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Abstract: An in-line slot waveguide sensor built in a polished flat platform of a D-shaped silicon
cored fiber with a taper coupled region is proposed and investigated thoroughly. Simulation results
show that the single-mode light field sustained in the silicon cored fiber can be efficiently transferred
to the slot waveguides through the tapered region. The geometry parameters of the slot waveguide
sensors are optimized to have the corresponding highest power confinement factors and the resultant
sensor sensitivities. The three-slot waveguide sensor is found to have the best performance among
one-, two- and three-slot waveguides at the mid-IR wavelength.
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1. Introduction

Rib and strip silicon waveguides used as biosensors are commonly constructed in
the form of a Fabry–Perot cavity [1], a ring-cavity [2], or a Bragg grating [2]. In these
structures, most light fields are strongly confined in silicon core due to high refractive index
contrast between core and cladding, leading to weak light interaction with the analyte in
the surrounding environment. To overcome this limit, Almeida et al. first proposed the
slot waveguide to confine and enhance the light field in a submicron slot which consisted
of a low refractive index material [3]. The light–analyte interaction was enhanced in the
slot region compared to the rib/strip silicon waveguides. Since then, slot waveguides have
been developed with significant increases in sensing sensitivity for many applications such
as label-free molecule detection [4,5].

The key advantage of optical fiber technologies is the ability to connect components in
a seamless and robust structure. Although the application of silica fibers has been studied
thoroughly, the desire to extend the working wavelength into the mid-infrared region
is motivating the search for new materials for this platform. Silicon cored fibers (SCFs)
have drawn lots of attention, and many works have been reported because of their unique
characteristics, such as large optical nonlinearity [6,7], and electro-photonics [8,9]. Unlike
silica fibers, the silicon core of an SCF does not possess large photosensitivity for making a
short-period or a long-period fiber grating, limiting its usage for sensing applications. Only
a few SCF-based sensors have been reported [10,11], but none to the best of our knowledge
for biosensors. To that end, we propose to side-polish an SCF to form a D-shaped SCF
(DSCF) and use its flat surface region as a platform for building biosensors. The DSCF has
been experimentally demonstrated to build a waveguide photodetector [9], proving the
flat surface could be controlled smooth enough for opto-electronic integration. Here we
show the design and the simulation results of slot waveguide sensors built in a tapered
DSCF to demonstrate the feasibility of building an in-line SCF biosensor, which cannot
be fabricated on the conventional mid-infrared fibers or silica fibers due to the refractive
index difference between core and the air is smaller.

The description of this work is arranged as follows. First, we propose a different
coupling scheme instead of the grating coupling commonly seen in silicon photonics. We
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then show that the single-mode operation can be maintained when propagating through
the tapered and the D-shaped regions. Secondly, the key parameters such as slot width,
slot separation, and the number of slots for the best performance of slot waveguides are
optimized. Thirdly, we show the feasibility of using an in-line fiber slot waveguide as an
index sensor intended for biomedical applications.

2. Coupling Method

A slot waveguide usually has slot width in the order of a few tens of nanometers. It
is embedded in a silicon waveguide structure on a silicon photonic platform, usually in
a silicon-on-insulator configuration. To efficiently couple light into such a small slot is a
challenging issue. Generally, two couplings are involved: light presumably from an external
optical glass fiber needs to be first coupled to a silicon waveguide structure. Then the light
goes through a second coupling into a slot waveguide. As a common practice in silicon
photonics, a grating is adopted for the first light coupling as the input port of the silicon
waveguide [12]. In such a coupling scheme, an input fiber must be placed vertically with
the slanted angle and phase-matched to the waveguide plane to achieve a high coupling
efficiency. As pointed out by Reference [13], such a vertical or non-coplanar structure
may increase packaging complexity compared to the parallel or coplanar structure usually
found in the light coupling between an edge-emitting semiconductor laser and an optical
fiber. For the second coupling between silicon waveguide and slot waveguide, several
exemplary schemes have been reported, such as tapered strip waveguide coupler [12] and
strip-slot coupler [14].

Figure 1 shows our light coupling scheme using a tapered DSCF. Instead of using a
grating coupling scheme, a commercial mid-IR SMF is directly coupled to a tapered DSCF.
A tapered DSCF is composed of a tapered SCF with its D-shaped flat surface located in the
waist region. Assume the light wavelength is 3 µm, where many biomarkers have their
fingerprints [15]. The silicon core diameter of our SCF made by the molten core drawing
method was usually larger than that required for the single-mode condition, resulting in
multiple modes propagating in the core at this wavelength. Therefore, the single-mode
light field from a mid-IR SMF must be sustained along the tapered DSCF and then be
coupled to a slot waveguide situated in the flat surface of DSCF.
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Figure 1. The scheme of light coupling from a mid-IR SMF to a DSCF through a tapered SCF region.

Since the last decade, there has been a growing interest in avoiding exciting higher-
order modes when coupling a Gaussian beam into a multimode fiber for increasing modal
bandwidth and transmission speed, the so-called mode division multiplexing technique.
These coupling methods include off-set launch technique [16], selective mode excitation
techniques, and mode field matched center launching [17], which in turn also provide
ways for sustaining single-mode light propagation in the SCF. For example, it has been
reported that the preset diameter of SCF could be determined by using the method of
mode field matched center launching so that the launched light can maintain single-mode
propagation throughout the SCF [18]. Similarly, the optimal silicon core size which had the
most overlapping with the fundamental mode of a mid-IR SMF could be obtained using
the software Lumerical Mode Solution. The result showed that when the SMF had a core
diameter of 9 µm, the optimal diameter of the connecting SCF was 14 µm so that 80% of
the incident field could be coupled into the fundamental mode of the SCF. To reduce the
Fresnel reflection when the SCF and the mid-IR SMF are connected, a micron-structured
surface on the end of SCF may suffice with low coupling losses [19,20].
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For the second light coupling, a tapered SCF is polished at a certain waist location as
shown in Figure 1 but magnified in Figure 2 to create a DSCF in which slot waveguides are
built in the flat silicon region to serve as an in-line fiber-based biosensor. An SCF can be
tapered to the desired diameter by using, for example, an oxyhydrogen flame system. The
tapered SCF is then fixed on a V-groove whose depth is designed to achieve the polished
depth of a DSCF. The flat platform of the DSCF is generated by using a grinding wheel
system for precise polish depth control. Afterward, the narrow slot can be fabricated in
DSCF by using electron beam or helium beam lithography for patterning and followed by
reactive ion etching.
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Figure 2. Model of our proposed DSCF.

To confirm that the incident light can maintain single-mode throughout a tapered
DSCF, we used the beam propagation method to simulate the evolution of the light field
inside the tapered DSCF as shown in Figure 2. The original 1.5 µm core diameter was
polished to 0.75 µm thickness to form a flat surface and an ensued tapering region. Figure 3a
shows the evolution of the light field of yz-plane from the incident facet to the distance
of 100/200/350 µm across a tapering length of 200 µm and a tapering angle of about
0.2 degrees. The light field is shown gradually compressed towards the polished surface
and results in light enhancement. Note that in Figure 3b–e the light field remains single-
mode throughout the tapering and flat regions, facilitating the design of an embedded slot
waveguide (SW) sensor in the flat area.
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3. Simulation Results and Discussion

The principle of generating slot mode in the low index region is due to the significant
discontinuity of the electric field of the high refractive index contrast in the interface. The
electric field is proportional to the ratio of n2

H/n2
s [3], where nH and ns are the refractive

indices of core material and slot region, respectively. The TE-mode light in the slot region
is thus enhanced, making it possible to realize a slot waveguide in a DSCF.

Rsoft Beamprog. was used to confirm that the guided core mode in the DSCF could
be coupled into slot mode of SW in DSCF. The simulation model of a slot waveguide built
in a DSCF and the cross-section of the slot region are shown in Figure 4a,b, respectively.
The core diameter was 1.5 µm and the depth of SW was around 0.75 µm. Figure 5a shows
that the electric field distribution of incident light propagating through the SW in the DSCF.
Note that light was indeed coupled into the slot waveguide with 140 nm width inside the
DSCF as shown in Figure 5b in which the field distribution was recorded by monitoring
M2 along xy-plane. Figure 6 shows the evolution of norm electric field. The red, blue and
green curves were the monitored |E| values at locations M1, M2 and M3, respectively. It
is clearly seen that the initially guided mode (|EH |) increased significantly when coupled
into the slot mode, from 0.4 to 4.7 at steady state, indicating the electric field enhancement
in the SW region. The result was consistent with the theory that the norm electric field
amplitude of slot mode could be 11 times larger than that of the guided mode because∣∣∣ ES

EH

∣∣∣ = n2
H/n2

s ( nH ∼ 3.4, ns ∼ 1), where |Es| is the norm electric field in the SW region
and |EH |. is the norm electric field in the silicon core.
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Ideally, the polished loss of DSCF can be reduced to 0.1 dB if the tapering length is
long enough when surface roughness and material absorption are neglected. The result of
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DSCF’s transmitted intensity when polished from 1.5 µm to 0.75 µm with different tapering
lengths is shown in Figure 7. Regardless of the profile of the transition region, as long as
the tapering length (z-axis) was long enough, the transmission loss could be reduced to
0.1 dB and the excitation of higher-order modes can be avoided.
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Furthermore, we used 2D FDTD to study the SW in the DSCF as shown in Figure 4b.
For sensing applications, the working principle of a slot waveguide is based on the vari-
ation of absorption. According to Beer-Lambert’s law [21], the output intensity, I, can be
expressed as

I = I0e−ΓεCl−αl (1)

where I0 is the input intensity, ε the absorption coefficient of the analyte, C the concentration
of the analyte, α the intrinsic loss of DSCF, l the length of sensing area, and Γ power
confinement factor (PCF). Γ is defined as [21]

Γ =

s
s Pzdxdy

s
t Pzdxdy

(2)

where Pz is the z component of the Poynting vector normal to the DSCF cross section, s for
slot region, and t for total area of device. The absorption sensitivity of the sensor (S) can be
calculated by differentiating normalized intensity (Inorm = I/I0) with respect to C [21]

S =
d(I/I0)

dC
= −ΓεCle(−ΓεCl−αl) = −Γεl Inorm (3)

Thus the sensitivity of SW in DSCF strongly depends on PCF which is then maximized
with respect to different slot widths by fixing other parameters. Figure 8 shows the high
expression of norm electric field distribution with 120 nm slot width by assuming TE
polarization at the operating wavelength of 3 µm. It is clearly seen that the electric field
inside the slot region was extremely higher than the core guided mode. The result of PCF
of one SW in the DSCF is shown in Figure 9a PCF gradually increased with increasing slot
width from 60 nm, and reached the maximum PCF of 49.1% at 120 nm. When the slot width
was larger than penetration length (~100 nm), the electric field became nonuniform in slot
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region and PCF started to decrease. Note that the normalized power (NP) (
s

s Pzdxdy
Areaslot

(
W
m2

)
)

in the slot region slightly decreased with increasing slot width. The result was comparable
to what was reported in the channel slot waveguide whose PCF was around 49% at
1550 nm [5].
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In addition, we study the effect of the number of slots. The 2D FDTD was used
again to calculate the optical properties of the SW in DSCF with two/three slots while the
dimension of the SW in DSCF remained the same as shown in Figure 4. The slot width
of SW in DSCF was set at the optimal value 120 nm as mentioned previously. We only
changed the separation between slots to optimize PCF, and the result is shown in Figure 9b.
The highest PCF occurred at the separation equal to 250 nm whose PCF was 65% in the
two-slot case and 81% in the three-slot case. Figure 10a,c show the power distribution of
the two/three SWs in DSCF when the separation was optimized. The reason for poor PCF
in Figure 10b was due to the larger separation than the size of the guided fundamental
mode, resulting in poor overlapping between DSCF’s guided mode and the slot mode so
that most guided field could not couple into the slot region. Similarly, if the guided mode
is of higher order, PCF would be much lower due to poor overlapping of the fields. It is
also noted that as the separation exceeded the peak, PCF decreased dramatically.
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Usually the sensitivity of waveguide can be defined as absorption loss [21], variation
of effective index [22], or the wavelength shift [23]. The variation of effective index can be
manifested in the change of transmission power or the shift of wavelength. Therefore, the
sensitivity of the SW in a DSCF (Ssw) can be defined as follows [22]:

∆n =
nb − nb,re f

nb,re f
(4)

∆ne f f =
ne f f − ne f f ,re f

ne f f ,re f
(5)

Ssw =
∆ne f f

∆n
(6)

where nb is the refractive index of analyte to be characterized; nb,ref the reference refractive
index. In the calculation of Ssw, we set water as reference (nb,ref = 1.37 at 3 µm); neff
the effective index of the slot waveguide; neff,ref is the neff in water. Figure 11 shows the
variation of Ssw and PCF when nb varies from 1.38 to 1.51. The solid lines correspond to
slot waveguide sensitivity and the dotted lines correspond to the PCF. The black lines are
the cases of one-slot, the orange two-slot, and the blue three-slot waveguides. It is seen
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that Ssw was significantly enhanced with increasing number of slots. The trend of Ssw
variation is similar to the variation of PCF, indicating that the sensitivity is significantly
affected by PCF. For comparison, the sensitivity (Ssw) for conventional slot waveguide
of slot width = 100 nm, waveguide width = 200 nm and waveguide height = 220 nm is
shown in Figure 12 with the red curve. The ridge slot waveguide has the same dimension
as the conventional slot waveguide with an unetched height of 20 nm is shown in the
blue curve [24]. The results are compared with the optimized three-slot waveguide in the
tapered DSCF with the optimal slot width of 120 nm and separation of 200 nm, as shown
in the black curve in Figure 12. It is seen that the proposed SW in a tapered DSCF is more
sensitive than the ridge slot waveguide but lower than the conventional slot waveguide.
The advantage of our proposed slot waveguide is that instead of the channel or ridge
geometry, the fiber geometry provides a more convenient coupling method, for instance,
free-space coupling or splicing with an optical fiber. Though more slots would lead to
higher sensitivities, the incurred cost may not be worthy from practical viewpoints. For
example, adding more slots would naturally increase fabrication complexity, weaken the
structure’s mechanical strength, and increase optical loss. Therefore, we limit the number
of SW no more than three.
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4. Conclusions

The proposed method of light coupling was capable of sustaining a single-mode light
field from a mid-IR SMF to the slot waveguide in a tapered DSCF. The field enhancement in
the slot waveguide was confirmed, and PCFs, the critical parameter affecting the sensitivity
of SW sensor, were optimized with slot widths by using both 2D and 3D FDTD for one-,
two- and three-slot waveguides. The PCF of the one-slot waveguide in the tapered DSCF
would reach 49.1%, comparable to the traditional channel slot waveguide. The highest PCF
(81.5%) was found for the three-slot waveguide in the tapered DSCF with the optimal slot
width of 120 nm and separation of 200 nm. For the application of detecting the refractive
index change of the analyte, the sensitivity of the slot waveguides in the tapered DSCF
was found to be strongly related to PCF and increased significantly with slot numbers.
Three-slot waveguide in the tapered DSCF was therefore considered the best candidate
for realization. Our proposed SW in a DSCF, being in a fiber geometry, has the potential
to be directly accessed with the existing mid-infrared optical fiber, paving the way for an
all-fiber system with potentially much greater functionality.
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