the group of genes with a high biological rel-
evance and studied their surrounding networks. To do so, we
first focused on the TF genes which we identified by the gene
ontology classification. We recovered the cellular network for
each TF across the quiescent and rejection samples in an
exploratory intention. Focusing on the TFs is an intuitive first
step toward two goals, identifying relevant genes that govern
major cellular processes and reducing the complexity of the ini-
tial problem. ARACNe reconstructed hubs for 152 TFs, following
the procedure summarized in Table 1. This allowed application of
the DPI only to the subset of interactions in which all three inter-
actions are transcriptional in nature, thus avoiding the elimina-
tion of transcriptional interactions by pairs of same-complex
proteins, which typically have a highly correlated expression
profile. In parent studies of the present analysis, this approach
increased the statistical significance of the validated-target
enrichment [20].

Differential TF networks

TF candidates which most likely represent key hubs in alloimmu-
nity were identified by deriving separate networks for rejection and
quiescence in an exploratory intention, ranking TFs for differential
connectivity, and applying the priority score using the ‘quiescent’
(ISHLT grade 0 rejection) or ‘rejection’ (ISHLT grade � 1A/1R)

© 2011 The Authors
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Table 1 Sequence in the reconstruction and analysis of the network

Step Procedure

1 Build a phenotype independent network

2 Focus on biologically relevant genes

3 Build exploratory phenotype specific networks

4 Compute priority score

5 Generate gene list & choose candidate TF

6 Validate results
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samples. This allowed the exploratory generation of separate
ARACNe networks for each phenotype. The priority score was cal-
culated based on these results. The priority score was applied to
rank the TFs listed in Table S1 according to their biological role in
rejection and quiescence. The results of the highest 10% scoring
genes are given in Table 2 and the complete list of genes and
scores in Table S2.

Prioritization of TFs using the scoring system

By its priority score, genes which ranked high included for exam-
ple NFKB1, genes of the signal transducer and activator of tran-
scription (STAT) family, human c-myc gene (MYC), peroxisome
proliferator-activated receptor gamma (PPARG) and interferon
regulatory factor (IRF). The TF CREB ranked 10th of 152 TFs and
5th by hub connectivity degree. We chose CREB to do further
analysis and validation. The reason why we chose CREB, out of the
candidate TFs ranking in the top 10%, for further study was the
significant amount of information available in the literature to pur-
sue our validation using ChIP-on-chip data. Also, its role in the
process of cellular proliferation and the lack of information in the
field of transplantation made CREB an interesting candidate.
However, several other genes could have been chosen with simi-
lar justification. As further elaborated in the ‘Discussion’ section,
there are, with regard to CREB’s role in rejection, unanswered
questions that can be further investigated based on improved
knowledge of the gene’s regulatory activity. Additional high-rank-
ing targets from this list may be selected for future studies.

Validation in silico of predicted first neighbours

After CREB first-neighbour reconstruction by ARACNe, we
conducted a two-tiered validation procedure to confirm that the
predicted target genes of CREB were indeed target genes. In our
strategy, we conducted a literature search for published validated
targets using the CREB target gene database available [30] at
http:((natural.salk.edu(CREB(containing ChIP-on-chip informa-
tion. Eleven (38%) of the 29 predicted first neighbours were
previously reported as CREB binding targets (P � 0.000001,
Fisher’s exact test); 18 constituted novel predictions. Previously
validated genes include cytokine inducible SH2-containing protein
(CISH), topoisomerase (TOP)1, MAP/microtubule affinity-regulating
kinase (MARK)3, SON DNA binding protein (SON), FADD, tumor
susceptibility gene (TSG)101, zinc finger protein (ZNF)146,
HSPC111 (Hypothetical Protein), MDS025 (Hypothetical Protein),
GA binding protein transcription factor, � subunit (GABPB)2 and
methyl-CpG binding domain protein (MDB)4 (Fig. 1, left).

ChIP validation of predicted first neighbours that
were not previously validated in silico

Additionally, we performed specific ChIP assays to validate the
predicted targets that were not validated in silico. Of the 18 putative
targets identified by ARACNe, we selected 14 genes whose pro-
moter sequence could be retrieved from the TRE database and
whose CREB-binding site (TGACGTCA) was identified within –4 kbp

© 2011 The Authors
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Table 2 Highest ranking TFs

TF gene N nodes in Q N nodes in R N nodes overlapping N articles found Hub degree PS

GABPB2 354 203 105 219,114 452 0.829877

RERE 113 60 28 1036 145 0.798333

NFKB1 369 214 126 6188 457 0.783399

NR4A3 43 42 20 5333 65 0.776946

STAT3 147 165 52 627 260 0.76502

RELA 80 75 17 540 138 0.758773

MYC 188 169 62 545 295 0.741747

NR3C1 167 121 55 596 233 0.701433

STAT5B 48 36 4 245 80 0.682093

CREB1 151 136 46 299 241 0.669258

STAT5A 102 124 28 244 198 0.667587

SMAD3 270 192 71 224 391 0.663352

PPARG 90 64 34 690 120 0.661664

IRF1 66 66 22 346 110 0.659133

RARA 121 94 26 170 189 0.642897

TF: transcription factor; Q: quiescence; R: rejection.
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to �250 bp relative to the transcription initiation site for further bio-
chemical validation by ChIP. Eleven of these 14 genes [MBD4,
FLJ14153 (Hypothetical Protein), homolog of rat kinase D-interacting
substance of 220 kDa (KIDINS220), decapping enzyme (DCP)2,
human immune associated nucleotide (HIAN)2, HESB-like domain
containing (HBLD)1, kelch-like 6 (Drosophila) (KLHL6), protein
tyrosine phosphatase, receptor type E (PTPRE), splicing factor,
arginine/serine-rich (SFRS)2IP, lysosomal-associated membrane
protein (LAMP)2, HIMAP4 (immunity associated protein 2)] could
be immunoprecipitated using a CREB antibody (sc-2027, Santa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA), showing that CREB
binds to their promoter in vivo (Fig. 1, right). When CREB targets
validated in silico and biochemically are considered together, 75%
of ARACNe-inferred putative CREB targets (22 of 29) were validated,
a higher fraction than predicted by chance (P � 0.0001, Fisher’s
exact test). This confirmed the high accuracy of the ARACNe algo-
rithm for the inference of human cellular networks.

Discussion

Knowledge of the complete sequences of genomes, together with
technology that permits monitoring of information flow leading to
specific cellular functions, set the stage for development of sys-
tems biology [14–18]. Accordingly, we have suggested that the
complex regulation of the cardiac allograft rejection process can
be better understood through application of a systems biology
approach. Previous work involved data derived from a PBMC
expression profile to generate a diagnostic test that would rule out
acute cellular cardiac allograft rejection [9].

In this retrospective study, we demonstrate the feasibility of a
systems biological approach, involving novel technologies and
concepts, for evaluation of the rejection process. This approach
involves (i) reconstruction of the cellular networks, (ii) a focus on
relevant genes (such as TFs) likely to function in a regulatory net-
work, (iii) application of an exploratory tool termed ‘priority score’,
developed to inform the selection of candidate genes using infor-
mation related to the characteristics of the network and published
biology of the immune system and (iv) validation of the inferred
consensus cellular network by use of previously published infor-
mation [19, 30] and by ChIP assay [24].

We demonstrate that a putative PBMC regulatory network can
be computationally inferred by use of a reverse engineering
approach via a set of focused PBMC microarray expression pro-
files of heart transplant recipients obtained during both acute cel-
lular cardiac allograft rejection and quiescence. Specifically, we
aimed to develop a systematic strategy for reconstructing a cellu-
lar network from microarray analysis and to evaluate salient TF
genes. From network and biological rationales, the priority score
was developed as tool to analyse and integrate computational and
biological information to narrow a list of candidate genes to a set
of highly relevant genes. We combined information gathered from
the computationally reconstructed network and published biolog-
ical evidence, while allowing flexibility on the weight assigned to
each variable to be applicable to different analytical approaches.
To compute the priority score, we (i) analysed the connectivity
(number of first neighbours) for each TF in the average network
(connectivity term of the priority score), (ii) assessed the variation
in the genes of the two subnetworks of rejection and quiescence
(overlap term of the priority score) and (iii) incorporated a biolog-
ical relevance criterion (plausibility term of the priority score) as it

© 2011 The Authors
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Fig. 1 CREB First-/second-neighbour
network. Left: A CREB-specific subnet-
work was obtained by including all
genes that have P � 1e-7 based on their
pairwise mutual information with CREB.
The CREB subnetwork includes 29
genes directly connected to CREB (first
neighbours; represented by larger cir-
cles) and 491 genes connected through
an intermediate (second neighbours).
Red or pink nodes represent first-
neighbour target genes for which ChIP
data are available or not available,
respectively; yellow and light yellow
nodes represent second-neighbour tar-
get genes for which ChIP data are avail-
able or not available, respectively; CREB
is shown in green; white nodes repre-
sent genes for which no CREB-related
information is available. The complete

list of genes, including gene symbol, ID, and LocusLink ID, is given in the Appendix. ChIP was accomplished for the CREB binding site (TGACGTCA) of 
14 genes of the 18 non-validated putative CREB first neighbours. With 108 human leucocytes, 11 of 14 gene products were immunoprecipitated. Total chro-
matin before immunoprecipitation (input DNA) was used in a 1:1000 dilution as a positive control for PCR (negative controls not shown).
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relates to rejection for each TF by assessing relevant literature for
each TF using the GeneCards and PubMed interfaces. The priority
score adequately identified TFs, such as GABP, NFKB and those of
the STAT family, which have been extensively studied and related
to the cellular immune response [32–34].

To validate the reconstructed network we used two procedures,
in silico and in vitro. Although only 11 of the 29 genes (38%)
inferred by ARACNe as target of CREB in the non-TF focused con-
sensus network were previously validated by ChIP–chip data [30],
additional 11 genes were validated in this study, bringing the total
percent to 75%. This result reproduces the success rate of previ-
ous studies using this approach [19, 20] and confirms its value in
inferring physical interaction among genes. In support of our
results that ARACNe facilitates the prediction likelihood of hub
genes of interest (75% validated putative CREB first neighbours)
are the results of other groups [28]. Zhang et al., using a genome-
wide approach to characterize target genes regulated by CREB,
found 64 of 82 published genes (77%, P � 2 	 10
11) validated
on the genome-level, suggesting that their used in silico methods
were yielding biologically relevant sites. For a similar reason, we
feel that the confirmation/validation of 75% of our ARACNe-gen-
erated putative CREB first-neighbour genes by the combination of
in silico and in vitro methods is in the range of published stan-
dards. The benefit of using the ARACNe algorithm in conjunction
with conventional strategies consists in a rapid and reliable iden-
tification of targets.

Our experiments answer, at least in part, our leading questions.
First, we identified modules, in this case, each TF with their first
neighbours (‘TF neighbourhood’). These modules are typically
composed of genes which share similar functional characteristics
or are biologically related to one another in such a way that they
all participate in a specific coordinated response. Second, we iden-
tified properties of these modules which represent modulations of
the activity of these genes in response to changes in the environ-
mental context (i.e. rejection), inferred as directly interacting
under one condition but not another.

Genes known to be involved in the pathology of rejection (such
as GABP, NFKB and STAT) were identified as high scoring hub
genes. The TF CREB which we elected to use for validation the
computational inferred network, is a gene involved in cellular pro-
liferation, a mechanism that is important in the immune response
[35, 36]. Upon antigen presentation, T cells become activated,
which implies release of calcium to the cytosol and activation, via
c-AMP, of a pathway involving P56, protein kinase C (PKC), rat
sarcoma (RAS), murine leukemia viral oncogene homolog (RAF)-
1, Mitogen-activated protein kinase (MEK) and ribosomal S6 pro-
tein kinase 2 (RSK2) among others. The product of the activation
of these pathways phosphorylates CREB which binds to CREB and
travels into the nucleus as a complex. In the nucleus, it binds to
CRE, inducing a transcriptional response leading to inhibition of c-
jun, c-fos, Fra-2 and Fos B with consequent inhibition of apopto-
sis and promotion of T-cell proliferation [36, 37]. This mechanism
has been proposed to support the role of CREB in regulating cel-

lular immunity [37] but this has not been explored in the field of
acute cellular cardiac allograft rejection.

Because of limitations with respect to of the sample material
and sample size used in our study, these putative computational
results could not be validated. More data generated by collabora-
tive endeavours to collect the necessary events will be necessary
to validate our findings [38]. This pilot study has additional limita-
tions including its retrospective nature; the use of EMBs to clas-
sify acute cellular rejection, a procedure that has significant
variability in diagnosis [39, 40]; the use of a focused, non-whole
genome array; enriched for genes involved in leucocyte physiol-
ogy and immune response; the approach is limited to analysing
expression data with TF information (ignoring known pathway
information from literature and other sources) and the heuristic
nature of our TF priority score. Nevertheless, our findings are
encouraging; they highlight our increasing ability to use the
genome-wide reverse engineering of cellular networks in human
cells to identify molecular targets of key genomic programs and to
guide biomarker and molecular target discovery.

In summary, genomics and computational biology provide
powerful tools for the reverse engineering of key regulatory 
hubs and modules that are candidates for phenotype-specific 
regulators. These can be further pursued as potential targets for
designing novel molecular-pharmaceutical interventions for 
allograft rejection. For the identification of molecules that are
important in the field of transplantation, our study is the first
involving use of techniques that are being increasingly applied in
the field of molecular biology.
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